vector.v 10.9 KB
Newer Older
1
(* Copyright (c) 2012-2019, Coq-std++ developers. *)
2 3
(* This file is distributed under the terms of the BSD license. *)
(** This file collects general purpose definitions and theorems on vectors
4 5 6 7
(lists of fixed length). It uses the definitions from the standard library, but
renames or changes their notations, so that it becomes more consistent with the
naming conventions in this development. *)
From stdpp Require Export fin list.
8
Set Default Proof Using "Type".
9 10 11 12 13 14 15 16 17 18 19 20 21 22
Open Scope vector_scope.

(** The type [vec n] represents lists of consisting of exactly [n] elements.
Whereas the standard library declares exactly the same notations for vectors as
used for lists, we use slightly different notations so it becomes easier to use
lists and vectors together. *)
Notation vec := Vector.t.
Notation vnil := Vector.nil.
Arguments vnil {_}.
Notation vcons := Vector.cons.
Notation vapp := Vector.append.
Arguments vcons {_} _ {_} _.

Infix ":::" := vcons (at level 60, right associativity) : vector_scope.
23 24 25
Notation "(:::)" := vcons (only parsing) : vector_scope.
Notation "( x :::)" := (vcons x) (only parsing) : vector_scope.
Notation "(::: v )" := (λ x, vcons x v) (only parsing) : vector_scope.
26 27 28 29
Notation "[# ] " := vnil : vector_scope.
Notation "[# x ] " := (vcons x vnil) : vector_scope.
Notation "[# x ; .. ; y ] " := (vcons x .. (vcons y vnil) ..) : vector_scope.
Infix "+++" := vapp (at level 60, right associativity) : vector_scope.
30 31 32
Notation "(+++)" := vapp (only parsing) : vector_scope.
Notation "( v +++)" := (vapp v) (only parsing) : vector_scope.
Notation "(+++ w )" := (λ v, vapp v w) (only parsing) : vector_scope.
33 34 35 36 37 38 39 40 41 42 43 44 45

(** Notice that we cannot define [Vector.nth] as an instance of our [Lookup]
type class, as it has a dependent type. *)
Arguments Vector.nth {_ _} !_ !_%fin /.
Infix "!!!" := Vector.nth (at level 20) : vector_scope.

(** The tactic [vec_double_ind v1 v2] performs double induction on [v1] and [v2]
provided that they have the same length. *)
Notation vec_rect2 := Vector.rect2.
Ltac vec_double_ind v1 v2 :=
  match type of v1 with
  | vec _ ?n =>
    repeat match goal with
46
    | H' : context [ n ] |- _ => var_neq v1 H'; var_neq v2 H'; revert H'
47 48
    end;
    revert n v1 v2;
49
    match goal with |-  n v1 v2, @?P n v1 v2 => apply (vec_rect2 P) end
50 51 52 53 54 55 56 57
  end.

Notation vcons_inj := VectorSpec.cons_inj.
Lemma vcons_inj_1 {A n} x y (v w : vec A n) : x ::: v = y ::: w  x = y.
Proof. apply vcons_inj. Qed.
Lemma vcons_inj_2 {A n} x y (v w : vec A n) : x ::: v = y ::: w  v = w.
Proof. apply vcons_inj. Qed.

58
Lemma vec_eq {A n} (v w : vec A n) : ( i, v !!! i = w !!! i)  v = w.
59 60
Proof.
  vec_double_ind v w; [done|]. intros n v w IH x y Hi. f_equal.
61 62
  - apply (Hi 0%fin).
  - apply IH. intros i. apply (Hi (FS i)).
63 64
Qed.

65
Instance vec_dec {A} {dec : EqDecision A} {n} : EqDecision (vec A n).
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
Proof.
 refine (vec_rect2
  (λ n (v w : vec A n), { v = w } + { v  w })
  (left _)
  (λ _ _ _ H x y, cast_if_and (dec x y) H));
  f_equal; eauto using vcons_inj_1, vcons_inj_2.
Defined.

(** Similar to [fin], we provide an inversion principle that keeps the length
fixed. We define a tactic [inv_vec v] to perform case analysis on [v], using
this inversion principle. *)
Notation vec_0_inv := Vector.case0.
Definition vec_S_inv {A n} (P : vec A (S n)  Type)
  (Hcons :  x v, P (x ::: v)) v : P v.
Proof.
81 82
  revert P Hcons.
  refine match v with [#] => tt | x ::: v => λ P Hcons, Hcons x v end.
83 84 85
Defined.

Ltac inv_vec v :=
Robbert Krebbers's avatar
Robbert Krebbers committed
86 87
  let T := type of v in
  match eval hnf in T with
88 89 90 91 92 93 94 95
  | vec _ ?n =>
    match eval hnf in n with
    | 0 => revert dependent v; match goal with |-  v, @?P v => apply (vec_0_inv P) end
    | S ?n =>
      revert dependent v; match goal with |-  v, @?P v => apply (vec_S_inv P) end;
      (* Try going on recursively. *)
      try (let x := fresh "x" in intros x v; inv_vec v; revert x)
    end
96 97 98 99 100
  end.

(** The following tactic performs case analysis on all hypotheses of the shape
[fin 0], [fin (S n)], [vec A 0] and [vec A (S n)] until no further case
analyses are possible. *)
101
Ltac inv_all_vec_fin := block_goal;
102 103 104
  repeat match goal with
  | v : vec _ _ |- _ => inv_vec v; intros
  | i : fin _ |- _ => inv_fin i; intros
105
  end; unblock_goal.
106 107 108 109 110

(** We define a coercion from [vec] to [list] and show that it preserves the
operations on vectors. We also define a function to go in the other way, but
do not define it as a coercion, as it would otherwise introduce ambiguity. *)
Fixpoint vec_to_list {A n} (v : vec A n) : list A :=
111
  match v with [#] => [] | x ::: v => x :: vec_to_list v end.
112 113 114 115 116 117 118 119
Coercion vec_to_list : vec >-> list.
Notation list_to_vec := Vector.of_list.

Lemma vec_to_list_cons {A n} x (v : vec A n) :
  vec_to_list (x ::: v) = x :: vec_to_list v.
Proof. done. Qed.
Lemma vec_to_list_app {A n m} (v : vec A n) (w : vec A m) :
  vec_to_list (v +++ w) = vec_to_list v ++ vec_to_list w.
120
Proof. by induction v; f_equal/=. Qed.
121
Lemma vec_to_list_of_list {A} (l : list A): vec_to_list (list_to_vec l) = l.
122
Proof. by induction l; f_equal/=. Qed.
123 124
Lemma vec_to_list_length {A n} (v : vec A n) : length (vec_to_list v) = n.
Proof. induction v; simpl; by f_equal. Qed.
125
Lemma vec_to_list_same_length {A B n} (v : vec A n) (w : vec B n) :
126 127
  length v = length w.
Proof. by rewrite !vec_to_list_length. Qed.
128 129 130 131
Lemma vec_to_list_inj1 {A n m} (v : vec A n) (w : vec A m) :
  vec_to_list v = vec_to_list w  n = m.
Proof.
  revert m w. induction v; intros ? [|???] ?;
132
    simplify_eq/=; f_equal; eauto.
133 134 135 136 137
Qed.
Lemma vec_to_list_inj2 {A n} (v : vec A n) (w : vec A n) :
  vec_to_list v = vec_to_list w  v = w.
Proof.
  revert w. induction v; intros w; inv_vec w; intros;
138
    simplify_eq/=; f_equal; eauto.
139 140 141 142
Qed.
Lemma vlookup_middle {A n m} (v : vec A n) (w : vec A m) x :
   i : fin (n + S m), x = (v +++ x ::: w) !!! i.
Proof.
143 144
  induction v; simpl; [by eexists 0%fin|].
  destruct IHv as [i ?]. by exists (FS i).
145 146 147 148 149 150 151 152 153
Qed.
Lemma vec_to_list_lookup_middle {A n} (v : vec A n) (l k : list A) x :
  vec_to_list v = l ++ x :: k 
     i : fin n, l = take i v  x = v !!! i  k = drop (S i) v.
Proof.
  intros H.
  rewrite <-(vec_to_list_of_list l), <-(vec_to_list_of_list k) in H.
  rewrite <-vec_to_list_cons, <-vec_to_list_app in H.
  pose proof (vec_to_list_inj1 _ _ H); subst.
154
  apply vec_to_list_inj2 in H; subst. induction l. simpl.
155 156
  - eexists 0%fin. simpl. by rewrite vec_to_list_of_list.
  - destruct IHl as [i ?]. exists (FS i). simpl. intuition congruence.
157 158 159 160 161 162
Qed.
Lemma vec_to_list_drop_lookup {A n} (v : vec A n) (i : fin n) :
  drop i v = v !!! i :: drop (S i) v.
Proof. induction i; inv_vec v; simpl; intros; [done | by rewrite IHi]. Qed.
Lemma vec_to_list_take_drop_lookup {A n} (v : vec A n) (i : fin n) :
  vec_to_list v = take i v ++ v !!! i :: drop (S i) v.
163
Proof. rewrite <-(take_drop i v) at 1. by rewrite vec_to_list_drop_lookup. Qed.
164

165 166 167 168 169 170 171 172 173 174 175 176 177 178
Lemma vlookup_lookup {A n} (v : vec A n) (i : fin n) x :
  v !!! i = x  (v : list A) !! (i : nat) = Some x.
Proof.
  induction v as [|? ? v IH]; inv_fin i. simpl; split; congruence. done.
Qed.
Lemma vlookup_lookup' {A n} (v : vec A n) (i : nat) x :
  ( H : i < n, v !!! (fin_of_nat H) = x)  (v : list A) !! i = Some x.
Proof.
  split.
  - intros [Hlt ?]. rewrite <-(fin_to_of_nat i n Hlt). by apply vlookup_lookup.
  - intros Hvix. assert (Hlt:=lookup_lt_Some _ _ _ Hvix).
    rewrite vec_to_list_length in Hlt. exists Hlt.
    apply vlookup_lookup. by rewrite fin_to_of_nat.
Qed.
179 180
Lemma elem_of_vlookup {A n} (v : vec A n) x :
  x  vec_to_list v   i, v !!! i = x.
181
Proof.
182 183 184
  rewrite elem_of_list_lookup. setoid_rewrite <-vlookup_lookup'.
  split; [by intros (?&?&?); eauto|]. intros [i Hx].
  exists i, (fin_to_nat_lt _). by rewrite fin_of_to_nat.
185
Qed.
186

187 188
Lemma Forall_vlookup {A} (P : A  Prop) {n} (v : vec A n) :
  Forall P (vec_to_list v)   i, P (v !!! i).
189
Proof. rewrite Forall_forall. setoid_rewrite elem_of_vlookup. naive_solver. Qed.
190 191 192 193 194 195 196 197
Lemma Forall_vlookup_1 {A} (P : A  Prop) {n} (v : vec A n) i :
  Forall P (vec_to_list v)  P (v !!! i).
Proof. by rewrite Forall_vlookup. Qed.
Lemma Forall_vlookup_2 {A} (P : A  Prop) {n} (v : vec A n) :
  ( i, P (v !!! i))  Forall P (vec_to_list v).
Proof. by rewrite Forall_vlookup. Qed.
Lemma Exists_vlookup {A} (P : A  Prop) {n} (v : vec A n) :
  Exists P (vec_to_list v)   i, P (v !!! i).
198 199 200 201
Proof. rewrite Exists_exists. setoid_rewrite elem_of_vlookup. naive_solver. Qed.
Lemma Forall2_vlookup {A B} (P : A  B  Prop) {n}
    (v1 : vec A n) (v2 : vec B n) :
  Forall2 P (vec_to_list v1) (vec_to_list v2)   i, P (v1 !!! i) (v2 !!! i).
202 203
Proof.
  split.
204
  - vec_double_ind v1 v2; [intros _ i; inv_fin i |].
205 206
    intros n v1 v2 IH a b; simpl. inversion_clear 1.
    intros i. inv_fin i; simpl; auto.
207
  - vec_double_ind v1 v2; [constructor|].
208
    intros ??? IH ?? H. constructor. apply (H 0%fin). apply IH, (λ i, H (FS i)).
209 210
Qed.

211
(** The function [vmap f v] applies a function [f] element wise to [v]. *)
212 213 214 215 216 217 218 219 220 221 222 223 224
Notation vmap := Vector.map.

Lemma vlookup_map `(f : A  B) {n} (v : vec A n) i :
  vmap f v !!! i = f (v !!! i).
Proof. by apply Vector.nth_map. Qed.
Lemma vec_to_list_map `(f : A  B) {n} (v : vec A n) :
  vec_to_list (vmap f v) = f <$> vec_to_list v.
Proof. induction v; simpl. done. by rewrite IHv. Qed.

(** The function [vzip_with f v w] combines the vectors [v] and [w] element
wise using the function [f]. *)
Notation vzip_with := Vector.map2.

225
Lemma vlookup_zip_with `(f : A  B  C) {n} (v1 : vec A n) (v2 : vec B n) i :
226 227
  vzip_with f v1 v2 !!! i = f (v1 !!! i) (v2 !!! i).
Proof. by apply Vector.nth_map2. Qed.
228
Lemma vec_to_list_zip_with `(f : A  B  C) {n} (v1 : vec A n) (v2 : vec B n) :
229 230 231
  vec_to_list (vzip_with f v1 v2) =
    zip_with f (vec_to_list v1) (vec_to_list v2).
Proof.
232 233
  revert v2. induction v1; intros v2; inv_vec v2; intros; simpl; [done|].
  by rewrite IHv1.
234 235
Qed.

236 237 238 239 240
(** Similar to vlookup, we cannot define [vinsert] as an instance of the
[Insert] type class, as it has a dependent type. *)
Fixpoint vinsert {A n} (i : fin n) (x : A) : vec A n  vec A n :=
  match i with
  | 0%fin => vec_S_inv _ (λ _ v, x ::: v)
Ralf Jung's avatar
Ralf Jung committed
241
  | FS i => vec_S_inv _ (λ y v, y ::: vinsert i x v)
242 243 244 245 246 247 248 249 250 251 252 253 254
  end.

Lemma vec_to_list_insert {A n} i x (v : vec A n) :
  vec_to_list (vinsert i x v) = insert (fin_to_nat i) x (vec_to_list v).
Proof. induction v; inv_fin i. done. simpl. intros. by rewrite IHv. Qed.
Lemma vlookup_insert {A n} i x (v : vec A n) : vinsert i x v !!! i = x.
Proof. by induction i; inv_vec v. Qed.
Lemma vlookup_insert_ne {A n} i j x (v : vec A n) :
  i  j  vinsert i x v !!! j = v !!! j.
Proof.
  induction i; inv_fin j; inv_vec v; simpl; try done.
  intros. apply IHi. congruence.
Qed.
255
Lemma vlookup_insert_self {A n} i (v : vec A n) : vinsert i (v !!! i) v = v.
256
Proof. by induction v; inv_fin i; intros; f_equal/=. Qed.
Ralf Jung's avatar
Ralf Jung committed
257

258 259 260 261
(** The function [vreplicate n x] generates a vector with length [n] of elements
with value [x]. *)
Fixpoint vreplicate {A} (n : nat) (x : A) : vec A n :=
  match n with 0 => [#] | S n => x ::: vreplicate n x end.
Ralf Jung's avatar
Ralf Jung committed
262

263 264 265 266
(* Vectors can be inhabited. *)
Global Instance vec_0_inhabited T : Inhabited (vec T 0) := populate [#].
Global Instance vec_inhabited `{Inhabited T} n : Inhabited (vec T n) :=
  populate (vreplicate n inhabitant).