collections.v 22.7 KB
Newer Older
Robbert Krebbers's avatar
Robbert Krebbers committed
1
(* Copyright (c) 2012-2014, Robbert Krebbers. *)
2 3 4 5 6 7
(* This file is distributed under the terms of the BSD license. *)
(** This file collects definitions and theorems on collections. Most
importantly, it implements some tactics to automatically solve goals involving
collections. *)
Require Export base tactics orders.

8 9 10
Instance collection_subseteq `{ElemOf A C} : SubsetEq C := λ X Y,
   x, x  X  x  Y.

11
(** * Basic theorems *)
12 13
Section simple_collection.
  Context `{SimpleCollection A C}.
Robbert Krebbers's avatar
Robbert Krebbers committed
14

15
  Lemma elem_of_empty x : x    False.
16
  Proof. split. apply not_elem_of_empty. done. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
17 18 19 20
  Lemma elem_of_union_l x X Y : x  X  x  X  Y.
  Proof. intros. apply elem_of_union. auto. Qed.
  Lemma elem_of_union_r x X Y : x  Y  x  X  Y.
  Proof. intros. apply elem_of_union. auto. Qed.
21 22 23
  Global Instance: EmptySpec C.
  Proof. firstorder auto. Qed.
  Global Instance: JoinSemiLattice C.
24
  Proof. firstorder auto. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
25
  Lemma elem_of_subseteq X Y : X  Y   x, x  X  x  Y.
26
  Proof. done. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
27 28
  Lemma elem_of_equiv X Y : X  Y   x, x  X  x  Y.
  Proof. firstorder. Qed.
29 30
  Lemma elem_of_equiv_alt X Y :
    X  Y  ( x, x  X  x  Y)  ( x, x  Y  x  X).
Robbert Krebbers's avatar
Robbert Krebbers committed
31
  Proof. firstorder. Qed.
32 33
  Lemma elem_of_equiv_empty X : X     x, x  X.
  Proof. firstorder. Qed.
34 35 36 37 38 39
  Lemma collection_positive_l X Y : X  Y    X  .
  Proof.
    rewrite !elem_of_equiv_empty. setoid_rewrite elem_of_union. naive_solver.
  Qed.
  Lemma collection_positive_l_alt X Y : X    X  Y  .
  Proof. eauto using collection_positive_l. Qed.
40 41 42 43
  Lemma elem_of_singleton_1 x y : x  {[y]}  x = y.
  Proof. by rewrite elem_of_singleton. Qed.
  Lemma elem_of_singleton_2 x y : x = y  x  {[y]}.
  Proof. by rewrite elem_of_singleton. Qed.
44 45 46
  Lemma elem_of_subseteq_singleton x X : x  X  {[ x ]}  X.
  Proof.
    split.
47
    * intros ??. rewrite elem_of_singleton. by intros ->.
48 49
    * intros Ex. by apply (Ex x), elem_of_singleton.
  Qed.
50
  Global Instance singleton_proper : Proper ((=) ==> ()) singleton.
51
  Proof. by repeat intro; subst. Qed.
52
  Global Instance elem_of_proper: Proper ((=) ==> () ==> iff) () | 5.
53
  Proof. intros ???; subst. firstorder. Qed.
54
  Lemma elem_of_union_list Xs x : x   Xs   X, X  Xs  x  X.
55 56
  Proof.
    split.
57 58 59 60
    * induction Xs; simpl; intros HXs; [by apply elem_of_empty in HXs|].
      setoid_rewrite elem_of_cons. apply elem_of_union in HXs. naive_solver.
    * intros [X []]. induction 1; simpl; [by apply elem_of_union_l |].
      intros. apply elem_of_union_r; auto.
61 62 63 64 65 66 67 68
  Qed.
  Lemma non_empty_singleton x : {[ x ]}  .
  Proof. intros [E _]. by apply (elem_of_empty x), E, elem_of_singleton. Qed.
  Lemma not_elem_of_singleton x y : x  {[ y ]}  x  y.
  Proof. by rewrite elem_of_singleton. Qed.
  Lemma not_elem_of_union x X Y : x  X  Y  x  X  x  Y.
  Proof. rewrite elem_of_union. tauto. Qed.

69 70 71 72 73 74 75 76 77
  Section leibniz.
    Context `{!LeibnizEquiv C}.
    Lemma elem_of_equiv_L X Y : X = Y   x, x  X  x  Y.
    Proof. unfold_leibniz. apply elem_of_equiv. Qed.
    Lemma elem_of_equiv_alt_L X Y :
      X = Y  ( x, x  X  x  Y)  ( x, x  Y  x  X).
    Proof. unfold_leibniz. apply elem_of_equiv_alt. Qed.
    Lemma elem_of_equiv_empty_L X : X =    x, x  X.
    Proof. unfold_leibniz. apply elem_of_equiv_empty. Qed.
78 79 80 81
    Lemma collection_positive_l_L X Y : X  Y =   X = .
    Proof. unfold_leibniz. apply collection_positive_l. Qed.
    Lemma collection_positive_l_alt_L X Y : X    X  Y  .
    Proof. unfold_leibniz. apply collection_positive_l_alt. Qed.
82 83 84 85 86 87 88 89 90 91 92 93
    Lemma non_empty_singleton_L x : {[ x ]}  .
    Proof. unfold_leibniz. apply non_empty_singleton. Qed.
  End leibniz.

  Section dec.
    Context `{ X Y : C, Decision (X  Y)}.
    Global Instance elem_of_dec_slow (x : A) (X : C) : Decision (x  X) | 100.
    Proof.
      refine (cast_if (decide_rel () {[ x ]} X));
        by rewrite elem_of_subseteq_singleton.
    Defined.
  End dec.
94 95
End simple_collection.

96 97
Definition of_option `{Singleton A C} `{Empty C} (x : option A) : C :=
  match x with None =>  | Some a => {[ a ]} end.
98

99 100 101 102 103 104 105 106
Lemma elem_of_of_option `{SimpleCollection A C} (x : A) o :
  x  of_option o  o = Some x.
Proof.
  destruct o; simpl; rewrite ?elem_of_empty, ?elem_of_singleton; naive_solver.
Qed.

Global Instance collection_guard `{CollectionMonad M} : MGuard M :=
  λ P dec A x, match dec with left H => x H | _ =>  end.
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127

Section collection_monad_base.
  Context `{CollectionMonad M}.
  Lemma elem_of_guard `{Decision P} {A} (x : A) (X : M A) :
    x  guard P; X  P  x  X.
  Proof.
    unfold mguard, collection_guard; simpl; case_match;
      rewrite ?elem_of_empty; naive_solver.
  Qed.
  Lemma guard_empty `{Decision P} {A} (X : M A) : guard P; X    ¬P  X  .
  Proof.
    rewrite !elem_of_equiv_empty; setoid_rewrite elem_of_guard.
    destruct (decide P); naive_solver.
  Qed.
  Lemma bind_empty {A B} (f : A  M B) X :
    X = f    X     x, x  X  f x  .
  Proof.
    setoid_rewrite elem_of_equiv_empty; setoid_rewrite elem_of_bind.
    naive_solver.
  Qed.
End collection_monad_base.
128

129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
(** * Tactics *)
(** Given a hypothesis [H : _ ∈ _], the tactic [destruct_elem_of H] will
recursively split [H] for [(∪)], [(∩)], [(∖)], [map], [∅], [{[_]}]. *)
Tactic Notation "decompose_elem_of" hyp(H) :=
  let rec go H :=
  lazymatch type of H with
  | _   => apply elem_of_empty in H; destruct H
  | ?x  {[ ?y ]} =>
    apply elem_of_singleton in H; try first [subst y | subst x]
  | _  _  _ =>
    let H1 := fresh in let H2 := fresh in apply elem_of_union in H;
    destruct H as [H1|H2]; [go H1 | go H2]
  | _  _  _ =>
    let H1 := fresh in let H2 := fresh in apply elem_of_intersection in H;
    destruct H as [H1 H2]; go H1; go H2
  | _  _  _ =>
    let H1 := fresh in let H2 := fresh in apply elem_of_difference in H;
    destruct H as [H1 H2]; go H1; go H2
  | ?x  _ <$> _ =>
    let H1 := fresh in apply elem_of_fmap in H;
    destruct H as [? [? H1]]; try (subst x); go H1
  | _  _ = _ =>
    let H1 := fresh in let H2 := fresh in apply elem_of_bind in H;
    destruct H as [? [H1 H2]]; go H1; go H2
  | ?x  mret ?y =>
    apply elem_of_ret in H; try first [subst y | subst x]
  | _  mjoin _ = _ =>
    let H1 := fresh in let H2 := fresh in apply elem_of_join in H;
    destruct H as [? [H1 H2]]; go H1; go H2
158 159 160 161
  | _  guard _; _ =>
    let H1 := fresh in let H2 := fresh in apply elem_of_guard in H;
    destruct H as [H1 H2]; go H2
  | _  of_option _ => apply elem_of_of_option in H
162 163 164 165 166
  | _ => idtac
  end in go H.
Tactic Notation "decompose_elem_of" :=
  repeat_on_hyps (fun H => decompose_elem_of H).

167 168
Ltac decompose_empty := repeat
  match goal with
169 170 171 172
  | H :    |- _ => clear H
  | H :  =  |- _ => clear H
  | H :   _ |- _ => symmetry in H
  | H :  = _ |- _ => symmetry in H
173 174 175
  | H : _  _   |- _ => apply empty_union in H; destruct H
  | H : _  _   |- _ => apply non_empty_union in H; destruct H
  | H : {[ _ ]}   |- _ => destruct (non_empty_singleton _ H)
176 177 178
  | H : _  _ =  |- _ => apply empty_union_L in H; destruct H
  | H : _  _   |- _ => apply non_empty_union_L in H; destruct H
  | H : {[ _ ]} =  |- _ => destruct (non_empty_singleton_L _ H)
179
  | H : guard _ ; _   |- _ => apply guard_empty in H; destruct H
180 181
  end.

182 183 184 185
(** The first pass of our collection tactic consists of eliminating all
occurrences of [(∪)], [(∩)], [(∖)], [(<$>)], [∅], [{[_]}], [(≡)], and [(⊆)],
by rewriting these into logically equivalent propositions. For example we
rewrite [A → x ∈ X ∪ ∅] into [A → x ∈ X ∨ False]. *)
186 187 188 189
Ltac unfold_elem_of :=
  repeat_on_hyps (fun H =>
    repeat match type of H with
    | context [ _  _ ] => setoid_rewrite elem_of_subseteq in H
Robbert Krebbers's avatar
Robbert Krebbers committed
190
    | context [ _  _ ] => setoid_rewrite subset_spec in H
191
    | context [ _   ] => setoid_rewrite elem_of_equiv_empty in H
192
    | context [ _  _ ] => setoid_rewrite elem_of_equiv_alt in H
193 194
    | context [ _ =  ] => setoid_rewrite elem_of_equiv_empty_L in H
    | context [ _ = _ ] => setoid_rewrite elem_of_equiv_alt_L in H
195 196 197 198 199
    | context [ _   ] => setoid_rewrite elem_of_empty in H
    | context [ _  {[ _ ]} ] => setoid_rewrite elem_of_singleton in H
    | context [ _  _  _ ] => setoid_rewrite elem_of_union in H
    | context [ _  _  _ ] => setoid_rewrite elem_of_intersection in H
    | context [ _  _  _ ] => setoid_rewrite elem_of_difference in H
200 201 202 203
    | context [ _  _ <$> _ ] => setoid_rewrite elem_of_fmap in H
    | context [ _  mret _ ] => setoid_rewrite elem_of_ret in H
    | context [ _  _ = _ ] => setoid_rewrite elem_of_bind in H
    | context [ _  mjoin _ ] => setoid_rewrite elem_of_join in H
204
    | context [ _  guard _; _ ] => setoid_rewrite elem_of_guard in H
205 206
    end);
  repeat match goal with
Robbert Krebbers's avatar
Robbert Krebbers committed
207
  | |- context [ _  _ ] => setoid_rewrite elem_of_subseteq
Robbert Krebbers's avatar
Robbert Krebbers committed
208
  | |- context [ _  _ ] => setoid_rewrite subset_spec
209
  | |- context [ _   ] => setoid_rewrite elem_of_equiv_empty
Robbert Krebbers's avatar
Robbert Krebbers committed
210
  | |- context [ _  _ ] => setoid_rewrite elem_of_equiv_alt
211 212
  | |- context [ _ =  ] => setoid_rewrite elem_of_equiv_empty_L
  | |- context [ _ = _ ] => setoid_rewrite elem_of_equiv_alt_L
213
  | |- context [ _   ] => setoid_rewrite elem_of_empty
214
  | |- context [ _  {[ _ ]} ] => setoid_rewrite elem_of_singleton
Robbert Krebbers's avatar
Robbert Krebbers committed
215 216 217
  | |- context [ _  _  _ ] => setoid_rewrite elem_of_union
  | |- context [ _  _  _ ] => setoid_rewrite elem_of_intersection
  | |- context [ _  _  _ ] => setoid_rewrite elem_of_difference
218 219 220 221
  | |- context [ _  _ <$> _ ] => setoid_rewrite elem_of_fmap
  | |- context [ _  mret _ ] => setoid_rewrite elem_of_ret
  | |- context [ _  _ = _ ] => setoid_rewrite elem_of_bind
  | |- context [ _  mjoin _ ] => setoid_rewrite elem_of_join
222
  | |- context [ _  guard _; _ ] => setoid_rewrite elem_of_guard
Robbert Krebbers's avatar
Robbert Krebbers committed
223 224
  end.

225 226 227
(** The tactic [solve_elem_of tac] composes the above tactic with [intuition].
For goals that do not involve [≡], [⊆], [map], or quantifiers this tactic is
generally powerful enough. This tactic either fails or proves the goal. *)
228
Tactic Notation "solve_elem_of" tactic3(tac) :=
Robbert Krebbers's avatar
Robbert Krebbers committed
229
  simpl in *;
230
  decompose_empty;
231 232 233 234 235 236 237 238 239
  unfold_elem_of;
  solve [intuition (simplify_equality; tac)].
Tactic Notation "solve_elem_of" := solve_elem_of auto.

(** For goals with quantifiers we could use the above tactic but with
[firstorder] instead of [intuition] as finishing tactic. However, [firstorder]
fails or loops on very small goals generated by [solve_elem_of] already. We
use the [naive_solver] tactic as a substitute. This tactic either fails or
proves the goal. *)
240
Tactic Notation "esolve_elem_of" tactic3(tac) :=
241
  simpl in *;
242
  decompose_empty;
243 244 245
  unfold_elem_of;
  naive_solver tac.
Tactic Notation "esolve_elem_of" := esolve_elem_of eauto.
246 247
 
(** * More theorems *)
Robbert Krebbers's avatar
Robbert Krebbers committed
248 249 250
Section collection.
  Context `{Collection A C}.

251
  Global Instance: Lattice C.
252
  Proof. split. apply _. firstorder auto. solve_elem_of. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
253 254 255 256
  Lemma intersection_singletons x : {[x]}  {[x]}  {[x]}.
  Proof. esolve_elem_of. Qed.
  Lemma difference_twice X Y : (X  Y)  Y  X  Y.
  Proof. esolve_elem_of. Qed.
257
  Lemma subseteq_empty_difference X Y : X  Y  X  Y  .
Robbert Krebbers's avatar
Robbert Krebbers committed
258 259 260 261 262 263 264 265
  Proof. esolve_elem_of. Qed.
  Lemma difference_diag X : X  X  .
  Proof. esolve_elem_of. Qed.
  Lemma difference_union_distr_l X Y Z : (X  Y)  Z  X  Z  Y  Z.
  Proof. esolve_elem_of. Qed.
  Lemma difference_intersection_distr_l X Y Z : (X  Y)  Z  X  Z  Y  Z.
  Proof. esolve_elem_of. Qed.

266 267 268 269 270 271
  Section leibniz.
    Context `{!LeibnizEquiv C}.
    Lemma intersection_singletons_L x : {[x]}  {[x]} = {[x]}.
    Proof. unfold_leibniz. apply intersection_singletons. Qed.
    Lemma difference_twice_L X Y : (X  Y)  Y = X  Y.
    Proof. unfold_leibniz. apply difference_twice. Qed.
272 273
    Lemma subseteq_empty_difference_L X Y : X  Y  X  Y = .
    Proof. unfold_leibniz. apply subseteq_empty_difference. Qed.
274 275 276 277 278 279 280 281 282 283 284 285
    Lemma difference_diag_L X : X  X = .
    Proof. unfold_leibniz. apply difference_diag. Qed.
    Lemma difference_union_distr_l_L X Y Z : (X  Y)  Z = X  Z  Y  Z.
    Proof. unfold_leibniz. apply difference_union_distr_l. Qed.
    Lemma difference_intersection_distr_l_L X Y Z :
      (X  Y)  Z = X  Z  Y  Z.
    Proof. unfold_leibniz. apply difference_intersection_distr_l. Qed.
  End leibniz.

  Section dec.
    Context `{ X Y : C, Decision (X  Y)}.
    Lemma not_elem_of_intersection x X Y : x  X  Y  x  X  x  Y.
286
    Proof. rewrite elem_of_intersection. destruct (decide (x  X)); tauto. Qed.
287
    Lemma not_elem_of_difference x X Y : x  X  Y  x  X  x  Y.
288
    Proof. rewrite elem_of_difference. destruct (decide (x  Y)); tauto. Qed.
289 290
    Lemma union_difference X Y : X  Y  Y  X  Y  X.
    Proof.
291 292
      split; intros x; rewrite !elem_of_union, elem_of_difference; [|intuition].
      destruct (decide (x  X)); intuition.
293 294 295 296 297 298
    Qed.
    Lemma non_empty_difference X Y : X  Y  Y  X  .
    Proof.
      intros [HXY1 HXY2] Hdiff. destruct HXY2. intros x.
      destruct (decide (x  X)); esolve_elem_of.
    Qed.
299 300
    Lemma empty_difference_subseteq X Y : X  Y    X  Y.
    Proof. intros ? x ?; apply dec_stable; esolve_elem_of. Qed.
301 302 303 304 305
    Context `{!LeibnizEquiv C}.
    Lemma union_difference_L X Y : X  Y  Y = X  Y  X.
    Proof. unfold_leibniz. apply union_difference. Qed.
    Lemma non_empty_difference_L X Y : X  Y  Y  X  .
    Proof. unfold_leibniz. apply non_empty_difference. Qed.
306 307
    Lemma empty_difference_subseteq_L X Y : X  Y =   X  Y.
    Proof. unfold_leibniz. apply empty_difference_subseteq. Qed.
308 309 310 311 312 313
  End dec.
End collection.

Section collection_ops.
  Context `{CollectionOps A C}.

Robbert Krebbers's avatar
Robbert Krebbers committed
314 315 316 317 318
  Lemma elem_of_intersection_with_list (f : A  A  option A) Xs Y x :
    x  intersection_with_list f Y Xs   xs y,
      Forall2 () xs Xs  y  Y  foldr (λ x, (= f x)) (Some y) xs = Some x.
  Proof.
    split.
319 320 321 322
    * revert x. induction Xs; simpl; intros x HXs; [eexists [], x; intuition|].
      rewrite elem_of_intersection_with in HXs; destruct HXs as (x1&x2&?&?&?).
      destruct (IHXs x2) as (xs & y & hy & ? & ?); trivial.
      eexists (x1 :: xs), y. intuition (simplify_option_equality; auto).
Robbert Krebbers's avatar
Robbert Krebbers committed
323 324 325 326 327 328 329 330 331 332 333
    * intros (xs & y & Hxs & ? & Hx). revert x Hx.
      induction Hxs; intros; simplify_option_equality; [done |].
      rewrite elem_of_intersection_with. naive_solver.
  Qed.

  Lemma intersection_with_list_ind (P Q : A  Prop) f Xs Y :
    ( y, y  Y  P y) 
    Forall (λ X,  x, x  X  Q x) Xs 
    ( x y z, Q x  P y  f x y = Some z  P z) 
     x, x  intersection_with_list f Y Xs  P x.
  Proof.
334
    intros HY HXs Hf. induction Xs; simplify_option_equality; [done |].
Robbert Krebbers's avatar
Robbert Krebbers committed
335 336 337
    intros x Hx. rewrite elem_of_intersection_with in Hx.
    decompose_Forall. destruct Hx as (? & ? & ? & ? & ?). eauto.
  Qed.
338
End collection_ops.
Robbert Krebbers's avatar
Robbert Krebbers committed
339

340
(** * Sets without duplicates up to an equivalence *)
341
Section NoDup.
342
  Context `{SimpleCollection A B} (R : relation A) `{!Equivalence R}.
Robbert Krebbers's avatar
Robbert Krebbers committed
343 344

  Definition elem_of_upto (x : A) (X : B) :=  y, y  X  R x y.
345
  Definition set_NoDup (X : B) :=  x y, x  X  y  X  R x y  x = y.
Robbert Krebbers's avatar
Robbert Krebbers committed
346 347

  Global Instance: Proper (() ==> iff) (elem_of_upto x).
Robbert Krebbers's avatar
Robbert Krebbers committed
348
  Proof. intros ??? E. unfold elem_of_upto. by setoid_rewrite E. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
349 350 351
  Global Instance: Proper (R ==> () ==> iff) elem_of_upto.
  Proof.
    intros ?? E1 ?? E2. split; intros [z [??]]; exists z.
352 353
    * rewrite <-E1, <-E2; intuition.
    * rewrite E1, E2; intuition.
Robbert Krebbers's avatar
Robbert Krebbers committed
354
  Qed.
355
  Global Instance: Proper (() ==> iff) set_NoDup.
Robbert Krebbers's avatar
Robbert Krebbers committed
356 357 358
  Proof. firstorder. Qed.

  Lemma elem_of_upto_elem_of x X : x  X  elem_of_upto x X.
359
  Proof. unfold elem_of_upto. esolve_elem_of. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
360
  Lemma elem_of_upto_empty x : ¬elem_of_upto x .
361
  Proof. unfold elem_of_upto. esolve_elem_of. Qed.
362
  Lemma elem_of_upto_singleton x y : elem_of_upto x {[ y ]}  R x y.
363
  Proof. unfold elem_of_upto. esolve_elem_of. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
364

365 366
  Lemma elem_of_upto_union X Y x :
    elem_of_upto x (X  Y)  elem_of_upto x X  elem_of_upto x Y.
367
  Proof. unfold elem_of_upto. esolve_elem_of. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
368
  Lemma not_elem_of_upto x X : ¬elem_of_upto x X   y, y  X  ¬R x y.
369
  Proof. unfold elem_of_upto. esolve_elem_of. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
370

371 372 373 374 375 376 377
  Lemma set_NoDup_empty: set_NoDup .
  Proof. unfold set_NoDup. solve_elem_of. Qed.
  Lemma set_NoDup_add x X :
    ¬elem_of_upto x X  set_NoDup X  set_NoDup ({[ x ]}  X).
  Proof. unfold set_NoDup, elem_of_upto. esolve_elem_of. Qed.
  Lemma set_NoDup_inv_add x X :
    x  X  set_NoDup ({[ x ]}  X)  ¬elem_of_upto x X.
378 379
  Proof.
    intros Hin Hnodup [y [??]].
380
    rewrite (Hnodup x y) in Hin; solve_elem_of.
381
  Qed.
382 383 384 385 386
  Lemma set_NoDup_inv_union_l X Y : set_NoDup (X  Y)  set_NoDup X.
  Proof. unfold set_NoDup. solve_elem_of. Qed.
  Lemma set_NoDup_inv_union_r X Y : set_NoDup (X  Y)  set_NoDup Y.
  Proof. unfold set_NoDup. solve_elem_of. Qed.
End NoDup.
Robbert Krebbers's avatar
Robbert Krebbers committed
387

388
(** * Quantifiers *)
Robbert Krebbers's avatar
Robbert Krebbers committed
389
Section quantifiers.
390
  Context `{SimpleCollection A B} (P : A  Prop).
Robbert Krebbers's avatar
Robbert Krebbers committed
391

392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416
  Definition set_Forall X :=  x, x  X  P x.
  Definition set_Exists X :=  x, x  X  P x.

  Lemma set_Forall_empty : set_Forall .
  Proof. unfold set_Forall. solve_elem_of. Qed.
  Lemma set_Forall_singleton x : set_Forall {[ x ]}  P x.
  Proof. unfold set_Forall. solve_elem_of. Qed.
  Lemma set_Forall_union X Y : set_Forall X  set_Forall Y  set_Forall (X  Y).
  Proof. unfold set_Forall. solve_elem_of. Qed.
  Lemma set_Forall_union_inv_1 X Y : set_Forall (X  Y)  set_Forall X.
  Proof. unfold set_Forall. solve_elem_of. Qed.
  Lemma set_Forall_union_inv_2 X Y : set_Forall (X  Y)  set_Forall Y.
  Proof. unfold set_Forall. solve_elem_of. Qed.

  Lemma set_Exists_empty : ¬set_Exists .
  Proof. unfold set_Exists. esolve_elem_of. Qed.
  Lemma set_Exists_singleton x : set_Exists {[ x ]}  P x.
  Proof. unfold set_Exists. esolve_elem_of. Qed.
  Lemma set_Exists_union_1 X Y : set_Exists X  set_Exists (X  Y).
  Proof. unfold set_Exists. esolve_elem_of. Qed.
  Lemma set_Exists_union_2 X Y : set_Exists Y  set_Exists (X  Y).
  Proof. unfold set_Exists. esolve_elem_of. Qed.
  Lemma set_Exists_union_inv X Y :
    set_Exists (X  Y)  set_Exists X  set_Exists Y.
  Proof. unfold set_Exists. esolve_elem_of. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
417 418
End quantifiers.

419
Section more_quantifiers.
420
  Context `{SimpleCollection A B}.
421

422 423 424 425 426 427
  Lemma set_Forall_weaken (P Q : A  Prop) (Hweaken :  x, P x  Q x) X :
    set_Forall P X  set_Forall Q X.
  Proof. unfold set_Forall. naive_solver. Qed.
  Lemma set_Exists_weaken (P Q : A  Prop) (Hweaken :  x, P x  Q x) X :
    set_Exists P X  set_Exists Q X.
  Proof. unfold set_Exists. naive_solver. Qed.
428 429
End more_quantifiers.

430 431 432
(** * Fresh elements *)
(** We collect some properties on the [fresh] operation. In particular we
generalize [fresh] to generate lists of fresh elements. *)
433
Section fresh.
434
  Context `{FreshSpec A C} .
435

436 437
  Definition fresh_sig (X : C) : { x : A | x  X } :=
    exist ( X) (fresh X) (is_fresh X).
438 439 440 441 442 443
  Fixpoint fresh_list (n : nat) (X : C) : list A :=
    match n with
    | 0 => []
    | S n => let x := fresh X in x :: fresh_list n ({[ x ]}  X)
    end.

444 445
  Global Instance fresh_proper: Proper (() ==> (=)) fresh.
  Proof. intros ???. by apply fresh_proper_alt, elem_of_equiv. Qed.
446 447
  Global Instance fresh_list_proper: Proper ((=) ==> () ==> (=)) fresh_list.
  Proof.
448 449
    intros ? n ->. induction n as [|n IH]; intros ?? E; f_equal'; [by rewrite E|].
    apply IH. by rewrite E.
450
  Qed.
451 452
  Lemma fresh_list_length n X : length (fresh_list n X) = n.
  Proof. revert X. induction n; simpl; auto. Qed.
453
  Lemma fresh_list_is_fresh n X x : x  fresh_list n X  x  X.
454
  Proof.
455 456 457
    revert X. induction n as [|n IH]; intros X; simpl; [by rewrite elem_of_nil|].
    rewrite elem_of_cons; intros [->| Hin]; [apply is_fresh|].
    apply IH in Hin; solve_elem_of.
458 459 460
  Qed.
  Lemma fresh_list_nodup n X : NoDup (fresh_list n X).
  Proof.
461 462
    revert X. induction n; simpl; constructor; auto.
    intros Hin. apply fresh_list_is_fresh in Hin. solve_elem_of.
463 464
  Qed.
End fresh.
465

466
(** * Properties of implementations of collections that form a monad *)
467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482
Section collection_monad.
  Context `{CollectionMonad M}.

  Global Instance collection_fmap_proper {A B} (f : A  B) :
    Proper (() ==> ()) (fmap f).
  Proof. intros X Y E. esolve_elem_of. Qed.
  Global Instance collection_ret_proper {A} :
    Proper ((=) ==> ()) (@mret M _ A).
  Proof. intros X Y E. esolve_elem_of. Qed.
  Global Instance collection_bind_proper {A B} (f : A  M B) :
    Proper (() ==> ()) (mbind f).
  Proof. intros X Y E. esolve_elem_of. Qed.
  Global Instance collection_join_proper {A} :
    Proper (() ==> ()) (@mjoin M _ A).
  Proof. intros X Y E. esolve_elem_of. Qed.

483 484 485 486
  Lemma collection_bind_singleton {A B} (f : A  M B) x : {[ x ]} = f  f x.
  Proof. esolve_elem_of. Qed.
  Lemma collection_guard_True {A} `{Decision P} (X : M A) : P  guard P; X  X.
  Proof. esolve_elem_of. Qed.
487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506
  Lemma collection_fmap_compose {A B C} (f : A  B) (g : B  C) X :
    g  f <$> X  g <$> (f <$> X).
  Proof. esolve_elem_of. Qed.
  Lemma elem_of_fmap_1 {A B} (f : A  B) (X : M A) (y : B) :
    y  f <$> X   x, y = f x  x  X.
  Proof. esolve_elem_of. Qed.
  Lemma elem_of_fmap_2 {A B} (f : A  B) (X : M A) (x : A) :
    x  X  f x  f <$> X.
  Proof. esolve_elem_of. Qed.
  Lemma elem_of_fmap_2_alt {A B} (f : A  B) (X : M A) (x : A) (y : B) :
    x  X  y = f x  y  f <$> X.
  Proof. esolve_elem_of. Qed.

  Lemma elem_of_mapM {A B} (f : A  M B) l k :
    l  mapM f k  Forall2 (λ x y, x  f y) l k.
  Proof.
    split.
    * revert l. induction k; esolve_elem_of.
    * induction 1; esolve_elem_of.
  Qed.
507
  Lemma collection_mapM_length {A B} (f : A  M B) l k :
508 509 510
    l  mapM f k  length l = length k.
  Proof. revert l; induction k; esolve_elem_of. Qed.
  Lemma elem_of_mapM_fmap {A B} (f : A  B) (g : B  M A) l k :
511
    Forall (λ x,  y, y  g x  f y = x) l  k  mapM g l  fmap f k = l.
512
  Proof.
513 514
    intros Hl. revert k. induction Hl; simpl; intros;
      decompose_elem_of; f_equal'; auto.
515 516
  Qed.
  Lemma elem_of_mapM_Forall {A B} (f : A  M B) (P : B  Prop) l k :
517
    l  mapM f k  Forall (λ x,  y, y  f x  P y) k  Forall P l.
Robbert Krebbers's avatar
Robbert Krebbers committed
518
  Proof. rewrite elem_of_mapM. apply Forall2_Forall_l. Qed.
519 520
  Lemma elem_of_mapM_Forall2_l {A B C} (f : A  M B) (P: B  C  Prop) l1 l2 k :
    l1  mapM f k  Forall2 (λ x y,  z, z  f x  P z y) k l2 
Robbert Krebbers's avatar
Robbert Krebbers committed
521 522 523 524 525
    Forall2 P l1 l2.
  Proof.
    rewrite elem_of_mapM. intros Hl1. revert l2.
    induction Hl1; inversion_clear 1; constructor; auto.
  Qed.
526
End collection_monad.