numbers.v 21.5 KB
Newer Older
Robbert Krebbers's avatar
Robbert Krebbers committed
1
(* Copyright (c) 2012-2014, Robbert Krebbers. *)
2
(* This file is distributed under the terms of the BSD license. *)
3 4 5
(** This file collects some trivial facts on the Coq types [nat] and [N] for
natural numbers, and the type [Z] for integers. It also declares some useful
notations. *)
6
Require Export Eqdep PArith NArith ZArith NPeano.
7
Require Import QArith Qcanon.
8
Require Export base decidable.
9
Open Scope nat_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
10

11 12
Coercion Z.of_nat : nat >-> Z.

13
(** * Notations and properties of [nat] *)
14 15 16 17
Reserved Notation "x ≤ y ≤ z" (at level 70, y at next level).
Reserved Notation "x ≤ y < z" (at level 70, y at next level).
Reserved Notation "x < y < z" (at level 70, y at next level).
Reserved Notation "x < y ≤ z" (at level 70, y at next level).
18 19
Reserved Notation "x ≤ y ≤ z ≤ z'"
  (at level 70, y at next level, z at next level).
20

21
Infix "≤" := le : nat_scope.
22 23 24 25
Notation "x ≤ y ≤ z" := (x  y  y  z)%nat : nat_scope.
Notation "x ≤ y < z" := (x  y  y < z)%nat : nat_scope.
Notation "x < y < z" := (x < y  y < z)%nat : nat_scope.
Notation "x < y ≤ z" := (x < y  y  z)%nat : nat_scope.
26
Notation "x ≤ y ≤ z ≤ z'" := (x  y  y  z  z  z')%nat : nat_scope.
27 28 29 30 31 32
Notation "(≤)" := le (only parsing) : nat_scope.
Notation "(<)" := lt (only parsing) : nat_scope.

Infix "`div`" := NPeano.div (at level 35) : nat_scope.
Infix "`mod`" := NPeano.modulo (at level 35) : nat_scope.

Robbert Krebbers's avatar
Robbert Krebbers committed
33
Instance nat_eq_dec:  x y : nat, Decision (x = y) := eq_nat_dec.
34 35
Instance nat_le_dec:  x y : nat, Decision (x  y) := le_dec.
Instance nat_lt_dec:  x y : nat, Decision (x < y) := lt_dec.
36
Instance nat_inhabited: Inhabited nat := populate 0%nat.
37 38 39 40
Instance: Injective (=) (=) S.
Proof. by injection 1. Qed.
Instance: PartialOrder ().
Proof. repeat split; repeat intro; auto with lia. Qed.
41

42 43 44 45 46 47
Instance nat_le_pi:  x y : nat, ProofIrrel (x  y).
Proof.
  assert ( x y (p : x  y) y' (q : x  y'),
    y = y'  eq_dep nat (le x) y p y' q) as aux.
  { fix 3. intros x ? [|y p] ? [|y' q].
    * done.
48 49
    * clear nat_le_pi. intros; exfalso; auto with lia.
    * clear nat_le_pi. intros; exfalso; auto with lia.
50 51 52 53 54 55 56
    * injection 1. intros Hy. by case (nat_le_pi x y p y' q Hy). }
  intros x y p q.
  by apply (eq_dep_eq_dec (λ x y, decide (x = y))), aux.
Qed.
Instance nat_lt_pi:  x y : nat, ProofIrrel (x < y).
Proof. apply _. Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
57 58 59 60 61 62 63 64
Definition sum_list_with {A} (f : A  nat) : list A  nat :=
  fix go l :=
  match l with
  | [] => 0
  | x :: l => f x + go l
  end.
Notation sum_list := (sum_list_with id).

65 66 67
Lemma Nat_lt_succ_succ n : n < S (S n).
Proof. auto with arith. Qed.
Lemma Nat_mul_split_l n x1 x2 y1 y2 :
68 69
  x2 < n  y2 < n  x1 * n + x2 = y1 * n + y2  x1 = y1  x2 = y2.
Proof.
70
  intros Hx2 Hy2 E. cut (x1 = y1); [intros; subst;lia |].
71 72
  revert y1 E. induction x1; simpl; intros [|?]; simpl; auto with lia.
Qed.
73 74 75
Lemma Nat_mul_split_r n x1 x2 y1 y2 :
  x1 < n  y1 < n  x1 + x2 * n = y1 + y2 * n  x1 = y1  x2 = y2.
Proof. intros. destruct (Nat_mul_split_l n x2 x1 y2 y1); auto with lia. Qed.
76

77 78 79 80 81 82 83 84 85 86 87
Notation lcm := Nat.lcm.
Notation divide := Nat.divide.
Notation "( x | y )" := (divide x y) : nat_scope.
Instance: PartialOrder divide.
Proof.
  repeat split; try apply _. intros ??. apply Nat.divide_antisym_nonneg; lia.
Qed.
Hint Extern 0 (_ | _) => reflexivity.
Lemma Nat_divide_ne_0 x y : (x | y)  y  0  x  0.
Proof. intros Hxy Hy ->. by apply Hy, Nat.divide_0_l. Qed.

88 89 90
(** * Notations and properties of [positive] *)
Open Scope positive_scope.

91
Infix "≤" := Pos.le : positive_scope.
92 93 94 95 96
Notation "x ≤ y ≤ z" := (x  y  y  z) : positive_scope.
Notation "x ≤ y < z" := (x  y  y < z) : positive_scope.
Notation "x < y < z" := (x < y  y < z) : positive_scope.
Notation "x < y ≤ z" := (x < y  y  z) : positive_scope.
Notation "x ≤ y ≤ z ≤ z'" := (x  y  y  z  z  z') : positive_scope.
97 98
Notation "(≤)" := Pos.le (only parsing) : positive_scope.
Notation "(<)" := Pos.lt (only parsing) : positive_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
99 100 101
Notation "(~0)" := xO (only parsing) : positive_scope.
Notation "(~1)" := xI (only parsing) : positive_scope.

102 103 104 105
Arguments Pos.of_nat _ : simpl never.
Instance positive_eq_dec:  x y : positive, Decision (x = y) := Pos.eq_dec.
Instance positive_inhabited: Inhabited positive := populate 1.

106
Instance: Injective (=) (=) (~0).
Robbert Krebbers's avatar
Robbert Krebbers committed
107
Proof. by injection 1. Qed.
108
Instance: Injective (=) (=) (~1).
Robbert Krebbers's avatar
Robbert Krebbers committed
109 110
Proof. by injection 1. Qed.

111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
(** Since [positive] represents lists of bits, we define list operations
on it. These operations are in reverse, as positives are treated as snoc
lists instead of cons lists. *)
Fixpoint Papp (p1 p2 : positive) : positive :=
  match p2 with
  | 1 => p1
  | p2~0 => (Papp p1 p2)~0
  | p2~1 => (Papp p1 p2)~1
  end.
Infix "++" := Papp : positive_scope.
Notation "(++)" := Papp (only parsing) : positive_scope.
Notation "( p ++)" := (Papp p) (only parsing) : positive_scope.
Notation "(++ q )" := (λ p, Papp p q) (only parsing) : positive_scope.

Fixpoint Preverse_go (p1 p2 : positive) : positive :=
  match p2 with
  | 1 => p1
  | p2~0 => Preverse_go (p1~0) p2
  | p2~1 => Preverse_go (p1~1) p2
  end.
Definition Preverse : positive  positive := Preverse_go 1.

Global Instance: LeftId (=) 1 (++).
134
Proof. intros p. by induction p; intros; f_equal'. Qed.
135 136 137
Global Instance: RightId (=) 1 (++).
Proof. done. Qed.
Global Instance: Associative (=) (++).
138
Proof. intros ?? p. by induction p; intros; f_equal'. Qed.
139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
Global Instance:  p : positive, Injective (=) (=) (++ p).
Proof. intros p ???. induction p; simplify_equality; auto. Qed.

Lemma Preverse_go_app_cont p1 p2 p3 :
  Preverse_go (p2 ++ p1) p3 = p2 ++ Preverse_go p1 p3.
Proof.
  revert p1. induction p3; simpl; intros.
  * apply (IHp3 (_~1)).
  * apply (IHp3 (_~0)).
  * done.
Qed.
Lemma Preverse_go_app p1 p2 p3 :
  Preverse_go p1 (p2 ++ p3) = Preverse_go p1 p3 ++ Preverse_go 1 p2.
Proof.
  revert p1. induction p3; intros p1; simpl; auto.
  by rewrite <-Preverse_go_app_cont.
Qed.
Lemma Preverse_app p1 p2 :
  Preverse (p1 ++ p2) = Preverse p2 ++ Preverse p1.
Proof. unfold Preverse. by rewrite Preverse_go_app. Qed.

Lemma Preverse_xO p : Preverse (p~0) = (1~0) ++ Preverse p.
Proof Preverse_app p (1~0).
Lemma Preverse_xI p : Preverse (p~1) = (1~1) ++ Preverse p.
Proof Preverse_app p (1~1).

Fixpoint Plength (p : positive) : nat :=
166
  match p with 1 => 0%nat | p~0 | p~1 => S (Plength p) end.
167 168
Lemma Papp_length p1 p2 :
  Plength (p1 ++ p2) = (Plength p2 + Plength p1)%nat.
169
Proof. by induction p2; f_equal'. Qed.
170 171 172 173

Close Scope positive_scope.

(** * Notations and properties of [N] *)
Robbert Krebbers's avatar
Robbert Krebbers committed
174
Infix "≤" := N.le : N_scope.
175 176 177 178
Notation "x ≤ y ≤ z" := (x  y  y  z)%N : N_scope.
Notation "x ≤ y < z" := (x  y  y < z)%N : N_scope.
Notation "x < y < z" := (x < y  y < z)%N : N_scope.
Notation "x < y ≤ z" := (x < y  y  z)%N : N_scope.
179
Notation "x ≤ y ≤ z ≤ z'" := (x  y  y  z  z  z')%N : N_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
180
Notation "(≤)" := N.le (only parsing) : N_scope.
181
Notation "(<)" := N.lt (only parsing) : N_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
182

183 184 185
Infix "`div`" := N.div (at level 35) : N_scope.
Infix "`mod`" := N.modulo (at level 35) : N_scope.

Robbert Krebbers's avatar
Robbert Krebbers committed
186 187 188
Instance: Injective (=) (=) Npos.
Proof. by injection 1. Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
189 190 191 192 193 194 195
Instance N_eq_dec:  x y : N, Decision (x = y) := N.eq_dec.
Program Instance N_le_dec (x y : N) : Decision (x  y)%N :=
  match Ncompare x y with
  | Gt => right _
  | _ => left _
  end.
Next Obligation. congruence. Qed.
196 197 198 199 200 201
Program Instance N_lt_dec (x y : N) : Decision (x < y)%N :=
  match Ncompare x y with
  | Lt => left _
  | _ => right _
  end.
Next Obligation. congruence. Qed.
202
Instance N_inhabited: Inhabited N := populate 1%N.
203 204 205 206 207
Instance: PartialOrder ()%N.
Proof.
  repeat split; red. apply N.le_refl. apply N.le_trans. apply N.le_antisymm.
Qed.
Hint Extern 0 (_  _)%N => reflexivity.
Robbert Krebbers's avatar
Robbert Krebbers committed
208

209
(** * Notations and properties of [Z] *)
210 211
Open Scope Z_scope.

Robbert Krebbers's avatar
Robbert Krebbers committed
212
Infix "≤" := Z.le : Z_scope.
213 214 215 216
Notation "x ≤ y ≤ z" := (x  y  y  z) : Z_scope.
Notation "x ≤ y < z" := (x  y  y < z) : Z_scope.
Notation "x < y < z" := (x < y  y < z) : Z_scope.
Notation "x < y ≤ z" := (x < y  y  z) : Z_scope.
217
Notation "x ≤ y ≤ z ≤ z'" := (x  y  y  z  z  z') : Z_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
218
Notation "(≤)" := Z.le (only parsing) : Z_scope.
219
Notation "(<)" := Z.lt (only parsing) : Z_scope.
220

Robbert Krebbers's avatar
Robbert Krebbers committed
221 222
Infix "`div`" := Z.div (at level 35) : Z_scope.
Infix "`mod`" := Z.modulo (at level 35) : Z_scope.
223 224
Infix "`quot`" := Z.quot (at level 35) : Z_scope.
Infix "`rem`" := Z.rem (at level 35) : Z_scope.
225 226
Infix "≪" := Z.shiftl (at level 35) : Z_scope.
Infix "≫" := Z.shiftr (at level 35) : Z_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
227

228 229 230 231 232
Instance: Injective (=) (=) Zpos.
Proof. by injection 1. Qed.
Instance: Injective (=) (=) Zneg.
Proof. by injection 1. Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
233
Instance Z_eq_dec:  x y : Z, Decision (x = y) := Z.eq_dec.
234 235 236
Instance Z_le_dec:  x y : Z, Decision (x  y) := Z_le_dec.
Instance Z_lt_dec:  x y : Z, Decision (x < y) := Z_lt_dec.
Instance Z_inhabited: Inhabited Z := populate 1.
237 238 239 240
Instance: PartialOrder ().
Proof.
  repeat split; red. apply Z.le_refl. apply Z.le_trans. apply Z.le_antisymm.
Qed.
241 242 243 244 245 246 247 248 249 250 251 252

Lemma Z_pow_pred_r n m : 0 < m  n * n ^ (Z.pred m) = n ^ m.
Proof.
  intros. rewrite <-Z.pow_succ_r, Z.succ_pred. done. by apply Z.lt_le_pred.
Qed.
Lemma Z_quot_range_nonneg k x y : 0  x < k  0 < y  0  x `quot` y < k.
Proof.
  intros [??] ?.
  destruct (decide (y = 1)); subst; [rewrite Z.quot_1_r; auto |].
  destruct (decide (x = 0)); subst; [rewrite Z.quot_0_l; auto with lia |].
  split. apply Z.quot_pos; lia. transitivity x; auto. apply Z.quot_lt; lia.
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
253

254
(* Note that we cannot disable simpl for [Z.of_nat] as that would break
255
tactics as [lia]. *)
256 257 258 259 260 261 262 263 264 265
Arguments Z.to_nat _ : simpl never.
Arguments Z.mul _ _ : simpl never.
Arguments Z.add _ _ : simpl never.
Arguments Z.opp _ : simpl never.
Arguments Z.pow _ _ : simpl never.
Arguments Z.div _ _ : simpl never.
Arguments Z.modulo _ _ : simpl never.
Arguments Z.quot _ _ : simpl never.
Arguments Z.rem _ _ : simpl never.

266
Lemma Z_mod_pos a b : 0 < b  0  a `mod` b.
267 268 269 270 271
Proof. apply Z.mod_pos_bound. Qed.

Hint Resolve Z.lt_le_incl : zpos.
Hint Resolve Z.add_nonneg_pos Z.add_pos_nonneg Z.add_nonneg_nonneg : zpos.
Hint Resolve Z.mul_nonneg_nonneg Z.mul_pos_pos : zpos.
272 273
Hint Resolve Z.pow_pos_nonneg Z.pow_nonneg: zpos.
Hint Resolve Z_mod_pos Z.div_pos : zpos.
274 275
Hint Extern 1000 => lia : zpos.

276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
Lemma Z2Nat_inj_pow (x y : nat) : Z.of_nat (x ^ y) = x ^ y.
Proof.
  induction y as [|y IH].
  * by rewrite Z.pow_0_r, Nat.pow_0_r.
  * by rewrite Nat.pow_succ_r, Nat2Z.inj_succ, Z.pow_succ_r,
      Nat2Z.inj_mul, IH by auto with zpos.
Qed.
Lemma Z2Nat_inj_div x y : Z.of_nat (x `div` y) = x `div` y.
Proof.
  destruct (decide (y = 0%nat)); [by subst; destruct x |].
  apply Z.div_unique with (x `mod` y)%nat.
  { left. rewrite <-(Nat2Z.inj_le 0), <-Nat2Z.inj_lt.
    apply Nat.mod_bound_pos; lia. }
  by rewrite <-Nat2Z.inj_mul, <-Nat2Z.inj_add, <-Nat.div_mod.
Qed.
Lemma Z2Nat_inj_mod x y : Z.of_nat (x `mod` y) = x `mod` y.
Proof.
  destruct (decide (y = 0%nat)); [by subst; destruct x |].
  apply Z.mod_unique with (x `div` y)%nat.
  { left. rewrite <-(Nat2Z.inj_le 0), <-Nat2Z.inj_lt.
    apply Nat.mod_bound_pos; lia. }
  by rewrite <-Nat2Z.inj_mul, <-Nat2Z.inj_add, <-Nat.div_mod.
Qed.
Close Scope Z_scope.

301
(** * Notations and properties of [Qc] *)
302
Open Scope Qc_scope.
303 304
Delimit Scope Qc_scope with Qc.
Notation "1" := (Q2Qc 1) : Qc_scope.
305
Notation "2" := (1+1) : Qc_scope.
306 307 308 309
Notation "- 1" := (Qcopp 1) : Qc_scope.
Notation "- 2" := (Qcopp 2) : Qc_scope.
Notation "x - y" := (x + -y) : Qc_scope.
Notation "x / y" := (x * /y) : Qc_scope.
310
Infix "≤" := Qcle : Qc_scope.
311 312 313 314
Notation "x ≤ y ≤ z" := (x  y  y  z) : Qc_scope.
Notation "x ≤ y < z" := (x  y  y < z) : Qc_scope.
Notation "x < y < z" := (x < y  y < z) : Qc_scope.
Notation "x < y ≤ z" := (x < y  y  z) : Qc_scope.
315
Notation "x ≤ y ≤ z ≤ z'" := (x  y  y  z  z  z') : Qc_scope.
316 317 318
Notation "(≤)" := Qcle (only parsing) : Qc_scope.
Notation "(<)" := Qclt (only parsing) : Qc_scope.

319 320 321
Hint Extern 1 (_  _) => reflexivity || discriminate.
Arguments Qred _ : simpl never.

322
Instance Qc_eq_dec:  x y : Qc, Decision (x = y) := Qc_eq_dec.
323
Program Instance Qc_le_dec (x y : Qc) : Decision (x  y) :=
324 325
  if Qclt_le_dec y x then right _ else left _.
Next Obligation. by apply Qclt_not_le. Qed.
326
Program Instance Qc_lt_dec (x y : Qc) : Decision (x < y) :=
327 328 329
  if Qclt_le_dec x y then left _ else right _.
Next Obligation. by apply Qcle_not_lt. Qed.

330 331 332 333 334 335 336 337
Instance: PartialOrder ().
Proof.
  repeat split; red. apply Qcle_refl. apply Qcle_trans. apply Qcle_antisym.
Qed.
Instance: StrictOrder (<).
Proof.
  split; red. intros x Hx. by destruct (Qclt_not_eq x x). apply Qclt_trans.
Qed.
338 339 340 341
Lemma Qcmult_0_l x : 0 * x = 0.
Proof. ring. Qed.
Lemma Qcmult_0_r x : x * 0 = 0.
Proof. ring. Qed.
342
Lemma Qcle_ngt (x y : Qc) : x  y  ¬y < x.
343
Proof. split; auto using Qcle_not_lt, Qcnot_lt_le. Qed.
344
Lemma Qclt_nge (x y : Qc) : x < y  ¬y  x.
345
Proof. split; auto using Qclt_not_le, Qcnot_le_lt. Qed.
346
Lemma Qcplus_le_mono_l (x y z : Qc) : x  y  z + x  z + y.
347 348 349
Proof.
  split; intros.
  * by apply Qcplus_le_compat.
350 351
  * replace x with ((0 - z) + (z + x)) by ring.
    replace y with ((0 - z) + (z + y)) by ring.
352 353
    by apply Qcplus_le_compat.
Qed.
354
Lemma Qcplus_le_mono_r (x y z : Qc) : x  y  x + z  y + z.
355
Proof. rewrite !(Qcplus_comm _ z). apply Qcplus_le_mono_l. Qed.
356
Lemma Qcplus_lt_mono_l (x y z : Qc) : x < y  z + x < z + y.
357
Proof. by rewrite !Qclt_nge, <-Qcplus_le_mono_l. Qed.
358
Lemma Qcplus_lt_mono_r (x y z : Qc) : x < y  x + z < y + z.
359
Proof. by rewrite !Qclt_nge, <-Qcplus_le_mono_r. Qed.
360 361 362 363
Instance: Injective (=) (=) Qcopp.
Proof.
  intros x y H. by rewrite <-(Qcopp_involutive x), H, Qcopp_involutive.
Qed.
364
Instance:  z, Injective (=) (=) (Qcplus z).
365 366 367 368
Proof.
  intros z x y H. by apply (anti_symmetric ());
    rewrite (Qcplus_le_mono_l _ _ z), H.
Qed.
369 370 371 372 373
Instance:  z, Injective (=) (=) (λ x, x + z).
Proof.
  intros z x y H. by apply (anti_symmetric ());
    rewrite (Qcplus_le_mono_r _ _ z), H.
Qed.
374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401
Lemma Qcplus_pos_nonneg (x y : Qc) : 0 < x  0  y  0 < x + y.
Proof.
  intros. apply Qclt_le_trans with (x + 0); [by rewrite Qcplus_0_r|].
  by apply Qcplus_le_mono_l.
Qed.
Lemma Qcplus_nonneg_pos (x y : Qc) : 0  x  0 < y  0 < x + y.
Proof. rewrite (Qcplus_comm x). auto using Qcplus_pos_nonneg. Qed. 
Lemma Qcplus_pos_pos (x y : Qc) : 0 < x  0 < y  0 < x + y.
Proof. auto using Qcplus_pos_nonneg, Qclt_le_weak. Qed.
Lemma Qcplus_nonneg_nonneg (x y : Qc) : 0  x  0  y  0  x + y.
Proof.
  intros. transitivity (x + 0); [by rewrite Qcplus_0_r|].
  by apply Qcplus_le_mono_l.
Qed.
Lemma Qcplus_neg_nonpos (x y : Qc) : x < 0  y  0  x + y < 0.
Proof.
  intros. apply Qcle_lt_trans with (x + 0); [|by rewrite Qcplus_0_r].
  by apply Qcplus_le_mono_l.
Qed.
Lemma Qcplus_nonpos_neg (x y : Qc) : x  0  y < 0  x + y < 0.
Proof. rewrite (Qcplus_comm x). auto using Qcplus_neg_nonpos. Qed.
Lemma Qcplus_neg_neg (x y : Qc) : x < 0  y < 0  x + y < 0.
Proof. auto using Qcplus_nonpos_neg, Qclt_le_weak. Qed.
Lemma Qcplus_nonpos_nonpos (x y : Qc) : x  0  y  0  x + y  0.
Proof.
  intros. transitivity (x + 0); [|by rewrite Qcplus_0_r].
  by apply Qcplus_le_mono_l.
Qed.
402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452
Lemma Qcmult_le_mono_nonneg_l x y z : 0  z  x  y  z * x  z * y.
Proof. intros. rewrite !(Qcmult_comm z). by apply Qcmult_le_compat_r. Qed.
Lemma Qcmult_le_mono_nonneg_r x y z : 0  z  x  y  x * z  y * z.
Proof. intros. by apply Qcmult_le_compat_r. Qed.
Lemma Qcmult_le_mono_pos_l x y z : 0 < z  x  y  z * x  z * y.
Proof.
  split; auto using Qcmult_le_mono_nonneg_l, Qclt_le_weak.
  rewrite !Qcle_ngt, !(Qcmult_comm z).
  intuition auto using Qcmult_lt_compat_r.
Qed.
Lemma Qcmult_le_mono_pos_r x y z : 0 < z  x  y  x * z  y * z.
Proof. rewrite !(Qcmult_comm _ z). by apply Qcmult_le_mono_pos_l. Qed.
Lemma Qcmult_lt_mono_pos_l x y z : 0 < z  x < y  z * x < z * y.
Proof. intros. by rewrite !Qclt_nge, <-Qcmult_le_mono_pos_l. Qed.
Lemma Qcmult_lt_mono_pos_r x y z : 0 < z  x < y  x * z < y * z.
Proof. intros. by rewrite !Qclt_nge, <-Qcmult_le_mono_pos_r. Qed.
Lemma Qcmult_pos_pos x y : 0 < x  0 < y  0 < x * y.
Proof.
  intros. apply Qcle_lt_trans with (0 * y); [by rewrite Qcmult_0_l|].
  by apply Qcmult_lt_mono_pos_r.
Qed.
Lemma Qcmult_nonneg_nonneg x y : 0  x  0  y  0  x * y.
Proof.
  intros. transitivity (0 * y); [by rewrite Qcmult_0_l|].
  by apply Qcmult_le_mono_nonneg_r.
Qed.

Lemma inject_Z_Qred n : Qred (inject_Z n) = inject_Z n.
Proof. apply Qred_identity; auto using Z.gcd_1_r. Qed.
Coercion Qc_of_Z (n : Z) : Qc := Qcmake _ (inject_Z_Qred n).
Lemma Z2Qc_inj_0 : Qc_of_Z 0 = 0.
Proof. by apply Qc_is_canon. Qed.
Lemma Z2Qc_inj n m : Qc_of_Z n = Qc_of_Z m  n = m.
Proof. by injection 1. Qed.
Lemma Z2Qc_inj_iff n m : Qc_of_Z n = Qc_of_Z m  n = m.
Proof. split. auto using Z2Qc_inj. by intros ->. Qed.
Lemma Z2Qc_inj_le n m : (n  m)%Z  Qc_of_Z n  Qc_of_Z m.
Proof. by rewrite Zle_Qle. Qed.
Lemma Z2Qc_inj_lt n m : (n < m)%Z  Qc_of_Z n < Qc_of_Z m.
Proof. by rewrite Zlt_Qlt. Qed.
Lemma Z2Qc_inj_add n m : Qc_of_Z (n + m) = Qc_of_Z n + Qc_of_Z m.
Proof. apply Qc_is_canon; simpl. by rewrite Qred_correct, inject_Z_plus. Qed.
Lemma Z2Qc_inj_mul n m : Qc_of_Z (n * m) = Qc_of_Z n * Qc_of_Z m.
Proof. apply Qc_is_canon; simpl. by rewrite Qred_correct, inject_Z_mult. Qed.
Lemma Z2Qc_inj_opp n : Qc_of_Z (-n) = -Qc_of_Z n.
Proof. apply Qc_is_canon; simpl. by rewrite Qred_correct, inject_Z_opp. Qed.
Lemma Z2Qc_inj_sub n m : Qc_of_Z (n - m) = Qc_of_Z n - Qc_of_Z m.
Proof.
  apply Qc_is_canon; simpl.
  by rewrite !Qred_correct, <-inject_Z_opp, <-inject_Z_plus.
Qed.
453
Close Scope Qc_scope.
454

455
(** * Conversions *)
456
Lemma Z_to_nat_nonpos x : (x  0)%Z  Z.to_nat x = 0.
457
Proof. destruct x; simpl; auto using Z2Nat.inj_neg. by intros []. Qed.
458

459 460
(** The function [Z_to_option_N] converts an integer [x] into a natural number
by giving [None] in case [x] is negative. *)
461
Definition Z_to_option_N (x : Z) : option N :=
Robbert Krebbers's avatar
Robbert Krebbers committed
462
  match x with
463
  | Z0 => Some N0 | Zpos p => Some (Npos p) | Zneg _ => None
Robbert Krebbers's avatar
Robbert Krebbers committed
464
  end.
465 466
Definition Z_to_option_nat (x : Z) : option nat :=
  match x with
467
  | Z0 => Some 0 | Zpos p => Some (Pos.to_nat p) | Zneg _ => None
468
  end.
Robbert Krebbers's avatar
Robbert Krebbers committed
469

470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498
Lemma Z_to_option_N_Some x y :
  Z_to_option_N x = Some y  (0  x)%Z  y = Z.to_N x.
Proof.
  split.
  * intros. by destruct x; simpl in *; simplify_equality;
      auto using Zle_0_pos.
  * intros [??]. subst. destruct x; simpl; auto; lia.
Qed.
Lemma Z_to_option_N_Some_alt x y :
  Z_to_option_N x = Some y  (0  x)%Z  x = Z.of_N y.
Proof.
  rewrite Z_to_option_N_Some.
  split; intros [??]; subst; auto using N2Z.id, Z2N.id, eq_sym.
Qed.

Lemma Z_to_option_nat_Some x y :
  Z_to_option_nat x = Some y  (0  x)%Z  y = Z.to_nat x.
Proof.
  split.
  * intros. by destruct x; simpl in *; simplify_equality;
      auto using Zle_0_pos.
  * intros [??]. subst. destruct x; simpl; auto; lia.
Qed.
Lemma Z_to_option_nat_Some_alt x y :
  Z_to_option_nat x = Some y  (0  x)%Z  x = Z.of_nat y.
Proof.
  rewrite Z_to_option_nat_Some.
  split; intros [??]; subst; auto using Nat2Z.id, Z2Nat.id, eq_sym.
Qed.
499
Lemma Z_to_option_of_nat x : Z_to_option_nat (Z.of_nat x) = Some x.
500 501 502 503
Proof. apply Z_to_option_nat_Some_alt. auto using Nat2Z.is_nonneg. Qed.

(** The function [Z_of_sumbool] converts a sumbool [P] into an integer
by yielding one if [P] and zero if [Q]. *)
504
Definition Z_of_sumbool {P Q : Prop} (p : {P} + {Q} ) : Z :=
505
  (if p then 1 else 0)%Z.
506 507 508 509 510 511 512 513 514 515 516 517 518 519

(** Some correspondence lemmas between [nat] and [N] that are not part of the
standard library. We declare a hint database [natify] to rewrite a goal
involving [N] into a corresponding variant involving [nat]. *)
Lemma N_to_nat_lt x y : N.to_nat x < N.to_nat y  (x < y)%N.
Proof. by rewrite <-N.compare_lt_iff, nat_compare_lt, N2Nat.inj_compare. Qed.
Lemma N_to_nat_le x y : N.to_nat x  N.to_nat y  (x  y)%N.
Proof. by rewrite <-N.compare_le_iff, nat_compare_le, N2Nat.inj_compare. Qed.
Lemma N_to_nat_0 : N.to_nat 0 = 0.
Proof. done. Qed.
Lemma N_to_nat_1 : N.to_nat 1 = 1.
Proof. done. Qed.
Lemma N_to_nat_div x y : N.to_nat (x `div` y) = N.to_nat x `div` N.to_nat y.
Proof.
520 521
  destruct (decide (y = 0%N)); [by subst; destruct x |].
  apply Nat.div_unique with (N.to_nat (x `mod` y)).
522 523 524 525 526 527
  { by apply N_to_nat_lt, N.mod_lt. }
  rewrite (N.div_unique_exact (x * y) y x), N.div_mul by lia.
  by rewrite <-N2Nat.inj_mul, <-N2Nat.inj_add, <-N.div_mod.
Qed.
(* We have [x `mod` 0 = 0] on [nat], and [x `mod` 0 = x] on [N]. *)
Lemma N_to_nat_mod x y :
528
  y  0%N  N.to_nat (x `mod` y) = N.to_nat x `mod` N.to_nat y.
529
Proof.
530
  intros. apply Nat.mod_unique with (N.to_nat (x `div` y)).
531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560
  { by apply N_to_nat_lt, N.mod_lt. }
  rewrite (N.div_unique_exact (x * y) y x), N.div_mul by lia.
  by rewrite <-N2Nat.inj_mul, <-N2Nat.inj_add, <-N.div_mod.
Qed.

Hint Rewrite <-N2Nat.inj_iff : natify.
Hint Rewrite <-N_to_nat_lt : natify.
Hint Rewrite <-N_to_nat_le : natify.
Hint Rewrite Nat2N.id : natify.
Hint Rewrite N2Nat.inj_add : natify.
Hint Rewrite N2Nat.inj_mul : natify.
Hint Rewrite N2Nat.inj_sub : natify.
Hint Rewrite N2Nat.inj_succ : natify.
Hint Rewrite N2Nat.inj_pred : natify.
Hint Rewrite N_to_nat_div : natify.
Hint Rewrite N_to_nat_0 : natify.
Hint Rewrite N_to_nat_1 : natify.
Ltac natify := repeat autorewrite with natify in *.

Hint Extern 100 (Nlt _ _) => natify : natify.
Hint Extern 100 (Nle _ _) => natify : natify.
Hint Extern 100 (@eq N _ _) => natify : natify.
Hint Extern 100 (lt _ _) => natify : natify.
Hint Extern 100 (le _ _) => natify : natify.
Hint Extern 100 (@eq nat _ _) => natify : natify.

Instance:  x, PropHolds (0 < x)%N  PropHolds (0 < N.to_nat x).
Proof. unfold PropHolds. intros. by natify. Qed.
Instance:  x, PropHolds (0  x)%N  PropHolds (0  N.to_nat x).
Proof. unfold PropHolds. intros. by natify. Qed.