base.v 56.1 KB
Newer Older
1
(* Copyright (c) 2012-2019, Coq-std++ developers. *)
2 3 4
(* This file is distributed under the terms of the BSD license. *)
(** This file collects type class interfaces, notations, and general theorems
that are used throughout the whole development. Most importantly it contains
5
abstract interfaces for ordered structures, sets, and various other data
6
structures. *)
7

8
From Coq Require Export Morphisms RelationClasses List Bool Utf8 Setoid.
9
From Coq Require Import Permutation.
10
Set Default Proof Using "Type".
11 12
Export ListNotations.
From Coq.Program Require Export Basics Syntax.
13

Ralf Jung's avatar
Ralf Jung committed
14 15
(** * Enable implicit generalization. *)
(** This option enables implicit generalization in arguments of the form
16 17 18 19 20 21
   `{...} (i.e., anonymous arguments).  Unfortunately, it also enables
   implicit generalization in `Instance`.  We think that the fact taht both
   behaviors are coupled together is a [bug in
   Coq](https://github.com/coq/coq/issues/6030). *)
Global Generalizable All Variables.

22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
(** * Tweak program *)
(** 1. Since we only use Program to solve logical side-conditions, they should
always be made Opaque, otherwise we end up with performance problems due to
Coq blindly unfolding them.

Note that in most cases we use [Next Obligation. (* ... *) Qed.], for which
this option does not matter. However, sometimes we write things like
[Solve Obligations with naive_solver (* ... *)], and then the obligations
should surely be opaque. *)
Global Unset Transparent Obligations.

(** 2. Do not let Program automatically simplify obligations. The default
obligation tactic is [Tactics.program_simpl], which, among other things,
introduces all variables and gives them fresh names. As such, it becomes
impossible to refer to hypotheses in a robust way. *)
37
Obligation Tactic := idtac.
38 39

(** 3. Hide obligations from the results of the [Search] commands. *)
40
Add Search Blacklist "_obligation_".
Robbert Krebbers's avatar
Robbert Krebbers committed
41

42
(** * Sealing off definitions *)
Ralf Jung's avatar
Ralf Jung committed
43 44 45 46
Section seal.
  Local Set Primitive Projections.
  Record seal {A} (f : A) := { unseal : A; seal_eq : unseal = f }.
End seal.
Ralf Jung's avatar
Ralf Jung committed
47 48
Arguments unseal {_ _} _ : assert.
Arguments seal_eq {_ _} _ : assert.
49

50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65
(** * Non-backtracking type classes *)
(** The type class [NoBackTrack P] can be used to establish [P] without ever
backtracking on the instance of [P] that has been found. Backtracking may
normally happen when [P] contains evars that could be instanciated in different
ways depending on which instance is picked, and type class search somewhere else
depends on this evar.

The proper way of handling this would be by setting Coq's option
`Typeclasses Unique Instances`. However, this option seems to be broken, see Coq
issue #6714.

See https://gitlab.mpi-sws.org/FP/iris-coq/merge_requests/112 for a rationale
of this type class. *)
Class NoBackTrack (P : Prop) := { no_backtrack : P }.
Hint Extern 0 (NoBackTrack _) => constructor; apply _ : typeclass_instances.

66 67 68 69
(* A conditional at the type class level. Note that [TCIf P Q R] is not the same
as [TCOr (TCAnd P Q) R]: the latter will backtrack to [R] if it fails to
establish [R], i.e. does not have the behavior of a conditional. Furthermore,
note that [TCOr (TCAnd P Q) (TCAnd (TCNot P) R)] would not work; we generally
Robbert Krebbers's avatar
Robbert Krebbers committed
70
would not be able to prove the negation of [P]. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
71
Inductive TCIf (P Q R : Prop) : Prop :=
72 73 74 75 76 77 78 79
  | TCIf_true : P  Q  TCIf P Q R
  | TCIf_false : R  TCIf P Q R.
Existing Class TCIf.

Hint Extern 0 (TCIf _ _ _) =>
  first [apply TCIf_true; [apply _|]
        |apply TCIf_false] : typeclass_instances.

80
(** * Typeclass opaque definitions *)
Ralf Jung's avatar
Ralf Jung committed
81
(** The constant [tc_opaque] is used to make definitions opaque for just type
82 83 84 85 86
class search. Note that [simpl] is set up to always unfold [tc_opaque]. *)
Definition tc_opaque {A} (x : A) : A := x.
Typeclasses Opaque tc_opaque.
Arguments tc_opaque {_} _ /.

Ralf Jung's avatar
Ralf Jung committed
87
(** Below we define type class versions of the common logical operators. It is
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
important to note that we duplicate the definitions, and do not declare the
existing logical operators as type classes. That is, we do not say:

  Existing Class or.
  Existing Class and.

If we could define the existing logical operators as classes, there is no way
of disambiguating whether a premise of a lemma should be solved by type class
resolution or not.

These classes are useful for two purposes: writing complicated type class
premises in a more concise way, and for efficiency. For example, using the [Or]
class, instead of defining two instances [P → Q1 → R] and [P → Q2 → R] we could
have one instance [P → Or Q1 Q2 → R]. When we declare the instance that way, we
avoid the need to derive [P] twice. *)
103
Inductive TCOr (P1 P2 : Prop) : Prop :=
104 105 106 107 108
  | TCOr_l : P1  TCOr P1 P2
  | TCOr_r : P2  TCOr P1 P2.
Existing Class TCOr.
Existing Instance TCOr_l | 9.
Existing Instance TCOr_r | 10.
Robbert Krebbers's avatar
Robbert Krebbers committed
109

110
Inductive TCAnd (P1 P2 : Prop) : Prop := TCAnd_intro : P1  P2  TCAnd P1 P2.
111 112
Existing Class TCAnd.
Existing Instance TCAnd_intro.
113

114 115 116
Inductive TCTrue : Prop := TCTrue_intro : TCTrue.
Existing Class TCTrue.
Existing Instance TCTrue_intro.
117

118 119 120 121 122 123 124
Inductive TCForall {A} (P : A  Prop) : list A  Prop :=
  | TCForall_nil : TCForall P []
  | TCForall_cons x xs : P x  TCForall P xs  TCForall P (x :: xs).
Existing Class TCForall.
Existing Instance TCForall_nil.
Existing Instance TCForall_cons.

Robbert Krebbers's avatar
Robbert Krebbers committed
125 126 127 128 129 130 131 132
Inductive TCForall2 {A B} (P : A  B  Prop) : list A  list B  Prop :=
  | TCForall2_nil : TCForall2 P [] []
  | TCForall2_cons x y xs ys :
     P x y  TCForall2 P xs ys  TCForall2 P (x :: xs) (y :: ys).
Existing Class TCForall2.
Existing Instance TCForall2_nil.
Existing Instance TCForall2_cons.

133 134 135 136 137 138 139
Inductive TCElemOf {A} (x : A) : list A  Prop :=
  | TCElemOf_here xs : TCElemOf x (x :: xs)
  | TCElemOf_further y xs : TCElemOf x xs  TCElemOf x (y :: xs).
Existing Class TCElemOf.
Existing Instance TCElemOf_here.
Existing Instance TCElemOf_further.

140 141 142 143
Inductive TCEq {A} (x : A) : A  Prop := TCEq_refl : TCEq x x.
Existing Class TCEq.
Existing Instance TCEq_refl.

Robbert Krebbers's avatar
Robbert Krebbers committed
144 145 146 147 148
Inductive TCDiag {A} (C : A  Prop) : A  A  Prop :=
  | TCDiag_diag x : C x  TCDiag C x x.
Existing Class TCDiag.
Existing Instance TCDiag_diag.

149 150 151 152 153 154
(** Given a proposition [P] that is a type class, [tc_to_bool P] will return
[true] iff there is an instance of [P]. It is often useful in Ltac programming,
where one can do [lazymatch tc_to_bool P with true => .. | false => .. end]. *)
Definition tc_to_bool (P : Prop)
  {p : bool} `{TCIf P (TCEq p true) (TCEq p false)} : bool := p.

155
(** Throughout this development we use [stdpp_scope] for all general purpose
156
notations that do not belong to a more specific scope. *)
157 158
Delimit Scope stdpp_scope with stdpp.
Global Open Scope stdpp_scope.
159

160
(** Change [True] and [False] into notations in order to enable overloading.
161 162
We will use this to give [True] and [False] a different interpretation for
embedded logics. *)
163 164
Notation "'True'" := True (format "True") : type_scope.
Notation "'False'" := False (format "False") : type_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
165 166


167
(** * Equality *)
168
(** Introduce some Haskell style like notations. *)
169 170 171 172 173 174
Notation "(=)" := eq (only parsing) : stdpp_scope.
Notation "( x =)" := (eq x) (only parsing) : stdpp_scope.
Notation "(= x )" := (λ y, eq y x) (only parsing) : stdpp_scope.
Notation "(≠)" := (λ x y, x  y) (only parsing) : stdpp_scope.
Notation "( x ≠)" := (λ y, x  y) (only parsing) : stdpp_scope.
Notation "(≠ x )" := (λ y, y  x) (only parsing) : stdpp_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
175

176 177 178 179
Infix "=@{ A }" := (@eq A)
  (at level 70, only parsing, no associativity) : stdpp_scope.
Notation "(=@{ A } )" := (@eq A) (only parsing) : stdpp_scope.
Notation "(≠@{ A } )" := (λ X Y, ¬X =@{A} Y) (only parsing) : stdpp_scope.
180 181
Notation "X ≠@{ A } Y":= (¬X =@{ A } Y)
  (at level 70, only parsing, no associativity) : stdpp_scope.
182

Tej Chajed's avatar
Tej Chajed committed
183 184
Hint Extern 0 (_ = _) => reflexivity : core.
Hint Extern 100 (_  _) => discriminate : core.
Robbert Krebbers's avatar
Robbert Krebbers committed
185

186
Instance:  A, PreOrder (=@{A}).
187 188 189
Proof. split; repeat intro; congruence. Qed.

(** ** Setoid equality *)
Ralf Jung's avatar
Ralf Jung committed
190 191 192
(** We define an operational type class for setoid equality, i.e., the
"canonical" equivalence for a type. The typeclass is tied to the \equiv
symbol. This is based on (Spitters/van der Weegen, 2011). *)
193
Class Equiv A := equiv: relation A.
194 195 196
(* No Hint Mode set because of Coq bug #5735
Hint Mode Equiv ! : typeclass_instances. *)

197
Infix "≡" := equiv (at level 70, no associativity) : stdpp_scope.
198 199 200
Infix "≡@{ A }" := (@equiv A _)
  (at level 70, only parsing, no associativity) : stdpp_scope.

201 202 203 204 205 206 207
Notation "(≡)" := equiv (only parsing) : stdpp_scope.
Notation "( X ≡)" := (equiv X) (only parsing) : stdpp_scope.
Notation "(≡ X )" := (λ Y, Y  X) (only parsing) : stdpp_scope.
Notation "(≢)" := (λ X Y, ¬X  Y) (only parsing) : stdpp_scope.
Notation "X ≢ Y":= (¬X  Y) (at level 70, no associativity) : stdpp_scope.
Notation "( X ≢)" := (λ Y, X  Y) (only parsing) : stdpp_scope.
Notation "(≢ X )" := (λ Y, Y  X) (only parsing) : stdpp_scope.
208

209 210
Notation "(≡@{ A } )" := (@equiv A _) (only parsing) : stdpp_scope.
Notation "(≢@{ A } )" := (λ X Y, ¬X @{A} Y) (only parsing) : stdpp_scope.
211 212
Notation "X ≢@{ A } Y":= (¬X @{ A } Y)
  (at level 70, only parsing, no associativity) : stdpp_scope.
213

214 215 216 217 218
(** The type class [LeibnizEquiv] collects setoid equalities that coincide
with Leibniz equality. We provide the tactic [fold_leibniz] to transform such
setoid equalities into Leibniz equalities, and [unfold_leibniz] for the
reverse. *)
Class LeibnizEquiv A `{Equiv A} := leibniz_equiv x y : x  y  x = y.
219 220
Hint Mode LeibnizEquiv ! - : typeclass_instances.

221
Lemma leibniz_equiv_iff `{LeibnizEquiv A, !Reflexive (@{A})} (x y : A) :
222 223
  x  y  x = y.
Proof. split. apply leibniz_equiv. intros ->; reflexivity. Qed.
224

225 226
Ltac fold_leibniz := repeat
  match goal with
227
  | H : context [ _ @{?A} _ ] |- _ =>
228
    setoid_rewrite (leibniz_equiv_iff (A:=A)) in H
229
  | |- context [ _ @{?A} _ ] =>
230 231 232 233
    setoid_rewrite (leibniz_equiv_iff (A:=A))
  end.
Ltac unfold_leibniz := repeat
  match goal with
234
  | H : context [ _ =@{?A} _ ] |- _ =>
235
    setoid_rewrite <-(leibniz_equiv_iff (A:=A)) in H
236
  | |- context [ _ =@{?A} _ ] =>
237 238 239 240 241 242 243 244
    setoid_rewrite <-(leibniz_equiv_iff (A:=A))
  end.

Definition equivL {A} : Equiv A := (=).

(** A [Params f n] instance forces the setoid rewriting mechanism not to
rewrite in the first [n] arguments of the function [f]. We will declare such
instances for all operational type classes in this development. *)
245
Instance: Params (@equiv) 2 := {}.
246 247 248 249

(** The following instance forces [setoid_replace] to use setoid equality
(for types that have an [Equiv] instance) rather than the standard Leibniz
equality. *)
250
Instance equiv_default_relation `{Equiv A} : DefaultRelation () | 3 := {}.
Tej Chajed's avatar
Tej Chajed committed
251 252
Hint Extern 0 (_  _) => reflexivity : core.
Hint Extern 0 (_  _) => symmetry; assumption : core.
253 254 255 256 257


(** * Type classes *)
(** ** Decidable propositions *)
(** This type class by (Spitters/van der Weegen, 2011) collects decidable
258
propositions. *)
259
Class Decision (P : Prop) := decide : {P} + {¬P}.
260
Hint Mode Decision ! : typeclass_instances.
261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
Arguments decide _ {_} : simpl never, assert.

(** Although [RelDecision R] is just [∀ x y, Decision (R x y)], we make this
an explicit class instead of a notation for two reasons:

- It allows us to control [Hint Mode] more precisely. In particular, if it were
  defined as a notation, the above [Hint Mode] for [Decision] would not prevent
  diverging instance search when looking for [RelDecision (@eq ?A)], which would
  result in it looking for [Decision (@eq ?A x y)], i.e. an instance where the
  head position of [Decision] is not en evar.
- We use it to avoid inefficient computation due to eager evaluation of
  propositions by [vm_compute]. This inefficiency arises for example if
  [(x = y) := (f x = f y)]. Since [decide (x = y)] evaluates to
  [decide (f x = f y)], this would then lead to evaluation of [f x] and [f y].
  Using the [RelDecision], the [f] is hidden under a lambda, which prevents
  unnecessary evaluation. *)
Class RelDecision {A B} (R : A  B  Prop) :=
  decide_rel x y :> Decision (R x y).
Hint Mode RelDecision ! ! ! : typeclass_instances.
Arguments decide_rel {_ _} _ {_} _ _ : simpl never, assert.
281
Notation EqDecision A := (RelDecision (=@{A})).
282 283 284 285

(** ** Inhabited types *)
(** This type class collects types that are inhabited. *)
Class Inhabited (A : Type) : Type := populate { inhabitant : A }.
286
Hint Mode Inhabited ! : typeclass_instances.
287
Arguments populate {_} _ : assert.
288 289 290 291 292 293

(** ** Proof irrelevant types *)
(** This type class collects types that are proof irrelevant. That means, all
elements of the type are equal. We use this notion only used for propositions,
but by universe polymorphism we can generalize it. *)
Class ProofIrrel (A : Type) : Prop := proof_irrel (x y : A) : x = y.
294
Hint Mode ProofIrrel ! : typeclass_instances.
295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330

(** ** Common properties *)
(** These operational type classes allow us to refer to common mathematical
properties in a generic way. For example, for injectivity of [(k ++)] it
allows us to write [inj (k ++)] instead of [app_inv_head k]. *)
Class Inj {A B} (R : relation A) (S : relation B) (f : A  B) : Prop :=
  inj x y : S (f x) (f y)  R x y.
Class Inj2 {A B C} (R1 : relation A) (R2 : relation B)
    (S : relation C) (f : A  B  C) : Prop :=
  inj2 x1 x2 y1 y2 : S (f x1 x2) (f y1 y2)  R1 x1 y1  R2 x2 y2.
Class Cancel {A B} (S : relation B) (f : A  B) (g : B  A) : Prop :=
  cancel :  x, S (f (g x)) x.
Class Surj {A B} (R : relation B) (f : A  B) :=
  surj y :  x, R (f x) y.
Class IdemP {A} (R : relation A) (f : A  A  A) : Prop :=
  idemp x : R (f x x) x.
Class Comm {A B} (R : relation A) (f : B  B  A) : Prop :=
  comm x y : R (f x y) (f y x).
Class LeftId {A} (R : relation A) (i : A) (f : A  A  A) : Prop :=
  left_id x : R (f i x) x.
Class RightId {A} (R : relation A) (i : A) (f : A  A  A) : Prop :=
  right_id x : R (f x i) x.
Class Assoc {A} (R : relation A) (f : A  A  A) : Prop :=
  assoc x y z : R (f x (f y z)) (f (f x y) z).
Class LeftAbsorb {A} (R : relation A) (i : A) (f : A  A  A) : Prop :=
  left_absorb x : R (f i x) i.
Class RightAbsorb {A} (R : relation A) (i : A) (f : A  A  A) : Prop :=
  right_absorb x : R (f x i) i.
Class AntiSymm {A} (R S : relation A) : Prop :=
  anti_symm x y : S x y  S y x  R x y.
Class Total {A} (R : relation A) := total x y : R x y  R y x.
Class Trichotomy {A} (R : relation A) :=
  trichotomy x y : R x y  x = y  R y x.
Class TrichotomyT {A} (R : relation A) :=
  trichotomyT x y : {R x y} + {x = y} + {R y x}.

331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346
Arguments irreflexivity {_} _ {_} _ _ : assert.
Arguments inj {_ _ _ _} _ {_} _ _ _ : assert.
Arguments inj2 {_ _ _ _ _ _} _ {_} _ _ _ _ _: assert.
Arguments cancel {_ _ _} _ _ {_} _ : assert.
Arguments surj {_ _ _} _ {_} _ : assert.
Arguments idemp {_ _} _ {_} _ : assert.
Arguments comm {_ _ _} _ {_} _ _ : assert.
Arguments left_id {_ _} _ _ {_} _ : assert.
Arguments right_id {_ _} _ _ {_} _ : assert.
Arguments assoc {_ _} _ {_} _ _ _ : assert.
Arguments left_absorb {_ _} _ _ {_} _ : assert.
Arguments right_absorb {_ _} _ _ {_} _ : assert.
Arguments anti_symm {_ _} _ {_} _ _ _ _ : assert.
Arguments total {_} _ {_} _ _ : assert.
Arguments trichotomy {_} _ {_} _ _ : assert.
Arguments trichotomyT {_} _ {_} _ _ : assert.
347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399

Lemma not_symmetry `{R : relation A, !Symmetric R} x y : ¬R x y  ¬R y x.
Proof. intuition. Qed.
Lemma symmetry_iff `(R : relation A) `{!Symmetric R} x y : R x y  R y x.
Proof. intuition. Qed.

Lemma not_inj `{Inj A B R R' f} x y : ¬R x y  ¬R' (f x) (f y).
Proof. intuition. Qed.
Lemma not_inj2_1 `{Inj2 A B C R R' R'' f} x1 x2 y1 y2 :
  ¬R x1 x2  ¬R'' (f x1 y1) (f x2 y2).
Proof. intros HR HR''. destruct (inj2 f x1 y1 x2 y2); auto. Qed.
Lemma not_inj2_2 `{Inj2 A B C R R' R'' f} x1 x2 y1 y2 :
  ¬R' y1 y2  ¬R'' (f x1 y1) (f x2 y2).
Proof. intros HR' HR''. destruct (inj2 f x1 y1 x2 y2); auto. Qed.

Lemma inj_iff {A B} {R : relation A} {S : relation B} (f : A  B)
  `{!Inj R S f} `{!Proper (R ==> S) f} x y : S (f x) (f y)  R x y.
Proof. firstorder. Qed.
Instance inj2_inj_1 `{Inj2 A B C R1 R2 R3 f} y : Inj R1 R3 (λ x, f x y).
Proof. repeat intro; edestruct (inj2 f); eauto. Qed.
Instance inj2_inj_2 `{Inj2 A B C R1 R2 R3 f} x : Inj R2 R3 (f x).
Proof. repeat intro; edestruct (inj2 f); eauto. Qed.

Lemma cancel_inj `{Cancel A B R1 f g, !Equivalence R1, !Proper (R2 ==> R1) f} :
  Inj R1 R2 g.
Proof.
  intros x y E. rewrite <-(cancel f g x), <-(cancel f g y), E. reflexivity.
Qed.
Lemma cancel_surj `{Cancel A B R1 f g} : Surj R1 f.
Proof. intros y. exists (g y). auto. Qed.

(** The following lemmas are specific versions of the projections of the above
type classes for Leibniz equality. These lemmas allow us to enforce Coq not to
use the setoid rewriting mechanism. *)
Lemma idemp_L {A} f `{!@IdemP A (=) f} x : f x x = x.
Proof. auto. Qed.
Lemma comm_L {A B} f `{!@Comm A B (=) f} x y : f x y = f y x.
Proof. auto. Qed.
Lemma left_id_L {A} i f `{!@LeftId A (=) i f} x : f i x = x.
Proof. auto. Qed.
Lemma right_id_L {A} i f `{!@RightId A (=) i f} x : f x i = x.
Proof. auto. Qed.
Lemma assoc_L {A} f `{!@Assoc A (=) f} x y z : f x (f y z) = f (f x y) z.
Proof. auto. Qed.
Lemma left_absorb_L {A} i f `{!@LeftAbsorb A (=) i f} x : f i x = i.
Proof. auto. Qed.
Lemma right_absorb_L {A} i f `{!@RightAbsorb A (=) i f} x : f x i = i.
Proof. auto. Qed.

(** ** Generic orders *)
(** The classes [PreOrder], [PartialOrder], and [TotalOrder] use an arbitrary
relation [R] instead of [⊆] to support multiple orders on the same type. *)
Definition strict {A} (R : relation A) : relation A := λ X Y, R X Y  ¬R Y X.
400
Instance: Params (@strict) 2 := {}.
401 402 403 404 405 406 407 408 409 410
Class PartialOrder {A} (R : relation A) : Prop := {
  partial_order_pre :> PreOrder R;
  partial_order_anti_symm :> AntiSymm (=) R
}.
Class TotalOrder {A} (R : relation A) : Prop := {
  total_order_partial :> PartialOrder R;
  total_order_trichotomy :> Trichotomy (strict R)
}.

(** * Logic *)
411 412 413
Notation "(∧)" := and (only parsing) : stdpp_scope.
Notation "( A ∧)" := (and A) (only parsing) : stdpp_scope.
Notation "(∧ B )" := (λ A, A  B) (only parsing) : stdpp_scope.
414

415 416 417
Notation "(∨)" := or (only parsing) : stdpp_scope.
Notation "( A ∨)" := (or A) (only parsing) : stdpp_scope.
Notation "(∨ B )" := (λ A, A  B) (only parsing) : stdpp_scope.
418

419 420 421
Notation "(↔)" := iff (only parsing) : stdpp_scope.
Notation "( A ↔)" := (iff A) (only parsing) : stdpp_scope.
Notation "(↔ B )" := (λ A, A  B) (only parsing) : stdpp_scope.
422

Tej Chajed's avatar
Tej Chajed committed
423 424
Hint Extern 0 (_  _) => reflexivity : core.
Hint Extern 0 (_  _) => symmetry; assumption : core.
425 426 427 428 429 430 431 432 433 434 435

Lemma or_l P Q : ¬Q  P  Q  P.
Proof. tauto. Qed.
Lemma or_r P Q : ¬P  P  Q  Q.
Proof. tauto. Qed.
Lemma and_wlog_l (P Q : Prop) : (Q  P)  Q  (P  Q).
Proof. tauto. Qed.
Lemma and_wlog_r (P Q : Prop) : P  (P  Q)  (P  Q).
Proof. tauto. Qed.
Lemma impl_transitive (P Q R : Prop) : (P  Q)  (Q  R)  (P  R).
Proof. tauto. Qed.
436 437 438 439 440 441
Lemma forall_proper {A} (P Q : A  Prop) :
  ( x, P x  Q x)  ( x, P x)  ( x, Q x).
Proof. firstorder. Qed.
Lemma exist_proper {A} (P Q : A  Prop) :
  ( x, P x  Q x)  ( x, P x)  ( x, Q x).
Proof. firstorder. Qed.
442

443
Instance: Comm () (=@{A}).
444
Proof. red; intuition. Qed.
445
Instance: Comm () (λ x y, y =@{A} x).
446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484
Proof. red; intuition. Qed.
Instance: Comm () ().
Proof. red; intuition. Qed.
Instance: Comm () ().
Proof. red; intuition. Qed.
Instance: Assoc () ().
Proof. red; intuition. Qed.
Instance: IdemP () ().
Proof. red; intuition. Qed.
Instance: Comm () ().
Proof. red; intuition. Qed.
Instance: Assoc () ().
Proof. red; intuition. Qed.
Instance: IdemP () ().
Proof. red; intuition. Qed.
Instance: LeftId () True ().
Proof. red; intuition. Qed.
Instance: RightId () True ().
Proof. red; intuition. Qed.
Instance: LeftAbsorb () False ().
Proof. red; intuition. Qed.
Instance: RightAbsorb () False ().
Proof. red; intuition. Qed.
Instance: LeftId () False ().
Proof. red; intuition. Qed.
Instance: RightId () False ().
Proof. red; intuition. Qed.
Instance: LeftAbsorb () True ().
Proof. red; intuition. Qed.
Instance: RightAbsorb () True ().
Proof. red; intuition. Qed.
Instance: LeftId () True impl.
Proof. unfold impl. red; intuition. Qed.
Instance: RightAbsorb () True impl.
Proof. unfold impl. red; intuition. Qed.


(** * Common data types *)
(** ** Functions *)
485 486 487
Notation "(→)" := (λ A B, A  B) (only parsing) : stdpp_scope.
Notation "( A →)" := (λ B, A  B) (only parsing) : stdpp_scope.
Notation "(→ B )" := (λ A, A  B) (only parsing) : stdpp_scope.
488

489
Notation "t $ r" := (t r)
490 491 492
  (at level 65, right associativity, only parsing) : stdpp_scope.
Notation "($)" := (λ f x, f x) (only parsing) : stdpp_scope.
Notation "($ x )" := (λ f, f x) (only parsing) : stdpp_scope.
493

494 495 496 497
Infix "∘" := compose : stdpp_scope.
Notation "(∘)" := compose (only parsing) : stdpp_scope.
Notation "( f ∘)" := (compose f) (only parsing) : stdpp_scope.
Notation "(∘ f )" := (λ g, compose g f) (only parsing) : stdpp_scope.
498

Robbert Krebbers's avatar
Robbert Krebbers committed
499 500 501
Instance impl_inhabited {A} `{Inhabited B} : Inhabited (A  B) :=
  populate (λ _, inhabitant).

502 503
(** Ensure that [simpl] unfolds [id], [compose], and [flip] when fully
applied. *)
504 505 506 507
Arguments id _ _ / : assert.
Arguments compose _ _ _ _ _ _ / : assert.
Arguments flip _ _ _ _ _ _ / : assert.
Arguments const _ _ _ _ / : assert.
508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555
Typeclasses Transparent id compose flip const.

Definition fun_map {A A' B B'} (f: A'  A) (g: B  B') (h : A  B) : A'  B' :=
  g  h  f.

Instance const_proper `{R1 : relation A, R2 : relation B} (x : B) :
  Reflexive R2  Proper (R1 ==> R2) (λ _, x).
Proof. intros ? y1 y2; reflexivity. Qed.

Instance id_inj {A} : Inj (=) (=) (@id A).
Proof. intros ??; auto. Qed.
Instance compose_inj {A B C} R1 R2 R3 (f : A  B) (g : B  C) :
  Inj R1 R2 f  Inj R2 R3 g  Inj R1 R3 (g  f).
Proof. red; intuition. Qed.

Instance id_surj {A} : Surj (=) (@id A).
Proof. intros y; exists y; reflexivity. Qed.
Instance compose_surj {A B C} R (f : A  B) (g : B  C) :
  Surj (=) f  Surj R g  Surj R (g  f).
Proof.
  intros ?? x. unfold compose. destruct (surj g x) as [y ?].
  destruct (surj f y) as [z ?]. exists z. congruence.
Qed.

Instance id_comm {A B} (x : B) : Comm (=) (λ _ _ : A, x).
Proof. intros ?; reflexivity. Qed.
Instance id_assoc {A} (x : A) : Assoc (=) (λ _ _ : A, x).
Proof. intros ???; reflexivity. Qed.
Instance const1_assoc {A} : Assoc (=) (λ x _ : A, x).
Proof. intros ???; reflexivity. Qed.
Instance const2_assoc {A} : Assoc (=) (λ _ x : A, x).
Proof. intros ???; reflexivity. Qed.
Instance const1_idemp {A} : IdemP (=) (λ x _ : A, x).
Proof. intros ?; reflexivity. Qed.
Instance const2_idemp {A} : IdemP (=) (λ _ x : A, x).
Proof. intros ?; reflexivity. Qed.

(** ** Lists *)
Instance list_inhabited {A} : Inhabited (list A) := populate [].

Definition zip_with {A B C} (f : A  B  C) : list A  list B  list C :=
  fix go l1 l2 :=
  match l1, l2 with x1 :: l1, x2 :: l2 => f x1 x2 :: go l1 l2 | _ , _ => [] end.
Notation zip := (zip_with pair).

(** ** Booleans *)
(** The following coercion allows us to use Booleans as propositions. *)
Coercion Is_true : bool >-> Sortclass.
Tej Chajed's avatar
Tej Chajed committed
556 557 558
Hint Unfold Is_true : core.
Hint Immediate Is_true_eq_left : core.
Hint Resolve orb_prop_intro andb_prop_intro : core.
559 560 561 562 563 564
Notation "(&&)" := andb (only parsing).
Notation "(||)" := orb (only parsing).
Infix "&&*" := (zip_with (&&)) (at level 40).
Infix "||*" := (zip_with (||)) (at level 50).

Instance bool_inhabated : Inhabited bool := populate true.
565

566 567 568 569 570
Definition bool_le (β1 β2 : bool) : Prop := negb β1 || β2.
Infix "=.>" := bool_le (at level 70).
Infix "=.>*" := (Forall2 bool_le) (at level 70).
Instance: PartialOrder bool_le.
Proof. repeat split; repeat intros [|]; compute; tauto. Qed.
571

572 573 574 575 576 577 578 579
Lemma andb_True b1 b2 : b1 && b2  b1  b2.
Proof. destruct b1, b2; simpl; tauto. Qed.
Lemma orb_True b1 b2 : b1 || b2  b1  b2.
Proof. destruct b1, b2; simpl; tauto. Qed.
Lemma negb_True b : negb b  ¬b.
Proof. destruct b; simpl; tauto. Qed.
Lemma Is_true_false (b : bool) : b = false  ¬b.
Proof. now intros -> ?. Qed.
580

581 582
(** ** Unit *)
Instance unit_equiv : Equiv unit := λ _ _, True.
583
Instance unit_equivalence : Equivalence (@{unit}).
584
Proof. repeat split. Qed.
585 586
Instance unit_leibniz : LeibnizEquiv unit.
Proof. intros [] []; reflexivity. Qed.
587
Instance unit_inhabited: Inhabited unit := populate ().
588

589
(** ** Products *)
590 591
Notation "( x ,)" := (pair x) (only parsing) : stdpp_scope.
Notation "(, y )" := (λ x, (x,y)) (only parsing) : stdpp_scope.
592

593 594
Notation "p .1" := (fst p) (at level 2, left associativity, format "p .1").
Notation "p .2" := (snd p) (at level 2, left associativity, format "p .2").
595

596 597 598
Instance: Params (@pair) 2 := {}.
Instance: Params (@fst) 2 := {}.
Instance: Params (@snd) 2 := {}.
599

600 601 602 603 604 605 606
Notation curry := prod_curry.
Notation uncurry := prod_uncurry.
Definition curry3 {A B C D} (f : A  B  C  D) (p : A * B * C) : D :=
  let '(a,b,c) := p in f a b c.
Definition curry4 {A B C D E} (f : A  B  C  D  E) (p : A * B * C * D) : E :=
  let '(a,b,c,d) := p in f a b c d.

Robbert Krebbers's avatar
Robbert Krebbers committed
607 608 609 610 611
Definition uncurry3 {A B C D} (f : A * B * C  D) (a : A) (b : B) (c : C) : D :=
  f (a, b, c).
Definition uncurry4 {A B C D E} (f : A * B * C * D  E)
  (a : A) (b : B) (c : C) (d : D) : E := f (a, b, c, d).

612 613
Definition prod_map {A A' B B'} (f: A  A') (g: B  B') (p : A * B) : A' * B' :=
  (f (p.1), g (p.2)).
614
Arguments prod_map {_ _ _ _} _ _ !_ / : assert.
615

616 617
Definition prod_zip {A A' A'' B B' B''} (f : A  A'  A'') (g : B  B'  B'')
    (p : A * B) (q : A' * B') : A'' * B'' := (f (p.1) (q.1), g (p.2) (q.2)).
618
Arguments prod_zip {_ _ _ _ _ _} _ _ !_ !_ / : assert.
619

620 621 622
Instance prod_inhabited {A B} (iA : Inhabited A)
    (iB : Inhabited B) : Inhabited (A * B) :=
  match iA, iB with populate x, populate y => populate (x,y) end.
623

624 625 626 627 628 629 630 631
Instance pair_inj : Inj2 (=) (=) (=) (@pair A B).
Proof. injection 1; auto. Qed.
Instance prod_map_inj {A A' B B'} (f : A  A') (g : B  B') :
  Inj (=) (=) f  Inj (=) (=) g  Inj (=) (=) (prod_map f g).
Proof.
  intros ?? [??] [??] ?; simpl in *; f_equal;
    [apply (inj f)|apply (inj g)]; congruence.
Qed.
632

633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648
Definition prod_relation {A B} (R1 : relation A) (R2 : relation B) :
  relation (A * B) := λ x y, R1 (x.1) (y.1)  R2 (x.2) (y.2).
Section prod_relation.
  Context `{R1 : relation A, R2 : relation B}.
  Global Instance prod_relation_refl :
    Reflexive R1  Reflexive R2  Reflexive (prod_relation R1 R2).
  Proof. firstorder eauto. Qed.
  Global Instance prod_relation_sym :
    Symmetric R1  Symmetric R2  Symmetric (prod_relation R1 R2).
  Proof. firstorder eauto. Qed.
  Global Instance prod_relation_trans :
    Transitive R1  Transitive R2  Transitive (prod_relation R1 R2).
  Proof. firstorder eauto. Qed.
  Global Instance prod_relation_equiv :
    Equivalence R1  Equivalence R2  Equivalence (prod_relation R1 R2).
  Proof. split; apply _. Qed.
649

650 651
  Global Instance pair_proper' : Proper (R1 ==> R2 ==> prod_relation R1 R2) pair.
  Proof. firstorder eauto. Qed.
652 653
  Global Instance pair_inj' : Inj2 R1 R2 (prod_relation R1 R2) pair.
  Proof. inversion_clear 1; eauto. Qed.
654 655 656 657 658
  Global Instance fst_proper' : Proper (prod_relation R1 R2 ==> R1) fst.
  Proof. firstorder eauto. Qed.
  Global Instance snd_proper' : Proper (prod_relation R1 R2 ==> R2) snd.
  Proof. firstorder eauto. Qed.
End prod_relation.
Robbert Krebbers's avatar
Robbert Krebbers committed
659

660 661
Instance prod_equiv `{Equiv A,Equiv B} : Equiv (A * B) := prod_relation () ().
Instance pair_proper `{Equiv A, Equiv B} :
662 663
  Proper (() ==> () ==> ()) (@pair A B) := _.
Instance pair_equiv_inj `{Equiv A, Equiv B} : Inj2 () () () (@pair A B) := _.
664 665 666
Instance fst_proper `{Equiv A, Equiv B} : Proper (() ==> ()) (@fst A B) := _.
Instance snd_proper `{Equiv A, Equiv B} : Proper (() ==> ()) (@snd A B) := _.
Typeclasses Opaque prod_equiv.
667

Robbert Krebbers's avatar
Robbert Krebbers committed
668 669
Instance prod_leibniz `{LeibnizEquiv A, LeibnizEquiv B} : LeibnizEquiv (A * B).
Proof. intros [??] [??] [??]; f_equal; apply leibniz_equiv; auto. Qed.
670

671
(** ** Sums *)
672 673
Definition sum_map {A A' B B'} (f: A  A') (g: B  B') (xy : A + B) : A' + B' :=
  match xy with inl x => inl (f x) | inr y => inr (g y) end.
674
Arguments sum_map {_ _ _ _} _ _ !_ / : assert.
675

676
Instance sum_inhabited_l {A B} (iA : Inhabited A) : Inhabited (A + B) :=
677
  match iA with populate x => populate (inl x) end.
678
Instance sum_inhabited_r {A B} (iB : Inhabited A) : Inhabited (A + B) :=
679
  match iB with populate y => populate (inl y) end.
680

681 682 683 684
Instance inl_inj : Inj (=) (=) (@inl A B).
Proof. injection 1; auto. Qed.
Instance inr_inj : Inj (=) (=) (@inr A B).
Proof. injection 1; auto. Qed.
685

686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712
Instance sum_map_inj {A A' B B'} (f : A  A') (g : B  B') :
  Inj (=) (=) f  Inj (=) (=) g  Inj (=) (=) (sum_map f g).
Proof. intros ?? [?|?] [?|?] [=]; f_equal; apply (inj _); auto. Qed.

Inductive sum_relation {A B}
     (R1 : relation A) (R2 : relation B) : relation (A + B) :=
  | inl_related x1 x2 : R1 x1 x2  sum_relation R1 R2 (inl x1) (inl x2)
  | inr_related y1 y2 : R2 y1 y2  sum_relation R1 R2 (inr y1) (inr y2).

Section sum_relation.
  Context `{R1 : relation A, R2 : relation B}.
  Global Instance sum_relation_refl :
    Reflexive R1  Reflexive R2  Reflexive (sum_relation R1 R2).
  Proof. intros ?? [?|?]; constructor; reflexivity. Qed.
  Global Instance sum_relation_sym :
    Symmetric R1  Symmetric R2  Symmetric (sum_relation R1 R2).
  Proof. destruct 3; constructor; eauto. Qed.
  Global Instance sum_relation_trans :
    Transitive R1  Transitive R2  Transitive (sum_relation R1 R2).
  Proof. destruct 3; inversion_clear 1; constructor; eauto. Qed.
  Global Instance sum_relation_equiv :
    Equivalence R1  Equivalence R2  Equivalence (sum_relation R1 R2).
  Proof. split; apply _. Qed.
  Global Instance inl_proper' : Proper (R1 ==> sum_relation R1 R2) inl.
  Proof. constructor; auto. Qed.
  Global Instance inr_proper' : Proper (R2 ==> sum_relation R1 R2) inr.
  Proof. constructor; auto. Qed.
713 714 715 716
  Global Instance inl_inj' : Inj R1 (sum_relation R1 R2) inl.
  Proof. inversion_clear 1; auto. Qed.
  Global Instance inr_inj' : Inj R2 (sum_relation R1 R2) inr.
  Proof. inversion_clear 1; auto. Qed.
717 718 719 720 721
End sum_relation.

Instance sum_equiv `{Equiv A, Equiv B} : Equiv (A + B) := sum_relation () ().
Instance inl_proper `{Equiv A, Equiv B} : Proper (() ==> ()) (@inl A B) := _.
Instance inr_proper `{Equiv A, Equiv B} : Proper (() ==> ()) (@inr A B) := _.
722 723
Instance inl_equiv_inj `{Equiv A, Equiv B} : Inj () () (@inl A B) := _.
Instance inr_equiv_inj `{Equiv A, Equiv B} : Inj () () (@inr A B) := _.
724 725
Typeclasses Opaque sum_equiv.

726 727
(** ** Option *)
Instance option_inhabited {A} : Inhabited (option A) := populate None.
Robbert Krebbers's avatar
Robbert Krebbers committed
728

729
(** ** Sigma types *)
730 731 732
Arguments existT {_ _} _ _ : assert.
Arguments projT1 {_ _} _ : assert.
Arguments projT2 {_ _} _ : assert.
733

734 735 736
Arguments exist {_} _ _ _ : assert.
Arguments proj1_sig {_ _} _ : assert.
Arguments proj2_sig {_ _} _ : assert.
737 738
Notation "x ↾ p" := (exist _ x p) (at level 20) : stdpp_scope.
Notation "` x" := (proj1_sig x) (at level 10, format "` x") : stdpp_scope.
739

740 741 742
Lemma proj1_sig_inj {A} (P : A  Prop) x (Px : P x) y (Py : P y) :
  xPx = yPy  x = y.
Proof. injection 1; trivial. Qed.
743

744 745 746 747 748 749 750 751 752 753
Section sig_map.
  Context `{P : A  Prop} `{Q : B  Prop} (f : A  B) (Hf :  x, P x  Q (f x)).
  Definition sig_map (x : sig P) : sig Q := f (`x)  Hf _ (proj2_sig x).
  Global Instance sig_map_inj:
    ( x, ProofIrrel (P x))  Inj (=) (=) f  Inj (=) (=) sig_map.
  Proof.
    intros ?? [x Hx] [y Hy]. injection 1. intros Hxy.
    apply (inj f) in Hxy; subst. rewrite (proof_irrel _ Hy). auto.
  Qed.
End sig_map.
754
Arguments sig_map _ _ _ _ _ _ !_ / : assert.
755

Robbert Krebbers's avatar
Robbert Krebbers committed
756

757
(** * Operations on sets *)
758
(** We define operational type classes for the traditional operations and
759
relations on sets: the empty set [∅], the union [(∪)],
760
intersection [(∩)], and difference [(∖)], the singleton [{[_]}], the subset
761
[(⊆)] and element of [(∈)] relation, and disjointess [(##)]. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
762
Class Empty A := empty: A.
763
Hint Mode Empty ! : typeclass_instances.
764
Notation "∅" := empty (format "∅") : stdpp_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
765

766 767
Instance empty_inhabited `(Empty A) : Inhabited A := populate .

Robbert Krebbers's avatar
Robbert Krebbers committed
768
Class Union A := union: A  A  A.
769
Hint Mode Union ! : typeclass_instances.
770
Instance: Params (@union) 2 := {}.
771 772 773 774 775 776
Infix "∪" := union (at level 50, left associativity) : stdpp_scope.
Notation "(∪)" := union (only parsing) : stdpp_scope.
Notation "( x ∪)" := (union x) (only parsing) : stdpp_scope.
Notation "(∪ x )" := (λ y, union y x) (only parsing) : stdpp_scope.
Infix "∪*" := (zip_with ()) (at level 50, left associativity) : stdpp_scope.
Notation "(∪*)" := (zip_with ()) (only parsing) : stdpp_scope.
777
Infix "∪**" := (zip_with (zip_with ()))
778
  (at level 50, left associativity) : stdpp_scope.
779
Infix "∪*∪**" := (zip_with (prod_zip () (*)))
780
  (at level 50, left associativity) : stdpp_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
781

782
Definition union_list `{Empty A} `{Union A} : list A  A := fold_right () .
783
Arguments union_list _ _ _ !_ / : assert.
784
Notation "⋃ l" := (union_list l) (at level 20, format "⋃  l") : stdpp_scope.
785

786 787 788 789 790 791 792 793
Class DisjUnion A := disj_union: A  A  A.
Hint Mode DisjUnion ! : typeclass_instances.
Instance: Params (@disj_union) 2 := {}.
Infix "⊎" := disj_union (at level 50, left associativity) : stdpp_scope.
Notation "(⊎)" := disj_union (only parsing) : stdpp_scope.
Notation "( x ⊎)" := (disj_union x) (only parsing) : stdpp_scope.
Notation "(⊎ x )" := (λ y, disj_union y x) (only parsing) : stdpp_scope.

Robbert Krebbers's avatar
Robbert Krebbers committed
794
Class Intersection A := intersection: A  A  A.
795
Hint Mode Intersection ! : typeclass_instances.
796
Instance: Params (@intersection) 2 := {}.
797 798 799 800
Infix "∩" := intersection (at level 40) : stdpp_scope.
Notation "(∩)" := intersection (only parsing) : stdpp_scope.
Notation "( x ∩)" := (intersection x) (only parsing) : stdpp_scope.
Notation "(∩ x )" := (λ y, intersection y x) (only parsing) : stdpp_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
801 802

Class Difference A := difference: A  A  A.
803
Hint Mode Difference ! : typeclass_instances.
804
Instance: Params (@difference) 2 := {}.
805 806 807 808 809 810
Infix "∖" := difference (at level 40, left associativity) : stdpp_scope.
Notation "(∖)" := difference (only parsing) : stdpp_scope.
Notation "( x ∖)" := (difference x) (only parsing) : stdpp_scope.
Notation "(∖ x )" := (λ y, difference y x) (only parsing) : stdpp_scope.
Infix "∖*" := (zip_with ()) (at level 40, left associativity) : stdpp_scope.
Notation "(∖*)" := (zip_with ()) (only parsing) : stdpp_scope.
811
Infix "∖**" := (zip_with (zip_with ()))
812
  (at level 40, left associativity) : stdpp_scope.
813
Infix "∖*∖**" := (zip_with (prod_zip () (*)))
814
  (at level 50, left associativity) : stdpp_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
815

816
Class Singleton A B := singleton: A  B.
817
Hint Mode Singleton - ! : typeclass_instances.
818
Instance: Params (@singleton) 3 := {}.
819
Notation "{[ x ]}" := (singleton x) (at level 1) : stdpp_scope.
820
Notation "{[ x ; y ; .. ; z ]}" :=
821
  (union .. (union (singleton x) (singleton y)) .. (singleton z))
822
  (at level 1) : stdpp_scope.
823
Notation "{[ x , y ]}" := (singleton (x,y))
824
  (at level 1, y at next level) : stdpp_scope.
825
Notation "{[ x , y , z ]}" := (singleton (x,y,z))
826
  (at level 1, y at next level, z at next level) : stdpp_scope.
827

828
Class SubsetEq A := subseteq: relation A.
829
Hint Mode SubsetEq ! : typeclass_instances.
830
Instance: Params (@subseteq) 2 := {}.
831 832 833 834 835 836 837 838
Infix "⊆" := subseteq (at level 70) : stdpp_scope.
Notation "(⊆)" := subseteq (only parsing) : stdpp_scope.
Notation "( X ⊆)" := (subseteq X) (only parsing) : stdpp_scope.
Notation "(⊆ X )" := (λ Y, Y  X) (only parsing) : stdpp_scope.
Notation "X ⊈ Y" := (¬X  Y) (at level 70) : stdpp_scope.
Notation "(⊈)" := (λ X Y, X  Y) (only parsing) : stdpp_scope.
Notation "( X ⊈)" := (λ Y, X  Y) (only parsing) : stdpp_scope.
Notation "(⊈ X )" := (λ Y, Y  X) (only parsing) : stdpp_scope.
839 840 841 842

Infix "⊆@{ A }" := (@subseteq A _) (at level 70, only parsing) : stdpp_scope.
Notation "(⊆@{ A } )" := (@subseteq A _) (only parsing) : stdpp_scope.

843 844 845 846 847 848 849
Infix "⊆*" := (Forall2 ()) (at level 70) : stdpp_scope.
Notation "(⊆*)" := (Forall2 ()) (only parsing) : stdpp_scope.
Infix "⊆**" := (Forall2 (*)) (at level 70) : stdpp_scope.
Infix "⊆1*" := (Forall2 (λ p q, p.1  q.1)) (at level 70) : stdpp_scope.
Infix "⊆2*" := (Forall2 (λ p q, p.2  q.2)) (at level 70) : stdpp_scope.
Infix "⊆1**" := (Forall2 (λ p q, p.1 * q.1)) (at level 70) : stdpp_scope.
Infix "⊆2**" := (Forall2 (λ p q, p.2 * q.2)) (at level 70) : stdpp_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
850

Tej Chajed's avatar
Tej Chajed committed
851 852 853
Hint Extern 0 (_  _) => reflexivity : core.
Hint Extern 0 (_ * _) => reflexivity : core.
Hint Extern 0 (_ ** _) => reflexivity : core.
854

855 856 857 858 859 860 861 862
Infix "⊂" := (strict ()) (at level 70) : stdpp_scope.
Notation "(⊂)" := (strict ()) (only parsing) : stdpp_scope.
Notation "( X ⊂)" := (strict () X) (only parsing) : stdpp_scope.
Notation "(⊂ X )" := (λ Y, Y  X) (only parsing) : stdpp_scope.
Notation "X ⊄ Y" := (¬X  Y) (at level 70) : stdpp_scope.
Notation "(⊄)" := (λ X Y, X  Y) (only parsing) : stdpp_scope.
Notation "( X ⊄)" := (λ Y, X  Y) (only parsing) : stdpp_scope.
Notation "(⊄ X )" := (λ Y, Y  X) (only parsing) : stdpp_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
863

864 865 866
Infix "⊂@{ A }" := (strict (@{A})) (at level 70, only parsing) : stdpp_scope.
Notation "(⊂@{ A } )" := (strict (@{A})) (only parsing) : stdpp_scope.

867 868 869 870
Notation "X ⊆ Y ⊆ Z" := (X  Y  Y  Z) (at level 70, Y at next level) : stdpp_scope.
Notation "X ⊆ Y ⊂ Z" := (X  Y  Y  Z) (at level 70, Y at next level) : stdpp_scope.
Notation "X ⊂ Y ⊆ Z" := (X  Y  Y  Z) (at level 70, Y at next level) : stdpp_scope.
Notation "X ⊂ Y ⊂ Z" := (X  Y  Y  Z) (at level 70, Y at next level) : stdpp_scope.
871

872 873 874 875 876 877 878
Definition option_to_set `{Singleton A C, Empty C} (mx : option A) : C :=
  match mx with None =>  | Some x => {[ x ]} end.
Fixpoint list_to_set `{Singleton A C, Empty C, Union C} (l : list A) : C :=
  match l with [] =>  | x :: l => {[ x ]}  list_to_set l end.
Fixpoint list_to_set_disj `{Singleton A C, Empty C, DisjUnion C} (l : list A) : C :=
  match l with [] =>