orders.v 24.2 KB
Newer Older
Robbert Krebbers's avatar
Robbert Krebbers committed
1
(* Copyright (c) 2012-2014, Robbert Krebbers. *)
2 3 4
(* This file is distributed under the terms of the BSD license. *)
(** This file collects common properties of pre-orders and semi lattices. This
theory will mainly be used for the theory on collections and finite maps. *)
5
Require Export Sorted.
6
Require Export base decidable tactics list.
Robbert Krebbers's avatar
Robbert Krebbers committed
7

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
(** * Arbitrary pre-, parial and total orders *)
(** Properties about arbitrary pre-, partial, and total orders. We do not use
the relation [⊆] because we often have multiple orders on the same structure *)
Section orders.
  Context {A} {R : relation A}.
  Implicit Types X Y : A.
  Infix "⊆" := R.
  Notation "X ⊈ Y" := (¬X  Y).
  Infix "⊂" := (strict R).

  Lemma reflexive_eq `{!Reflexive R} X Y : X = Y  X  Y.
  Proof. by intros <-. Qed.
  Lemma anti_symmetric_iff `{!PartialOrder R} X Y : X = Y  R X Y  R Y X.
  Proof. intuition (subst; auto). Qed.
  Lemma strict_spec X Y : X  Y  X  Y  Y  X.
  Proof. done. Qed.
  Lemma strict_include X Y : X  Y  X  Y.
  Proof. by intros [? _]. Qed.
  Lemma strict_ne X Y : X  Y  X  Y.
  Proof. by intros [??] <-. Qed.
  Lemma strict_ne_sym X Y : X  Y  Y  X.
  Proof. by intros [??] <-. Qed.
  Lemma strict_transitive_l `{!Transitive R} X Y Z : X  Y  Y  Z  X  Z.
  Proof.
32 33
    intros [? HXY] ?. split; [by transitivity Y|].
    contradict HXY. by transitivity Z.
34 35 36
  Qed.
  Lemma strict_transitive_r `{!Transitive R} X Y Z : X  Y  Y  Z  X  Z.
  Proof.
37 38
    intros ? [? HYZ]. split; [by transitivity Y|].
    contradict HYZ. by transitivity X.
39 40 41 42 43 44 45 46 47 48
  Qed.
  Global Instance: Irreflexive (strict R).
  Proof. firstorder. Qed.
  Global Instance: Transitive R  StrictOrder (strict R).
  Proof.
    split; try apply _.
    eauto using strict_transitive_r, strict_include.
  Qed.
  Global Instance preorder_subset_dec_slow `{ X Y, Decision (X  Y)}
    (X Y : A) : Decision (X  Y) | 100 := _.
49
  Lemma strict_spec_alt `{!AntiSymmetric (=) R} X Y : X  Y  X  Y  X  Y.
50 51 52 53 54
  Proof.
    split.
    * intros [? HYX]. split. done. by intros <-.
    * intros [? HXY]. split. done. by contradict HXY; apply (anti_symmetric R).
  Qed.
55
  Lemma po_eq_dec `{!PartialOrder R,  X Y, Decision (X  Y)} (X Y : A) :
56 57 58 59 60 61 62 63 64
    Decision (X = Y).
  Proof.
    refine (cast_if_and (decide (X  Y)) (decide (Y  X)));
     abstract (rewrite anti_symmetric_iff; tauto).
  Defined.
  Lemma total_not `{!Total R} X Y : X  Y  Y  X.
  Proof. intros. destruct (total R X Y); tauto. Qed.
  Lemma total_not_strict `{!Total R} X Y : X  Y  Y  X.
  Proof. red; auto using total_not. Qed.
65
  Global Instance trichotomy_total
66
    `{!Trichotomy (strict R), !Reflexive R} : Total R.
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
  Proof.
    intros X Y.
    destruct (trichotomy (strict R) X Y) as [[??]|[<-|[??]]]; intuition.
  Qed.
End orders.

Section strict_orders.
  Context {A} {R : relation A}.
  Implicit Types X Y : A.
  Infix "⊂" := R.

  Lemma irreflexive_eq `{!Irreflexive R} X Y : X = Y  ¬X  Y.
  Proof. intros ->. apply (irreflexivity R). Qed.
  Lemma strict_anti_symmetric `{!StrictOrder R} X Y :
    X  Y  Y  X  False.
  Proof. intros. apply (irreflexivity R X). by transitivity Y. Qed.
83 84
  Global Instance trichotomyT_dec `{!TrichotomyT R, !StrictOrder R} X Y :
      Decision (X  Y) :=
85
    match trichotomyT R X Y with
86 87 88
    | inleft (left H) => left H
    | inleft (right H) => right (irreflexive_eq _ _ H)
    | inright H => right (strict_anti_symmetric _ _ H)
89 90 91
    end.
  Global Instance trichotomyT_trichotomy `{!TrichotomyT R} : Trichotomy R.
  Proof. intros X Y. destruct (trichotomyT R X Y) as [[|]|]; tauto. Qed.
92
End strict_orders.
93 94 95 96

Ltac simplify_order := repeat
  match goal with
  | _ => progress simplify_equality
97
  | H : ?R ?x ?x |- _ => by destruct (irreflexivity _ _ H)
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
  | H1 : ?R ?x ?y |- _ =>
    match goal with
    | H2 : R y x |- _ =>
      assert (x = y) by (by apply (anti_symmetric R)); clear H1 H2
    | H2 : R y ?z |- _ =>
      unless (R x z) by done;
      assert (R x z) by (by transitivity y)
    end
  end.

(** * Sorting *)
(** Merge sort. Adapted from the implementation of Hugo Herbelin in the Coq
standard library, but without using the module system. *)
Section merge_sort.
  Context  {A} (R : relation A) `{ x y, Decision (R x y)}.

  Fixpoint list_merge (l1 : list A) : list A  list A :=
    fix list_merge_aux l2 :=
    match l1, l2 with
    | [], _ => l2
    | _, [] => l1
    | x1 :: l1, x2 :: l2 =>
       if decide_rel R x1 x2 then x1 :: list_merge l1 (x2 :: l2)
       else x2 :: list_merge_aux l2
    end.
  Global Arguments list_merge !_ !_ /.

  Local Notation stack := (list (option (list A))).
  Fixpoint merge_list_to_stack (st : stack) (l : list A) : stack :=
    match st with
    | [] => [Some l]
    | None :: st => Some l :: st
    | Some l' :: st => None :: merge_list_to_stack st (list_merge l' l)
    end.
  Fixpoint merge_stack (st : stack) : list A :=
    match st with
    | [] => []
    | None :: st => merge_stack st
    | Some l :: st => list_merge l (merge_stack st)
    end.
  Fixpoint merge_sort_aux (st : stack) (l : list A) : list A :=
    match l with
    | [] => merge_stack st
    | x :: l => merge_sort_aux (merge_list_to_stack st [x]) l
    end.
  Definition merge_sort : list A  list A := merge_sort_aux [].
End merge_sort.

(** ** Properties of the [Sorted] and [StronglySorted] predicate *)
Section sorted.
  Context {A} (R : relation A).

  Lemma Sorted_StronglySorted `{!Transitive R} l :
    Sorted R l  StronglySorted R l.
  Proof. by apply Sorted.Sorted_StronglySorted. Qed.
  Lemma StronglySorted_unique `{!AntiSymmetric (=) R} l1 l2 :
    StronglySorted R l1  StronglySorted R l2  l1  l2  l1 = l2.
  Proof.
    intros Hl1; revert l2. induction Hl1 as [|x1 l1 ? IH Hx1]; intros l2 Hl2 E.
    { symmetry. by apply Permutation_nil. }
    destruct Hl2 as [|x2 l2 ? Hx2].
    { by apply Permutation_nil in E. }
    assert (x1 = x2); subst.
    { rewrite Forall_forall in Hx1, Hx2.
      assert (x2  x1 :: l1) as Hx2' by (by rewrite E; left).
      assert (x1  x2 :: l2) as Hx1' by (by rewrite <-E; left).
      inversion Hx1'; inversion Hx2'; simplify_equality; auto. }
    f_equal. by apply IH, (injective (x2 ::)).
  Qed.
167
  Lemma Sorted_unique `{!Transitive R, !AntiSymmetric (=) R} l1 l2 :
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
    Sorted R l1  Sorted R l2  l1  l2  l1 = l2.
  Proof. auto using StronglySorted_unique, Sorted_StronglySorted. Qed.

  Global Instance HdRel_dec x `{ y, Decision (R x y)} l :
    Decision (HdRel R x l).
  Proof.
   refine
    match l with
    | [] => left _
    | y :: l => cast_if (decide (R x y))
    end; abstract first [by constructor | by inversion 1].
  Defined.
  Global Instance Sorted_dec `{ x y, Decision (R x y)} :  l,
    Decision (Sorted R l).
  Proof.
   refine
    (fix go l :=
    match l return Decision (Sorted R l) with
    | [] => left _
    | x :: l => cast_if_and (decide (HdRel R x l)) (go l)
    end); clear go; abstract first [by constructor | by inversion 1].
  Defined.
  Global Instance StronglySorted_dec `{ x y, Decision (R x y)} :  l,
    Decision (StronglySorted R l).
  Proof.
   refine
    (fix go l :=
    match l return Decision (StronglySorted R l) with
    | [] => left _
    | x :: l => cast_if_and (decide (Forall (R x) l)) (go l)
    end); clear go; abstract first [by constructor | by inversion 1].
  Defined.

  Context {B} (f : A  B).
  Lemma HdRel_fmap (R1 : relation A) (R2 : relation B) x l :
    ( y, R1 x y  R2 (f x) (f y))  HdRel R1 x l  HdRel R2 (f x) (f <$> l).
  Proof. destruct 2; constructor; auto. Qed.
  Lemma Sorted_fmap (R1 : relation A) (R2 : relation B) l :
    ( x y, R1 x y  R2 (f x) (f y))  Sorted R1 l  Sorted R2 (f <$> l).
  Proof. induction 2; simpl; constructor; eauto using HdRel_fmap. Qed.
  Lemma StronglySorted_fmap (R1 : relation A) (R2 : relation B) l :
    ( x y, R1 x y  R2 (f x) (f y)) 
    StronglySorted R1 l  StronglySorted R2 (f <$> l).
  Proof.
212
    induction 2; csimpl; constructor;
213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
      rewrite ?Forall_fmap; eauto using Forall_impl.
  Qed.
End sorted.

(** ** Correctness of merge sort *)
Section merge_sort_correct.
  Context  {A} (R : relation A) `{ x y, Decision (R x y)} `{!Total R}.

  Lemma list_merge_cons x1 x2 l1 l2 :
    list_merge R (x1 :: l1) (x2 :: l2) =
      if decide (R x1 x2) then x1 :: list_merge R l1 (x2 :: l2)
      else x2 :: list_merge R (x1 :: l1) l2.
  Proof. done. Qed.
  Lemma HdRel_list_merge x l1 l2 :
    HdRel R x l1  HdRel R x l2  HdRel R x (list_merge R l1 l2).
  Proof.
    destruct 1 as [|x1 l1 IH1], 1 as [|x2 l2 IH2];
      rewrite ?list_merge_cons; simpl; repeat case_decide; auto.
  Qed.
  Lemma Sorted_list_merge l1 l2 :
    Sorted R l1  Sorted R l2  Sorted R (list_merge R l1 l2).
  Proof.
    intros Hl1. revert l2. induction Hl1 as [|x1 l1 IH1];
      induction 1 as [|x2 l2 IH2]; rewrite ?list_merge_cons; simpl;
      repeat case_decide;
      constructor; eauto using HdRel_list_merge, HdRel_cons, total_not.
  Qed.
  Lemma merge_Permutation l1 l2 : list_merge R l1 l2  l1 ++ l2.
  Proof.
    revert l2. induction l1 as [|x1 l1 IH1]; intros l2;
      induction l2 as [|x2 l2 IH2]; rewrite ?list_merge_cons; simpl;
      repeat case_decide; auto.
    * by rewrite (right_id_L [] (++)).
    * by rewrite IH2, Permutation_middle.
  Qed.

  Local Notation stack := (list (option (list A))).
  Inductive merge_stack_Sorted : stack  Prop :=
    | merge_stack_Sorted_nil : merge_stack_Sorted []
    | merge_stack_Sorted_cons_None st :
       merge_stack_Sorted st  merge_stack_Sorted (None :: st)
    | merge_stack_Sorted_cons_Some l st :
       Sorted R l  merge_stack_Sorted st  merge_stack_Sorted (Some l :: st).
  Fixpoint merge_stack_flatten (st : stack) : list A :=
    match st with
    | [] => []
    | None :: st => merge_stack_flatten st
    | Some l :: st => l ++ merge_stack_flatten st
    end.

  Lemma Sorted_merge_list_to_stack st l :
    merge_stack_Sorted st  Sorted R l 
    merge_stack_Sorted (merge_list_to_stack R st l).
  Proof.
    intros Hst. revert l.
    induction Hst; repeat constructor; naive_solver auto using Sorted_list_merge.
  Qed.
  Lemma merge_list_to_stack_Permutation st l :
    merge_stack_flatten (merge_list_to_stack R st l) 
      l ++ merge_stack_flatten st.
  Proof.
    revert l. induction st as [|[l'|] st IH]; intros l; simpl; auto.
    by rewrite IH, merge_Permutation, (associative_L _), (commutative (++) l).
  Qed.
  Lemma Sorted_merge_stack st :
    merge_stack_Sorted st  Sorted R (merge_stack R st).
  Proof. induction 1; simpl; auto using Sorted_list_merge. Qed.
  Lemma merge_stack_Permutation st : merge_stack R st  merge_stack_flatten st.
  Proof.
    induction st as [|[] ? IH]; intros; simpl; auto.
    by rewrite merge_Permutation, IH.
  Qed.
  Lemma Sorted_merge_sort_aux st l :
    merge_stack_Sorted st  Sorted R (merge_sort_aux R st l).
  Proof.
    revert st. induction l; simpl;
      auto using Sorted_merge_stack, Sorted_merge_list_to_stack.
  Qed.
  Lemma merge_sort_aux_Permutation st l :
    merge_sort_aux R st l  merge_stack_flatten st ++ l.
  Proof.
    revert st. induction l as [|?? IH]; simpl; intros.
    * by rewrite (right_id_L [] (++)), merge_stack_Permutation.
    * rewrite IH, merge_list_to_stack_Permutation; simpl.
      by rewrite Permutation_middle.
  Qed.
  Lemma Sorted_merge_sort l : Sorted R (merge_sort R l).
  Proof. apply Sorted_merge_sort_aux. by constructor. Qed.
  Lemma merge_sort_Permutation l : merge_sort R l  l.
  Proof. unfold merge_sort. by rewrite merge_sort_aux_Permutation. Qed.
  Lemma StronglySorted_merge_sort `{!Transitive R} l :
    StronglySorted R (merge_sort R l).
  Proof. auto using Sorted_StronglySorted, Sorted_merge_sort. Qed.
End merge_sort_correct.

(** * Canonical pre and partial orders *)
(** We extend the canonical pre-order [⊆] to a partial order by defining setoid
equality as [λ X Y, X ⊆ Y ∧ Y ⊆ X]. We prove that this indeed gives rise to a
setoid. *)
312 313
Instance preorder_equiv `{SubsetEq A} : Equiv A := λ X Y, X  Y  Y  X.

Robbert Krebbers's avatar
Robbert Krebbers committed
314
Section preorder.
315
  Context `{SubsetEq A, !PreOrder (@subseteq A _)}.
Robbert Krebbers's avatar
Robbert Krebbers committed
316 317

  Instance preorder_equivalence: @Equivalence A ().
318 319
  Proof.
    split.
320 321
    * done.
    * by intros ?? [??].
322
    * by intros X Y Z [??] [??]; split; transitivity Y.
323
  Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
324 325
  Global Instance: Proper (() ==> () ==> iff) ().
  Proof.
326 327 328
    unfold equiv, preorder_equiv. intros X1 Y1 ? X2 Y2 ?. split; intro.
    * transitivity X1. tauto. transitivity X2; tauto.
    * transitivity Y1. tauto. transitivity Y2; tauto.
Robbert Krebbers's avatar
Robbert Krebbers committed
329
  Qed.
330
  Lemma subset_spec X Y : X  Y  X  Y  X  Y.
331 332
  Proof.
    split.
333
    * intros [? HYX]. split. done. contradict HYX. by rewrite <-HYX.
334 335
    * intros [? HXY]. split. done. by contradict HXY.
  Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
336

337 338 339 340 341
  Section dec.
    Context `{ X Y : A, Decision (X  Y)}.
    Global Instance preorder_equiv_dec_slow (X Y : A) :
      Decision (X  Y) | 100 := _.
    Lemma subseteq_inv X Y : X  Y  X  Y  X  Y.
342
    Proof. rewrite subset_spec. destruct (decide (X  Y)); tauto. Qed.
343
    Lemma not_subset_inv X Y : X  Y  X  Y  X  Y.
344
    Proof. rewrite subset_spec. destruct (decide (X  Y)); tauto. Qed.
345
  End dec.
346

347 348 349 350 351 352 353 354 355 356 357
  Section leibniz.
    Context `{!LeibnizEquiv A}.
    Lemma subset_spec_L X Y : X  Y  X  Y  X  Y.
    Proof. unfold_leibniz. apply subset_spec. Qed.
    Context `{ X Y : A, Decision (X  Y)}.
    Lemma subseteq_inv_L X Y : X  Y  X  Y  X = Y.
    Proof. unfold_leibniz. apply subseteq_inv. Qed.
    Lemma not_subset_inv_L X Y : X  Y  X  Y  X = Y.
    Proof. unfold_leibniz. apply not_subset_inv. Qed.
  End leibniz.
End preorder.
358

359
Typeclasses Opaque preorder_equiv.
360 361
Hint Extern 0 (@Equivalence _ ()) =>
  class_apply preorder_equivalence : typeclass_instances.
Robbert Krebbers's avatar
Robbert Krebbers committed
362

363
(** * Partial orders *)
364 365
Section partial_order.
  Context `{SubsetEq A, !PartialOrder (@subseteq A _)}.
366
  Global Instance: LeibnizEquiv A.
367
  Proof. split. intros [??]. by apply (anti_symmetric ()). by intros ->. Qed.
368
End partial_order.
369

370 371
(** * Join semi lattices *)
(** General purpose theorems on join semi lattices. *)
372 373
Section join_semi_lattice.
  Context `{Empty A, JoinSemiLattice A, !EmptySpec A}.
374 375
  Implicit Types X Y : A.
  Implicit Types Xs Ys : list A.
Robbert Krebbers's avatar
Robbert Krebbers committed
376

377
  Hint Resolve subseteq_empty union_subseteq_l union_subseteq_r union_least.
378 379 380 381 382 383
  Lemma union_subseteq_l_transitive X1 X2 Y : X1  X2  X1  X2  Y.
  Proof. intros. transitivity X2; auto. Qed.
  Lemma union_subseteq_r_transitive X1 X2 Y : X1  X2  X1  Y  X2.
  Proof. intros. transitivity X2; auto. Qed.
  Hint Resolve union_subseteq_l_transitive union_subseteq_r_transitive.
  Lemma union_preserving_l X Y1 Y2 : Y1  Y2  X  Y1  X  Y2.
384
  Proof. auto. Qed.
385
  Lemma union_preserving_r X1 X2 Y : X1  X2  X1  Y  X2  Y.
386
  Proof. auto. Qed.
387
  Lemma union_preserving X1 X2 Y1 Y2 : X1  X2  Y1  Y2  X1  Y1  X2  Y2.
Robbert Krebbers's avatar
Robbert Krebbers committed
388
  Proof. auto. Qed.
389
  Lemma union_empty X : X    X.
390
  Proof. by apply union_least. Qed.
391
  Global Instance union_proper : Proper (() ==> () ==> ()) ().
392
  Proof.
393 394
    unfold equiv, preorder_equiv.
    split; apply union_preserving; simpl in *; tauto.
395
  Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
396 397 398 399 400 401 402
  Global Instance: Idempotent () ().
  Proof. split; eauto. Qed.
  Global Instance: LeftId ()  ().
  Proof. split; eauto. Qed.
  Global Instance: RightId ()  ().
  Proof. split; eauto. Qed.
  Global Instance: Commutative () ().
403
  Proof. split; auto. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
404
  Global Instance: Associative () ().
405
  Proof. split; auto. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
406
  Lemma subseteq_union X Y : X  Y  X  Y  Y.
407
  Proof. repeat split; eauto. intros HXY. rewrite <-HXY. auto. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
408 409 410 411 412 413
  Lemma subseteq_union_1 X Y : X  Y  X  Y  Y.
  Proof. apply subseteq_union. Qed.
  Lemma subseteq_union_2 X Y : X  Y  Y  X  Y.
  Proof. apply subseteq_union. Qed.
  Lemma equiv_empty X : X    X  .
  Proof. split; eauto. Qed.
414
  Global Instance union_list_proper: Proper (Forall2 () ==> ()) union_list.
415
  Proof. induction 1; simpl. done. by apply union_proper. Qed.
416 417
  Lemma union_list_nil :  @nil A = .
  Proof. done. Qed.
418
  Lemma union_list_cons X Xs :  (X :: Xs) = X   Xs.
419
  Proof. done. Qed.
420
  Lemma union_list_singleton X :  [X]  X.
421
  Proof. simpl. by rewrite (right_id  _). Qed.
422
  Lemma union_list_app Xs1 Xs2 :  (Xs1 ++ Xs2)   Xs1   Xs2.
423
  Proof.
424 425
    induction Xs1 as [|X Xs1 IH]; simpl; [by rewrite (left_id  _)|].
    by rewrite IH, (associative _).
426
  Qed.
427
  Lemma union_list_reverse Xs :  (reverse Xs)   Xs.
428 429 430 431 432
  Proof.
    induction Xs as [|X Xs IH]; simpl; [done |].
    by rewrite reverse_cons, union_list_app,
      union_list_singleton, (commutative _), IH.
  Qed.
433
  Lemma union_list_preserving Xs Ys : Xs * Ys   Xs   Ys.
434
  Proof. induction 1; simpl; auto using union_preserving. Qed.
435 436 437
  Lemma empty_union X Y : X  Y    X    Y  .
  Proof.
    split.
438 439 440
    * intros HXY. split; apply equiv_empty;
        by transitivity (X  Y); [auto | rewrite HXY].
    * intros [HX HY]. by rewrite HX, HY, (left_id _ _).
441
  Qed.
442
  Lemma empty_union_list Xs :  Xs    Forall ( ) Xs.
443 444 445 446 447 448
  Proof.
    split.
    * induction Xs; simpl; rewrite ?empty_union; intuition.
    * induction 1 as [|?? E1 ? E2]; simpl. done. by apply empty_union.
  Qed.

449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476
  Section leibniz.
    Context `{!LeibnizEquiv A}.
    Global Instance: Idempotent (=) ().
    Proof. intros ?. unfold_leibniz. apply (idempotent _). Qed.
    Global Instance: LeftId (=)  ().
    Proof. intros ?. unfold_leibniz. apply (left_id _ _). Qed.
    Global Instance: RightId (=)  ().
    Proof. intros ?. unfold_leibniz. apply (right_id _ _). Qed.
    Global Instance: Commutative (=) ().
    Proof. intros ??. unfold_leibniz. apply (commutative _). Qed.
    Global Instance: Associative (=) ().
    Proof. intros ???. unfold_leibniz. apply (associative _). Qed.
    Lemma subseteq_union_L X Y : X  Y  X  Y = Y.
    Proof. unfold_leibniz. apply subseteq_union. Qed.
    Lemma subseteq_union_1_L X Y : X  Y  X  Y = Y.
    Proof. unfold_leibniz. apply subseteq_union_1. Qed.
    Lemma subseteq_union_2_L X Y : X  Y = Y  X  Y.
    Proof. unfold_leibniz. apply subseteq_union_2. Qed.
    Lemma equiv_empty_L X : X    X = .
    Proof. unfold_leibniz. apply equiv_empty. Qed.
    Lemma union_list_singleton_L (X : A) :  [X] = X.
    Proof. unfold_leibniz. apply union_list_singleton. Qed.
    Lemma union_list_app_L (Xs1 Xs2 : list A) :  (Xs1 ++ Xs2) =  Xs1   Xs2.
    Proof. unfold_leibniz. apply union_list_app. Qed.
    Lemma union_list_reverse_L (Xs : list A) :  (reverse Xs) =  Xs.
    Proof. unfold_leibniz. apply union_list_reverse. Qed.
    Lemma empty_union_L X Y : X  Y =   X =   Y = .
    Proof. unfold_leibniz. apply empty_union. Qed.
477
    Lemma empty_union_list_L Xs :  Xs =   Forall (= ) Xs.
478
    Proof. unfold_leibniz. by rewrite empty_union_list. Qed. 
479 480 481 482
  End leibniz.

  Section dec.
    Context `{ X Y : A, Decision (X  Y)}.
483
    Lemma non_empty_union X Y : X  Y    X    Y  .
484
    Proof. rewrite empty_union. destruct (decide (X  )); intuition. Qed.
485 486
    Lemma non_empty_union_list Xs :  Xs    Exists ( ) Xs.
    Proof. rewrite empty_union_list. apply (not_Forall_Exists _). Qed.
487
    Context `{!LeibnizEquiv A}.
488
    Lemma non_empty_union_L X Y : X  Y    X    Y  .
489
    Proof. unfold_leibniz. apply non_empty_union. Qed.
490 491
    Lemma non_empty_union_list_L Xs :  Xs    Exists ( ) Xs.
    Proof. unfold_leibniz. apply non_empty_union_list. Qed.
492
  End dec.
493
End join_semi_lattice.
Robbert Krebbers's avatar
Robbert Krebbers committed
494

495 496
(** * Meet semi lattices *)
(** The dual of the above section, but now for meet semi lattices. *)
497
Section meet_semi_lattice.
Robbert Krebbers's avatar
Robbert Krebbers committed
498
  Context `{MeetSemiLattice A}.
499 500
  Implicit Types X Y : A.
  Implicit Types Xs Ys : list A.
Robbert Krebbers's avatar
Robbert Krebbers committed
501

502
  Hint Resolve intersection_subseteq_l intersection_subseteq_r
503
    intersection_greatest.
504 505 506 507 508 509 510
  Lemma intersection_subseteq_l_transitive X1 X2 Y : X1  X2  X1  Y  X2.
  Proof. intros. transitivity X1; auto. Qed.
  Lemma intersection_subseteq_r_transitive X1 X2 Y : X1  X2  Y  X1  X2.
  Proof. intros. transitivity X1; auto. Qed.
  Hint Resolve intersection_subseteq_l_transitive
    intersection_subseteq_r_transitive.
  Lemma intersection_preserving_l X Y1 Y2 : Y1  Y2  X  Y1  X  Y2.
Robbert Krebbers's avatar
Robbert Krebbers committed
511
  Proof. auto. Qed.
512
  Lemma intersection_preserving_r X1 X2 Y : X1  X2  X1  Y  X2  Y.
Robbert Krebbers's avatar
Robbert Krebbers committed
513
  Proof. auto. Qed.
514 515
  Lemma intersection_preserving X1 X2 Y1 Y2 :
    X1  X2  Y1  Y2  X1  Y1  X2  Y2.
Robbert Krebbers's avatar
Robbert Krebbers committed
516 517
  Proof. auto. Qed.
  Global Instance: Proper (() ==> () ==> ()) ().
518 519
  Proof.
    unfold equiv, preorder_equiv. split;
520
      apply intersection_preserving; simpl in *; tauto.
521
  Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
522 523 524
  Global Instance: Idempotent () ().
  Proof. split; eauto. Qed.
  Global Instance: Commutative () ().
525
  Proof. split; auto. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
526
  Global Instance: Associative () ().
527
  Proof. split; auto. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
528
  Lemma subseteq_intersection X Y : X  Y  X  Y  X.
529
  Proof. repeat split; eauto. intros HXY. rewrite <-HXY. auto. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
530 531 532 533
  Lemma subseteq_intersection_1 X Y : X  Y  X  Y  X.
  Proof. apply subseteq_intersection. Qed.
  Lemma subseteq_intersection_2 X Y : X  Y  X  X  Y.
  Proof. apply subseteq_intersection. Qed.
534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549

  Section leibniz.
    Context `{!LeibnizEquiv A}.
    Global Instance: Idempotent (=) ().
    Proof. intros ?. unfold_leibniz. apply (idempotent _). Qed.
    Global Instance: Commutative (=) ().
    Proof. intros ??. unfold_leibniz. apply (commutative _). Qed.
    Global Instance: Associative (=) ().
    Proof. intros ???. unfold_leibniz. apply (associative _). Qed.
    Lemma subseteq_intersection_L X Y : X  Y  X  Y = X.
    Proof. unfold_leibniz. apply subseteq_intersection. Qed.
    Lemma subseteq_intersection_1_L X Y : X  Y  X  Y = X.
    Proof. unfold_leibniz. apply subseteq_intersection_1. Qed.
    Lemma subseteq_intersection_2_L X Y : X  Y = X  X  Y.
    Proof. unfold_leibniz. apply subseteq_intersection_2. Qed.
  End leibniz.
550
End meet_semi_lattice.
551 552

(** * Lower bounded lattices *)
553 554
Section lattice.
  Context `{Empty A, Lattice A, !EmptySpec A}.
555 556

  Global Instance: LeftAbsorb ()  ().
557
  Proof. split. by apply intersection_subseteq_l. by apply subseteq_empty. Qed.
558 559
  Global Instance: RightAbsorb ()  ().
  Proof. intros ?. by rewrite (commutative _), (left_absorb _ _). Qed.
560 561
  Global Instance: LeftDistr () () ().
  Proof.
562 563 564 565 566 567
    intros X Y Z. split; [|apply lattice_distr].
    apply union_least.
    { apply intersection_greatest; auto using union_subseteq_l. }
    apply intersection_greatest.
    * apply union_subseteq_r_transitive, intersection_subseteq_l.
    * apply union_subseteq_r_transitive, intersection_subseteq_r.
568 569
  Qed.
  Global Instance: RightDistr () () ().
570
  Proof. intros X Y Z. by rewrite !(commutative _ _ Z), (left_distr _ _). Qed.
571 572
  Global Instance: LeftDistr () () ().
  Proof.
573
    intros X Y Z. split.
574 575
    * rewrite (left_distr () ()).
      apply intersection_greatest.
576
      { apply union_subseteq_r_transitive, intersection_subseteq_l. }
577 578
      rewrite (right_distr () ()).
      apply intersection_preserving; auto using union_subseteq_l.
579 580 581
    * apply intersection_greatest.
      { apply union_least; auto using intersection_subseteq_l. }
      apply union_least.
582 583
      + apply intersection_subseteq_r_transitive, union_subseteq_l.
      + apply intersection_subseteq_r_transitive, union_subseteq_r.
584 585
  Qed.
  Global Instance: RightDistr () () ().
586
  Proof. intros X Y Z. by rewrite !(commutative _ _ Z), (left_distr _ _). Qed.
587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602

  Section leibniz.
    Context `{!LeibnizEquiv A}.
    Global Instance: LeftAbsorb (=)  ().
    Proof. intros ?. unfold_leibniz. apply (left_absorb _ _). Qed.
    Global Instance: RightAbsorb (=)  ().
    Proof. intros ?. unfold_leibniz. apply (right_absorb _ _). Qed.
    Global Instance: LeftDistr (=) () ().
    Proof. intros ???. unfold_leibniz. apply (left_distr _ _). Qed.
    Global Instance: RightDistr (=) () ().
    Proof. intros ???. unfold_leibniz. apply (right_distr _ _). Qed.
    Global Instance: LeftDistr (=) () ().
    Proof. intros ???. unfold_leibniz. apply (left_distr _ _). Qed.
    Global Instance: RightDistr (=) () ().
    Proof. intros ???. unfold_leibniz. apply (right_distr _ _). Qed.
  End leibniz.
603
End lattice.