list.v 167 KB
Newer Older
1
(* Copyright (c) 2012-2017, Coq-std++ developers. *)
2
3
4
(* This file is distributed under the terms of the BSD license. *)
(** This file collects general purpose definitions and theorems on lists that
are not in the Coq standard library. *)
5
From Coq Require Export Permutation.
6
From stdpp Require Export numbers base option.
7
Set Default Proof Using "Type*".
Robbert Krebbers's avatar
Robbert Krebbers committed
8

9
10
11
Arguments length {_} _ : assert.
Arguments cons {_} _ _ : assert.
Arguments app {_} _ _ : assert.
12
13
14
15

Instance: Params (@length) 1.
Instance: Params (@cons) 1.
Instance: Params (@app) 1.
Robbert Krebbers's avatar
Robbert Krebbers committed
16

17
18
19
Notation tail := tl.
Notation take := firstn.
Notation drop := skipn.
20

21
22
23
Arguments tail {_} _ : assert.
Arguments take {_} !_ !_ / : assert.
Arguments drop {_} !_ !_ / : assert.
24

25
26
27
28
Instance: Params (@tail) 1.
Instance: Params (@take) 1.
Instance: Params (@drop) 1.

29
30
Arguments Permutation {_} _ _ : assert.
Arguments Forall_cons {_} _ _ _ _ _ : assert.
31
Remove Hints Permutation_cons : typeclass_instances.
32

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
Notation "(::)" := cons (only parsing) : stdpp_scope.
Notation "( x ::)" := (cons x) (only parsing) : stdpp_scope.
Notation "(:: l )" := (λ x, cons x l) (only parsing) : stdpp_scope.
Notation "(++)" := app (only parsing) : stdpp_scope.
Notation "( l ++)" := (app l) (only parsing) : stdpp_scope.
Notation "(++ k )" := (λ l, app l k) (only parsing) : stdpp_scope.

Infix "≡ₚ" := Permutation (at level 70, no associativity) : stdpp_scope.
Notation "(≡ₚ)" := Permutation (only parsing) : stdpp_scope.
Notation "( x ≡ₚ)" := (Permutation x) (only parsing) : stdpp_scope.
Notation "(≡ₚ x )" := (λ y, y  x) (only parsing) : stdpp_scope.
Notation "(≢ₚ)" := (λ x y, ¬x  y) (only parsing) : stdpp_scope.
Notation "x ≢ₚ y":= (¬x  y) (at level 70, no associativity) : stdpp_scope.
Notation "( x ≢ₚ)" := (λ y, x ≢ₚ y) (only parsing) : stdpp_scope.
Notation "(≢ₚ x )" := (λ y, y ≢ₚ x) (only parsing) : stdpp_scope.
48

Robbert Krebbers's avatar
Robbert Krebbers committed
49
50
51
52
Infix "≡ₚ@{ A }" :=
  (@Permutation A) (at level 70, no associativity, only parsing) : stdpp_scope.
Notation "(≡ₚ@{ A } )" := (@Permutation A) (only parsing) : stdpp_scope.

Robbert Krebbers's avatar
Robbert Krebbers committed
53
54
55
Instance maybe_cons {A} : Maybe2 (@cons A) := λ l,
  match l with x :: l => Some (x,l) | _ => None end.

56
(** * Definitions *)
57
58
59
60
61
62
(** Setoid equality lifted to lists *)
Inductive list_equiv `{Equiv A} : Equiv (list A) :=
  | nil_equiv : []  []
  | cons_equiv x y l k : x  y  l  k  x :: l  y :: k.
Existing Instance list_equiv.

63
64
(** The operation [l !! i] gives the [i]th element of the list [l], or [None]
in case [i] is out of bounds. *)
65
66
Instance list_lookup {A} : Lookup nat A (list A) :=
  fix go i l {struct l} : option A := let _ : Lookup _ _ _ := @go in
67
  match l with
68
  | [] => None | x :: l => match i with 0 => Some x | S i => l !! i end
69
  end.
70
71
72

(** The operation [alter f i l] applies the function [f] to the [i]th element
of [l]. In case [i] is out of bounds, the list is returned unchanged. *)
73
Instance list_alter {A} : Alter nat A (list A) := λ f,
74
  fix go i l {struct l} :=
75
76
  match l with
  | [] => []
77
  | x :: l => match i with 0 => f x :: l | S i => x :: go i l end
78
  end.
79

80
81
(** The operation [<[i:=x]> l] overwrites the element at position [i] with the
value [x]. In case [i] is out of bounds, the list is returned unchanged. *)
82
83
Instance list_insert {A} : Insert nat A (list A) :=
  fix go i y l {struct l} := let _ : Insert _ _ _ := @go in
84
85
86
87
  match l with
  | [] => []
  | x :: l => match i with 0 => y :: l | S i => x :: <[i:=y]>l end
  end.
88
89
90
91
92
Fixpoint list_inserts {A} (i : nat) (k l : list A) : list A :=
  match k with
  | [] => l
  | y :: k => <[i:=y]>(list_inserts (S i) k l)
  end.
93
Instance: Params (@list_inserts) 1.
94

95
96
97
(** The operation [delete i l] removes the [i]th element of [l] and moves
all consecutive elements one position ahead. In case [i] is out of bounds,
the list is returned unchanged. *)
98
99
Instance list_delete {A} : Delete nat (list A) :=
  fix go (i : nat) (l : list A) {struct l} : list A :=
100
101
  match l with
  | [] => []
102
  | x :: l => match i with 0 => l | S i => x :: @delete _ _ go i l end
103
  end.
104
105
106

(** The function [option_list o] converts an element [Some x] into the
singleton list [[x]], and [None] into the empty list [[]]. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
107
Definition option_list {A} : option A  list A := option_rect _ (λ x, [x]) [].
108
109
Instance: Params (@option_list) 1.
Instance maybe_list_singleton {A} : Maybe (λ x : A, [x]) := λ l,
110
  match l with [x] => Some x | _ => None end.
Robbert Krebbers's avatar
Robbert Krebbers committed
111
112
113
114

(** The function [filter P l] returns the list of elements of [l] that
satisfies [P]. The order remains unchanged. *)
Instance list_filter {A} : Filter A (list A) :=
115
  fix go P _ l := let _ : Filter _ _ := @go in
Robbert Krebbers's avatar
Robbert Krebbers committed
116
117
  match l with
  | [] => []
118
  | x :: l => if decide (P x) then x :: filter P l else filter P l
119
120
121
122
  end.

(** The function [list_find P l] returns the first index [i] whose element
satisfies the predicate [P]. *)
123
Definition list_find {A} P `{ x, Decision (P x)} : list A  option (nat * A) :=
124
125
  fix go l :=
  match l with
126
127
  | [] => None
  | x :: l => if decide (P x) then Some (0,x) else prod_map S id <$> go l
128
  end.
129
Instance: Params (@list_find) 3.
Robbert Krebbers's avatar
Robbert Krebbers committed
130
131
132
133

(** The function [replicate n x] generates a list with length [n] of elements
with value [x]. *)
Fixpoint replicate {A} (n : nat) (x : A) : list A :=
134
  match n with 0 => [] | S n => x :: replicate n x end.
135
Instance: Params (@replicate) 2.
Robbert Krebbers's avatar
Robbert Krebbers committed
136
137
138

(** The function [reverse l] returns the elements of [l] in reverse order. *)
Definition reverse {A} (l : list A) : list A := rev_append l [].
139
Instance: Params (@reverse) 1.
Robbert Krebbers's avatar
Robbert Krebbers committed
140

141
142
143
144
(** The function [last l] returns the last element of the list [l], or [None]
if the list [l] is empty. *)
Fixpoint last {A} (l : list A) : option A :=
  match l with [] => None | [x] => Some x | _ :: l => last l end.
145
Instance: Params (@last) 1.
146

Robbert Krebbers's avatar
Robbert Krebbers committed
147
148
149
150
151
152
(** The function [resize n y l] takes the first [n] elements of [l] in case
[length l ≤ n], and otherwise appends elements with value [x] to [l] to obtain
a list of length [n]. *)
Fixpoint resize {A} (n : nat) (y : A) (l : list A) : list A :=
  match l with
  | [] => replicate n y
153
  | x :: l => match n with 0 => [] | S n => x :: resize n y l end
Robbert Krebbers's avatar
Robbert Krebbers committed
154
  end.
155
Arguments resize {_} !_ _ !_ : assert.
156
Instance: Params (@resize) 2.
Robbert Krebbers's avatar
Robbert Krebbers committed
157

158
159
160
(** The function [reshape k l] transforms [l] into a list of lists whose sizes
are specified by [k]. In case [l] is too short, the resulting list will be
padded with empty lists. In case [l] is too long, it will be truncated. *)
161
162
Fixpoint reshape {A} (szs : list nat) (l : list A) : list (list A) :=
  match szs with
163
  | [] => [] | sz :: szs => take sz l :: reshape szs (drop sz l)
164
  end.
165
Instance: Params (@reshape) 2.
166

167
Definition sublist_lookup {A} (i n : nat) (l : list A) : option (list A) :=
168
169
170
171
  guard (i + n  length l); Some (take n (drop i l)).
Definition sublist_alter {A} (f : list A  list A)
    (i n : nat) (l : list A) : list A :=
  take i l ++ f (take n (drop i l)) ++ drop (i + n) l.
172

173
174
175
176
(** Functions to fold over a list. We redefine [foldl] with the arguments in
the same order as in Haskell. *)
Notation foldr := fold_right.
Definition foldl {A B} (f : A  B  A) : A  list B  A :=
177
  fix go a l := match l with [] => a | x :: l => go (f a x) l end.
178
179
180

(** The monadic operations. *)
Instance list_ret: MRet list := λ A x, x :: @nil A.
181
182
Instance list_fmap : FMap list := λ A B f,
  fix go (l : list A) := match l with [] => [] | x :: l => f x :: go l end.
183
184
185
186
187
188
Instance list_omap : OMap list := λ A B f,
  fix go (l : list A) :=
  match l with
  | [] => []
  | x :: l => match f x with Some y => y :: go l | None => go l end
  end.
189
190
Instance list_bind : MBind list := λ A B f,
  fix go (l : list A) := match l with [] => [] | x :: l => f x ++ go l end.
191
192
Instance list_join: MJoin list :=
  fix go A (ls : list (list A)) : list A :=
193
  match ls with [] => [] | l :: ls => l ++ @mjoin _ go _ ls end.
194
Definition mapM `{MBind M, MRet M} {A B} (f : A  M B) : list A  M (list B) :=
195
  fix go l :=
196
  match l with [] => mret [] | x :: l => y  f x; k  go l; mret (y :: k) end.
197
198
199

(** We define stronger variants of map and fold that allow the mapped
function to use the index of the elements. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
200
201
202
203
204
Fixpoint imap {A B} (f : nat  A  B) (l : list A) : list B :=
  match l with
  | [] => []
  | x :: l => f 0 x :: imap (f  S) l
  end.
205

206
Definition zipped_map {A B} (f : list A  list A  A  B) :
Robbert Krebbers's avatar
Robbert Krebbers committed
207
208
209
210
211
    list A  list A  list B := fix go l k :=
  match k with
  | [] => []
  | x :: k => f l k x :: go (x :: l) k
  end.
212

Robbert Krebbers's avatar
Robbert Krebbers committed
213
Fixpoint imap2 {A B C} (f : nat  A  B  C) (l : list A) (k : list B) : list C :=
Robbert Krebbers's avatar
Robbert Krebbers committed
214
  match l, k with
Robbert Krebbers's avatar
Robbert Krebbers committed
215
216
  | [], _ | _, [] => []
  | x :: l, y :: k => f 0 x y :: imap2 (f  S) l k
Robbert Krebbers's avatar
Robbert Krebbers committed
217
218
  end.

219
220
221
222
223
Inductive zipped_Forall {A} (P : list A  list A  A  Prop) :
    list A  list A  Prop :=
  | zipped_Forall_nil l : zipped_Forall P l []
  | zipped_Forall_cons l k x :
     P l k x  zipped_Forall P (x :: l) k  zipped_Forall P l (x :: k).
224
225
Arguments zipped_Forall_nil {_ _} _ : assert.
Arguments zipped_Forall_cons {_ _} _ _ _ _ _ : assert.
226

227
228
229
230
231
232
233
(** The function [mask f βs l] applies the function [f] to elements in [l] at
positions that are [true] in [βs]. *)
Fixpoint mask {A} (f : A  A) (βs : list bool) (l : list A) : list A :=
  match βs, l with
  | β :: βs, x :: l => (if β then f x else x) :: mask f βs l
  | _, _ => l
  end.
234
235
236
237

(** The function [permutations l] yields all permutations of [l]. *)
Fixpoint interleave {A} (x : A) (l : list A) : list (list A) :=
  match l with
238
  | [] => [[x]]| y :: l => (x :: y :: l) :: ((y ::) <$> interleave x l)
239
240
  end.
Fixpoint permutations {A} (l : list A) : list (list A) :=
241
  match l with [] => [[]] | x :: l => permutations l = interleave x end.
242

Robbert Krebbers's avatar
Robbert Krebbers committed
243
244
245
246
(** The predicate [suffix] holds if the first list is a suffix of the second.
The predicate [prefix] holds if the first list is a prefix of the second. *)
Definition suffix {A} : relation (list A) := λ l1 l2,  k, l2 = k ++ l1.
Definition prefix {A} : relation (list A) := λ l1 l2,  k, l2 = l1 ++ k.
247
248
Infix "`suffix_of`" := suffix (at level 70) : stdpp_scope.
Infix "`prefix_of`" := prefix (at level 70) : stdpp_scope.
249
250
Hint Extern 0 (_ `prefix_of` _) => reflexivity.
Hint Extern 0 (_ `suffix_of` _) => reflexivity.
Robbert Krebbers's avatar
Robbert Krebbers committed
251

252
Section prefix_suffix_ops.
253
254
  Context `{EqDecision A}.

Robbert Krebbers's avatar
Robbert Krebbers committed
255
  Definition max_prefix : list A  list A  list A * list A * list A :=
256
257
258
259
260
    fix go l1 l2 :=
    match l1, l2 with
    | [], l2 => ([], l2, [])
    | l1, [] => (l1, [], [])
    | x1 :: l1, x2 :: l2 =>
261
      if decide_rel (=) x1 x2
262
      then prod_map id (x1 ::) (go l1 l2) else (x1 :: l1, x2 :: l2, [])
263
    end.
Robbert Krebbers's avatar
Robbert Krebbers committed
264
265
  Definition max_suffix (l1 l2 : list A) : list A * list A * list A :=
    match max_prefix (reverse l1) (reverse l2) with
266
267
    | (k1, k2, k3) => (reverse k1, reverse k2, reverse k3)
    end.
Robbert Krebbers's avatar
Robbert Krebbers committed
268
269
  Definition strip_prefix (l1 l2 : list A) := (max_prefix l1 l2).1.2.
  Definition strip_suffix (l1 l2 : list A) := (max_suffix l1 l2).1.2.
270
End prefix_suffix_ops.
Robbert Krebbers's avatar
Robbert Krebbers committed
271

272
(** A list [l1] is a sublist of [l2] if [l2] is obtained by removing elements
273
274
275
from [l1] without changing the order. *)
Inductive sublist {A} : relation (list A) :=
  | sublist_nil : sublist [] []
276
  | sublist_skip x l1 l2 : sublist l1 l2  sublist (x :: l1) (x :: l2)
277
  | sublist_cons x l1 l2 : sublist l1 l2  sublist l1 (x :: l2).
278
Infix "`sublist_of`" := sublist (at level 70) : stdpp_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
279
Hint Extern 0 (_ `sublist_of` _) => reflexivity.
280

Robbert Krebbers's avatar
Robbert Krebbers committed
281
(** A list [l2] submseteq a list [l1] if [l2] is obtained by removing elements
282
from [l1] while possiblity changing the order. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
283
284
285
286
287
288
Inductive submseteq {A} : relation (list A) :=
  | submseteq_nil : submseteq [] []
  | submseteq_skip x l1 l2 : submseteq l1 l2  submseteq (x :: l1) (x :: l2)
  | submseteq_swap x y l : submseteq (y :: x :: l) (x :: y :: l)
  | submseteq_cons x l1 l2 : submseteq l1 l2  submseteq l1 (x :: l2)
  | submseteq_trans l1 l2 l3 : submseteq l1 l2  submseteq l2 l3  submseteq l1 l3.
289
Infix "⊆+" := submseteq (at level 70) : stdpp_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
290
Hint Extern 0 (_ + _) => reflexivity.
291

292
293
294
295
296
297
298
299
300
301
302
303
304
305
(** Removes [x] from the list [l]. The function returns a [Some] when the
+removal succeeds and [None] when [x] is not in [l]. *)
Fixpoint list_remove `{EqDecision A} (x : A) (l : list A) : option (list A) :=
  match l with
  | [] => None
  | y :: l => if decide (x = y) then Some l else (y ::) <$> list_remove x l
  end.

(** Removes all elements in the list [k] from the list [l]. The function returns
a [Some] when the removal succeeds and [None] some element of [k] is not in [l]. *)
Fixpoint list_remove_list `{EqDecision A} (k : list A) (l : list A) : option (list A) :=
  match k with
  | [] => Some l | x :: k => list_remove x l = list_remove_list k
  end.
306

307
308
309
310
311
Inductive Forall3 {A B C} (P : A  B  C  Prop) :
     list A  list B  list C  Prop :=
  | Forall3_nil : Forall3 P [] [] []
  | Forall3_cons x y z l k k' :
     P x y z  Forall3 P l k k'  Forall3 P (x :: l) (y :: k) (z :: k').
312

313
314
(** Set operations on lists *)
Instance list_subseteq {A} : SubsetEq (list A) := λ l1 l2,  x, x  l1  x  l2.
315

316
Section list_set.
317
  Context `{dec : EqDecision A}.
Robbert Krebbers's avatar
Robbert Krebbers committed
318
  Global Instance elem_of_list_dec : RelDecision (@{list A}).
319
320
  Proof.
   refine (
321
    fix go x l :=
322
323
    match l return Decision (x  l) with
    | [] => right _
324
    | y :: l => cast_if_or (decide (x = y)) (go x l)
325
326
327
328
329
330
331
332
333
334
335
336
337
    end); clear go dec; subst; try (by constructor); abstract by inversion 1.
  Defined.
  Fixpoint remove_dups (l : list A) : list A :=
    match l with
    | [] => []
    | x :: l =>
      if decide_rel () x l then remove_dups l else x :: remove_dups l
    end.
  Fixpoint list_difference (l k : list A) : list A :=
    match l with
    | [] => []
    | x :: l =>
      if decide_rel () x k
338
      then list_difference l k else x :: list_difference l k
339
    end.
340
  Definition list_union (l k : list A) : list A := list_difference l k ++ k.
341
342
343
344
345
  Fixpoint list_intersection (l k : list A) : list A :=
    match l with
    | [] => []
    | x :: l =>
      if decide_rel () x k
346
      then x :: list_intersection l k else list_intersection l k
347
348
349
350
351
352
353
354
355
    end.
  Definition list_intersection_with (f : A  A  option A) :
    list A  list A  list A := fix go l k :=
    match l with
    | [] => []
    | x :: l => foldr (λ y,
        match f x y with None => id | Some z => (z ::) end) (go l k) k
    end.
End list_set.
356
357

(** * Basic tactics on lists *)
Robbert Krebbers's avatar
Robbert Krebbers committed
358
(** The tactic [discriminate_list] discharges a goal if it submseteq
359
360
a list equality involving [(::)] and [(++)] of two lists that have a different
length as one of its hypotheses. *)
361
Tactic Notation "discriminate_list" hyp(H) :=
362
  apply (f_equal length) in H;
363
  repeat (csimpl in H || rewrite app_length in H); exfalso; lia.
364
Tactic Notation "discriminate_list" :=
365
  match goal with H : _ =@{list _} _ |- _ => discriminate_list H end.
366

367
(** The tactic [simplify_list_eq] simplifies hypotheses involving
368
369
equalities on lists using injectivity of [(::)] and [(++)]. Also, it simplifies
lookups in singleton lists. *)
370
Lemma app_inj_1 {A} (l1 k1 l2 k2 : list A) :
371
372
  length l1 = length k1  l1 ++ l2 = k1 ++ k2  l1 = k1  l2 = k2.
Proof. revert k1. induction l1; intros [|??]; naive_solver. Qed.
373
Lemma app_inj_2 {A} (l1 k1 l2 k2 : list A) :
374
375
  length l2 = length k2  l1 ++ l2 = k1 ++ k2  l1 = k1  l2 = k2.
Proof.
376
  intros ? Hl. apply app_inj_1; auto.
377
378
  apply (f_equal length) in Hl. rewrite !app_length in Hl. lia.
Qed.
379
Ltac simplify_list_eq :=
380
  repeat match goal with
381
  | _ => progress simplify_eq/=
382
  | H : _ ++ _ = _ ++ _ |- _ => first
383
    [ apply app_inv_head in H | apply app_inv_tail in H
384
385
    | apply app_inj_1 in H; [destruct H|done]
    | apply app_inj_2 in H; [destruct H|done] ]
Robbert Krebbers's avatar
Robbert Krebbers committed
386
  | H : [?x] !! ?i = Some ?y |- _ =>
387
    destruct i; [change (Some x = Some y) in H | discriminate]
388
  end.
389

390
391
(** * General theorems *)
Section general_properties.
Robbert Krebbers's avatar
Robbert Krebbers committed
392
Context {A : Type}.
393
394
Implicit Types x y z : A.
Implicit Types l k : list A.
Robbert Krebbers's avatar
Robbert Krebbers committed
395

396
Global Instance: Inj2 (=) (=) (=) (@cons A).
397
Proof. by injection 1. Qed.
398
Global Instance:  k, Inj (=) (=) (k ++).
399
Proof. intros ???. apply app_inv_head. Qed.
400
Global Instance:  k, Inj (=) (=) (++ k).
401
Proof. intros ???. apply app_inv_tail. Qed.
402
Global Instance: Assoc (=) (@app A).
403
404
405
406
407
Proof. intros ???. apply app_assoc. Qed.
Global Instance: LeftId (=) [] (@app A).
Proof. done. Qed.
Global Instance: RightId (=) [] (@app A).
Proof. intro. apply app_nil_r. Qed.
408

409
Lemma app_nil l1 l2 : l1 ++ l2 = []  l1 = []  l2 = [].
410
Proof. split. apply app_eq_nil. by intros [-> ->]. Qed.
411
412
Lemma app_singleton l1 l2 x :
  l1 ++ l2 = [x]  l1 = []  l2 = [x]  l1 = [x]  l2 = [].
413
Proof. split. apply app_eq_unit. by intros [[-> ->]|[-> ->]]. Qed.
414
415
416
Lemma cons_middle x l1 l2 : l1 ++ x :: l2 = l1 ++ [x] ++ l2.
Proof. done. Qed.
Lemma list_eq l1 l2 : ( i, l1 !! i = l2 !! i)  l1 = l2.
417
Proof.
418
  revert l2. induction l1 as [|x l1 IH]; intros [|y l2] H.
419
420
421
  - done.
  - discriminate (H 0).
  - discriminate (H 0).
422
  - f_equal; [by injection (H 0)|]. apply (IH _ $ λ i, H (S i)).
423
Qed.
424
425
Global Instance list_eq_dec {dec : EqDecision A} : EqDecision (list A) :=
  list_eq_dec dec.
426
427
428
Global Instance list_eq_nil_dec l : Decision (l = []).
Proof. by refine match l with [] => left _ | _ => right _ end. Defined.
Lemma list_singleton_reflect l :
429
  option_reflect (λ x, l = [x]) (length l  1) (maybe (λ x, [x]) l).
430
431
432
433
Proof. by destruct l as [|? []]; constructor. Defined.

Definition nil_length : length (@nil A) = 0 := eq_refl.
Definition cons_length x l : length (x :: l) = S (length l) := eq_refl.
434
Lemma nil_or_length_pos l : l = []  length l  0.
435
Proof. destruct l; simpl; auto with lia. Qed.
436
Lemma nil_length_inv l : length l = 0  l = [].
437
438
Proof. by destruct l. Qed.
Lemma lookup_nil i : @nil A !! i = None.
439
Proof. by destruct i. Qed.
440
Lemma lookup_tail l i : tail l !! i = l !! S i.
441
Proof. by destruct l. Qed.
442
Lemma lookup_lt_Some l i x : l !! i = Some x  i < length l.
443
Proof. revert i. induction l; intros [|?] ?; naive_solver auto with arith. Qed.
444
445
446
Lemma lookup_lt_is_Some_1 l i : is_Some (l !! i)  i < length l.
Proof. intros [??]; eauto using lookup_lt_Some. Qed.
Lemma lookup_lt_is_Some_2 l i : i < length l  is_Some (l !! i).
447
Proof. revert i. induction l; intros [|?] ?; naive_solver eauto with lia. Qed.
448
449
450
451
452
453
454
455
Lemma lookup_lt_is_Some l i : is_Some (l !! i)  i < length l.
Proof. split; auto using lookup_lt_is_Some_1, lookup_lt_is_Some_2. Qed.
Lemma lookup_ge_None l i : l !! i = None  length l  i.
Proof. rewrite eq_None_not_Some, lookup_lt_is_Some. lia. Qed.
Lemma lookup_ge_None_1 l i : l !! i = None  length l  i.
Proof. by rewrite lookup_ge_None. Qed.
Lemma lookup_ge_None_2 l i : length l  i  l !! i = None.
Proof. by rewrite lookup_ge_None. Qed.
456
457
458
Lemma list_eq_same_length l1 l2 n :
  length l2 = n  length l1 = n 
  ( i x y, i < n  l1 !! i = Some x  l2 !! i = Some y  x = y)  l1 = l2.
Robbert Krebbers's avatar
Robbert Krebbers committed
459
Proof.
460
  intros <- Hlen Hl; apply list_eq; intros i. destruct (l2 !! i) as [x|] eqn:Hx.
461
  - destruct (lookup_lt_is_Some_2 l1 i) as [y Hy].
462
463
    { rewrite Hlen; eauto using lookup_lt_Some. }
    rewrite Hy; f_equal; apply (Hl i); eauto using lookup_lt_Some.
464
  - by rewrite lookup_ge_None, Hlen, <-lookup_ge_None.
Robbert Krebbers's avatar
Robbert Krebbers committed
465
Qed.
466
Lemma lookup_app_l l1 l2 i : i < length l1  (l1 ++ l2) !! i = l1 !! i.
467
Proof. revert i. induction l1; intros [|?]; naive_solver auto with lia. Qed.
468
469
Lemma lookup_app_l_Some l1 l2 i x : l1 !! i = Some x  (l1 ++ l2) !! i = Some x.
Proof. intros. rewrite lookup_app_l; eauto using lookup_lt_Some. Qed.
470
Lemma lookup_app_r l1 l2 i :
471
  length l1  i  (l1 ++ l2) !! i = l2 !! (i - length l1).
472
473
474
475
476
477
Proof. revert i. induction l1; intros [|?]; simpl; auto with lia. Qed.
Lemma lookup_app_Some l1 l2 i x :
  (l1 ++ l2) !! i = Some x 
    l1 !! i = Some x  length l1  i  l2 !! (i - length l1) = Some x.
Proof.
  split.
478
  - revert i. induction l1 as [|y l1 IH]; intros [|i] ?;
479
      simplify_eq/=; auto with lia.
480
    destruct (IH i) as [?|[??]]; auto with lia.
481
  - intros [?|[??]]; auto using lookup_app_l_Some. by rewrite lookup_app_r.
482
Qed.
483
484
485
Lemma list_lookup_middle l1 l2 x n :
  n = length l1  (l1 ++ x :: l2) !! n = Some x.
Proof. intros ->. by induction l1. Qed.
486

487
Lemma nth_lookup l i d : nth i l d = default d (l !! i).
488
489
490
491
Proof. revert i. induction l as [|x l IH]; intros [|i]; simpl; auto. Qed.
Lemma nth_lookup_Some l i d x : l !! i = Some x  nth i l d = x.
Proof. rewrite nth_lookup. by intros ->. Qed.
Lemma nth_lookup_or_length l i d : {l !! i = Some (nth i l d)} + {length l  i}.
Ralf Jung's avatar
Ralf Jung committed
492
Proof.
493
  rewrite nth_lookup. destruct (l !! i) eqn:?; eauto using lookup_ge_None_1.
Ralf Jung's avatar
Ralf Jung committed
494
495
Qed.

496
Lemma list_insert_alter l i x : <[i:=x]>l = alter (λ _, x) i l.
497
Proof. by revert i; induction l; intros []; intros; f_equal/=. Qed.
498
Lemma alter_length f l i : length (alter f i l) = length l.
499
Proof. revert i. by induction l; intros [|?]; f_equal/=. Qed.
500
Lemma insert_length l i x : length (<[i:=x]>l) = length l.
501
Proof. revert i. by induction l; intros [|?]; f_equal/=. Qed.
502
Lemma list_lookup_alter f l i : alter f i l !! i = f <$> l !! i.
503
Proof. revert i. induction l. done. intros [|i]. done. apply (IHl i). Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
504
Lemma list_lookup_alter_ne f l i j : i  j  alter f i l !! j = l !! j.
505
Proof. revert i j. induction l; [done|]. intros [] []; naive_solver. Qed.
506
Lemma list_lookup_insert l i x : i < length l  <[i:=x]>l !! i = Some x.
507
Proof. revert i. induction l; intros [|?] ?; f_equal/=; auto with lia. Qed.
508
Lemma list_lookup_insert_ne l i j x : i  j  <[i:=x]>l !! j = l !! j.
509
Proof. revert i j. induction l; [done|]. intros [] []; naive_solver. Qed.
510
511
512
513
514
515
Lemma list_lookup_insert_Some l i x j y :
  <[i:=x]>l !! j = Some y 
    i = j  x = y  j < length l  i  j  l !! j = Some y.
Proof.
  destruct (decide (i = j)) as [->|];
    [split|rewrite list_lookup_insert_ne by done; tauto].
516
  - intros Hy. assert (j < length l).
517
518
    { rewrite <-(insert_length l j x); eauto using lookup_lt_Some. }
    rewrite list_lookup_insert in Hy by done; naive_solver.
519
  - intros [(?&?&?)|[??]]; rewrite ?list_lookup_insert; naive_solver.
520
521
522
Qed.
Lemma list_insert_commute l i j x y :
  i  j  <[i:=x]>(<[j:=y]>l) = <[j:=y]>(<[i:=x]>l).
523
Proof. revert i j. by induction l; intros [|?] [|?] ?; f_equal/=; auto. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
524
525
526
Lemma list_insert_id l i x : l !! i = Some x  <[i:=x]>l = l.
Proof. revert i. induction l; intros [|i] [=]; f_equal/=; auto. Qed.

527
528
Lemma list_lookup_other l i x :
  length l  1  l !! i = Some x   j y, j  i  l !! j = Some y.
Robbert Krebbers's avatar
Robbert Krebbers committed
529
Proof.
530
  intros. destruct i, l as [|x0 [|x1 l]]; simplify_eq/=.
531
532
  - by exists 1, x1.
  - by exists 0, x0.
Robbert Krebbers's avatar
Robbert Krebbers committed
533
Qed.
534
535
Lemma alter_app_l f l1 l2 i :
  i < length l1  alter f i (l1 ++ l2) = alter f i l1 ++ l2.
536
Proof. revert i. induction l1; intros [|?] ?; f_equal/=; auto with lia. Qed.
537
Lemma alter_app_r f l1 l2 i :
538
  alter f (length l1 + i) (l1 ++ l2) = l1 ++ alter f i l2.
539
Proof. revert i. induction l1; intros [|?]; f_equal/=; auto. Qed.
540
541
Lemma alter_app_r_alt f l1 l2 i :
  length l1  i  alter f i (l1 ++ l2) = l1 ++ alter f (i - length l1) l2.
542
543
544
545
Proof.
  intros. assert (i = length l1 + (i - length l1)) as Hi by lia.
  rewrite Hi at 1. by apply alter_app_r.
Qed.
546
Lemma list_alter_id f l i : ( x, f x = x)  alter f i l = l.
547
Proof. intros ?. revert i. induction l; intros [|?]; f_equal/=; auto. Qed.
548
549
Lemma list_alter_ext f g l k i :
  ( x, l !! i = Some x  f x = g x)  l = k  alter f i l = alter g i k.
550
Proof. intros H ->. revert i H. induction k; intros [|?] ?; f_equal/=; auto. Qed.
551
552
Lemma list_alter_compose f g l i :
  alter (f  g) i l = alter f i (alter g i l).
553
Proof. revert i. induction l; intros [|?]; f_equal/=; auto. Qed.
554
555
Lemma list_alter_commute f g l i j :
  i  j  alter f i (alter g j l) = alter g j (alter f i l).
556
Proof. revert i j. induction l; intros [|?][|?] ?; f_equal/=; auto with lia. Qed.
557
558
Lemma insert_app_l l1 l2 i x :
  i < length l1  <[i:=x]>(l1 ++ l2) = <[i:=x]>l1 ++ l2.
559
Proof. revert i. induction l1; intros [|?] ?; f_equal/=; auto with lia. Qed.
560
Lemma insert_app_r l1 l2 i x : <[length l1+i:=x]>(l1 ++ l2) = l1 ++ <[i:=x]>l2.
561
Proof. revert i. induction l1; intros [|?]; f_equal/=; auto. Qed.
562
563
Lemma insert_app_r_alt l1 l2 i x :
  length l1  i  <[i:=x]>(l1 ++ l2) = l1 ++ <[i - length l1:=x]>l2.
564
565
566
567
Proof.
  intros. assert (i = length l1 + (i - length l1)) as Hi by lia.
  rewrite Hi at 1. by apply insert_app_r.
Qed.
568
Lemma delete_middle l1 l2 x : delete (length l1) (l1 ++ x :: l2) = l1 ++ l2.
569
Proof. induction l1; f_equal/=; auto. Qed.
570

571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
Lemma inserts_length l i k : length (list_inserts i k l) = length l.
Proof.
  revert i. induction k; intros ?; csimpl; rewrite ?insert_length; auto.
Qed.
Lemma list_lookup_inserts l i k j :
  i  j < i + length k  j < length l 
  list_inserts i k l !! j = k !! (j - i).
Proof.
  revert i j. induction k as [|y k IH]; csimpl; intros i j ??; [lia|].
  destruct (decide (i = j)) as [->|].
  { by rewrite list_lookup_insert, Nat.sub_diag
      by (rewrite inserts_length; lia). }
  rewrite list_lookup_insert_ne, IH by lia.
  by replace (j - i) with (S (j - S i)) by lia.
Qed.
Lemma list_lookup_inserts_lt l i k j :
  j < i  list_inserts i k l !! j = l !! j.
Proof.
  revert i j. induction k; intros i j ?; csimpl;
    rewrite ?list_lookup_insert_ne by lia; auto with lia.
Qed.
Lemma list_lookup_inserts_ge l i k j :
  i + length k  j  list_inserts i k l !! j = l !! j.
Proof.
  revert i j. induction k; csimpl; intros i j ?;
    rewrite ?list_lookup_insert_ne by lia; auto with lia.
Qed.
Lemma list_lookup_inserts_Some l i k j y :
  list_inserts i k l !! j = Some y 
    (j < i  i + length k  j)  l !! j = Some y 
    i  j < i + length k  j < length l  k !! (j - i) = Some y.
Proof.
  destruct (decide (j < i)).
  { rewrite list_lookup_inserts_lt by done; intuition lia. }
  destruct (decide (i + length k  j)).
  { rewrite list_lookup_inserts_ge by done; intuition lia. }
  split.
608
  - intros Hy. assert (j < length l).
609
610
    { rewrite <-(inserts_length l i k); eauto using lookup_lt_Some. }
    rewrite list_lookup_inserts in Hy by lia. intuition lia.
611
  - intuition. by rewrite list_lookup_inserts by lia.
612
613
614
615
616
617
618
619
Qed.
Lemma list_insert_inserts_lt l i j x k :
  i < j  <[i:=x]>(list_inserts j k l) = list_inserts j k (<[i:=x]>l).
Proof.
  revert i j. induction k; intros i j ?; simpl;
    rewrite 1?list_insert_commute by lia; auto with f_equal.
Qed.

620
(** ** Properties of the [elem_of] predicate *)
621
Lemma not_elem_of_nil x : x  [].
622
Proof. by inversion 1. Qed.
623
Lemma elem_of_nil x : x  []  False.
624
Proof. intuition. by destruct (not_elem_of_nil x). Qed.
625
Lemma elem_of_nil_inv l : ( x, x  l)  l = [].
626
Proof. destruct l. done. by edestruct 1; constructor. Qed.
627
628
Lemma elem_of_not_nil x l : x  l  l  [].
Proof. intros ? ->. by apply (elem_of_nil x). Qed.
629
Lemma elem_of_cons l x y : x  y :: l  x = y  x  l.
Robbert Krebbers's avatar
Robbert Krebbers committed
630
Proof. by split; [inversion 1; subst|intros [->|?]]; constructor. Qed.
631
Lemma not_elem_of_cons l x y : x  y :: l  x  y  x  l.
Robbert Krebbers's avatar
Robbert Krebbers committed
632
Proof. rewrite elem_of_cons. tauto. Qed.
633
Lemma elem_of_app l1 l2 x : x  l1 ++ l2  x  l1  x  l2.
634
Proof.
635
  induction l1.
636
637
  - split; [by right|]. intros [Hx|]; [|done]. by destruct (elem_of_nil x).
  - simpl. rewrite !elem_of_cons, IHl1. tauto.
638
Qed.
639
Lemma not_elem_of_app l1 l2 x : x  l1 ++ l2  x  l1  x  l2.
Robbert Krebbers's avatar
Robbert Krebbers committed
640
Proof. rewrite elem_of_app. tauto. Qed.
641
Lemma elem_of_list_singleton x y : x  [y]  x = y.
642
Proof. rewrite elem_of_cons, elem_of_nil. tauto. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
643
Global Instance elem_of_list_permutation_proper x : Proper (() ==> iff) (x ).
644
Proof. induction 1; rewrite ?elem_of_nil, ?elem_of_cons; intuition. Qed.
645
Lemma elem_of_list_split l x : x  l   l1 l2, l = l1 ++ x :: l2.
646
Proof.
647
  induction 1 as [x l|x y l ? [l1 [l2 ->]]]; [by eexists [], l|].
648
  by exists (y :: l1), l2.
649
Qed.
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
Lemma elem_of_list_split_l `{EqDecision A} l x :
  x  l   l1 l2, l = l1 ++ x :: l2  x  l1.
Proof.
  induction 1 as [x l|x y l ? IH].
  { exists [], l. rewrite elem_of_nil. naive_solver. }
  destruct (decide (x = y)) as [->|?].
  - exists [], l. rewrite elem_of_nil. naive_solver.
  - destruct IH as (l1 & l2 & -> & ?).
    exists (y :: l1), l2. rewrite elem_of_cons. naive_solver.
Qed.
Lemma elem_of_list_split_r `{EqDecision A} l x :
  x  l   l1 l2, l = l1 ++ x :: l2  x  l2.
Proof.
  induction l as [|y l IH] using rev_ind.
  { by rewrite elem_of_nil. }
  destruct (decide (x = y)) as [->|].
  - exists l, []. rewrite elem_of_nil. naive_solver.
  - rewrite elem_of_app, elem_of_list_singleton. intros [?| ->]; try done.
    destruct IH as (l1 & l2 & -> & ?); auto.
    exists l1, (l2 ++ [y]).
    rewrite elem_of_app, elem_of_list_singleton, <-(assoc_L (++)). naive_solver.
Qed.
672
Lemma elem_of_list_lookup_1 l x : x  l   i, l !! i = Some x.
673
Proof.
674
675
  induction 1 as [|???? IH]; [by exists 0 |].
  destruct IH as [i ?]; auto. by exists (S i).
676
Qed.
677
Lemma elem_of_list_lookup_2 l i x : l !! i = Some x  x  l.
678
Proof.
679
  revert i. induction l; intros [|i] ?; simplify_eq/=; constructor; eauto.
680
Qed.
681
682
Lemma elem_of_list_lookup l x : x  l   i, l !! i = Some x.
Proof. firstorder eauto using elem_of_list_lookup_1, elem_of_list_lookup_2. Qed.
683
684
685
686
Lemma elem_of_list_omap {B} (f : A  option B) l (y : B) :
  y  omap f l   x, x  l  f x = Some y.
Proof.
  split.
687
  - induction l as [|x l]; csimpl; repeat case_match; inversion 1; subst;
688
      setoid_rewrite elem_of_cons; naive_solver.
689
  - intros (x&Hx&?). by induction Hx; csimpl; repeat case_match;
690
      simplify_eq; try constructor; auto.
691
Qed.
692

693
(** ** Properties of the [NoDup] predicate *)
694
695
Lemma NoDup_nil : NoDup (@nil A)  True.
Proof. split; constructor. Qed.
696
Lemma NoDup_cons x l : NoDup (x :: l)  x  l  NoDup l.
697
Proof. split. by inversion 1. intros [??]. by constructor. Qed.
698
Lemma NoDup_cons_11 x l : NoDup (x :: l)  x  l.
699
Proof. rewrite NoDup_cons. by intros [??]. Qed.