base.v 40.1 KB
Newer Older
Robbert Krebbers's avatar
Robbert Krebbers committed
1
(* Copyright (c) 2012-2015, Robbert Krebbers. *)
2
3
4
5
6
(* This file is distributed under the terms of the BSD license. *)
(** This file collects type class interfaces, notations, and general theorems
that are used throughout the whole development. Most importantly it contains
abstract interfaces for ordered structures, collections, and various other data
structures. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
7
8
Global Generalizable All Variables.
Global Set Automatic Coercions Import.
Robbert Krebbers's avatar
Robbert Krebbers committed
9
Global Set Asymmetric Patterns.
10
From Coq Require Export Morphisms RelationClasses List Bool Utf8 Program Setoid.
11
Obligation Tactic := idtac.
Robbert Krebbers's avatar
Robbert Krebbers committed
12

13
(** * General *)
14
15
16
17
18
(** Zipping lists. *)
Definition zip_with {A B C} (f : A  B  C) : list A  list B  list C :=
  fix go l1 l2 :=
  match l1, l2 with x1 :: l1, x2 :: l2 => f x1 x2 :: go l1 l2 | _ , _ => [] end.
Notation zip := (zip_with pair).
19

20
21
(** Ensure that [simpl] unfolds [id], [compose], and [flip] when fully
applied. *)
22
Arguments id _ _ /.
23
Arguments compose _ _ _ _ _ _ /.
24
Arguments flip _ _ _ _ _ _ /.
25
26
Arguments const _ _ _ _ /.
Typeclasses Transparent id compose flip const.
Robbert Krebbers's avatar
Robbert Krebbers committed
27
Instance: Params (@pair) 2.
28

29
30
31
32
(** Change [True] and [False] into notations in order to enable overloading.
We will use this in the file [assertions] to give [True] and [False] a
different interpretation in [assert_scope] used for assertions of our axiomatic
semantics. *)
33
34
Notation "'True'" := True : type_scope.
Notation "'False'" := False : type_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
35

36
37
Notation curry := prod_curry.
Notation uncurry := prod_uncurry.
38
39
40
41
Definition curry3 {A B C D} (f : A  B  C  D) (p : A * B * C) : D :=
  let '(a,b,c) := p in f a b c.
Definition curry4 {A B C D E} (f : A  B  C  D  E) (p : A * B * C * D) : E :=
  let '(a,b,c,d) := p in f a b c d.
42

43
44
(** Throughout this development we use [C_scope] for all general purpose
notations that do not belong to a more specific scope. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
45
46
47
Delimit Scope C_scope with C.
Global Open Scope C_scope.

48
(** Introduce some Haskell style like notations. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
49
50
51
52
53
54
55
Notation "(=)" := eq (only parsing) : C_scope.
Notation "( x =)" := (eq x) (only parsing) : C_scope.
Notation "(= x )" := (λ y, eq y x) (only parsing) : C_scope.
Notation "(≠)" := (λ x y, x  y) (only parsing) : C_scope.
Notation "( x ≠)" := (λ y, x  y) (only parsing) : C_scope.
Notation "(≠ x )" := (λ y, y  x) (only parsing) : C_scope.

56
Hint Extern 0 (_ = _) => reflexivity.
57
Hint Extern 100 (_  _) => discriminate.
Robbert Krebbers's avatar
Robbert Krebbers committed
58

59
60
61
62
Notation "(→)" := (λ A B, A  B) (only parsing) : C_scope.
Notation "( A →)" := (λ B, A  B) (only parsing) : C_scope.
Notation "(→ B )" := (λ A, A  B) (only parsing) : C_scope.

63
Notation "t $ r" := (t r)
64
  (at level 65, right associativity, only parsing) : C_scope.
65
66
67
Notation "($)" := (λ f x, f x) (only parsing) : C_scope.
Notation "($ x )" := (λ f, f x) (only parsing) : C_scope.

Robbert Krebbers's avatar
Robbert Krebbers committed
68
69
70
71
Infix "∘" := compose : C_scope.
Notation "(∘)" := compose (only parsing) : C_scope.
Notation "( f ∘)" := (compose f) (only parsing) : C_scope.
Notation "(∘ f )" := (λ g, compose g f) (only parsing) : C_scope.
72

73
74
75
76
77
78
79
80
81
82
83
84
Notation "(∧)" := and (only parsing) : C_scope.
Notation "( A ∧)" := (and A) (only parsing) : C_scope.
Notation "(∧ B )" := (λ A, A  B) (only parsing) : C_scope.

Notation "(∨)" := or (only parsing) : C_scope.
Notation "( A ∨)" := (or A) (only parsing) : C_scope.
Notation "(∨ B )" := (λ A, A  B) (only parsing) : C_scope.

Notation "(↔)" := iff (only parsing) : C_scope.
Notation "( A ↔)" := (iff A) (only parsing) : C_scope.
Notation "(↔ B )" := (λ A, A  B) (only parsing) : C_scope.

85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
Hint Extern 0 (_  _) => reflexivity.
Hint Extern 0 (_  _) => symmetry; assumption.

Notation "( x ,)" := (pair x) (only parsing) : C_scope.
Notation "(, y )" := (λ x, (x,y)) (only parsing) : C_scope.

Notation "p .1" := (fst p) (at level 10, format "p .1").
Notation "p .2" := (snd p) (at level 10, format "p .2").

Definition prod_map {A A' B B'} (f : A  A') (g : B  B')
  (p : A * B) : A' * B' := (f (p.1), g (p.2)).
Arguments prod_map {_ _ _ _} _ _ !_ /.
Definition prod_zip {A A' A'' B B' B''} (f : A  A'  A'') (g : B  B'  B'')
    (p : A * B) (q : A' * B') : A'' * B'' := (f (p.1) (q.1), g (p.2) (q.2)).
Arguments prod_zip {_ _ _ _ _ _} _ _ !_ !_ /.

101
102
(** Set convenient implicit arguments for [existT] and introduce notations. *)
Arguments existT {_ _} _ _.
103
Arguments proj1_sig {_ _} _.
Robbert Krebbers's avatar
Robbert Krebbers committed
104
Notation "x ↾ p" := (exist _ x p) (at level 20) : C_scope.
105
Notation "` x" := (proj1_sig x) (at level 10, format "` x") : C_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
106

107
108
109
110
(** * Type classes *)
(** ** Provable propositions *)
(** This type class collects provable propositions. It is useful to constraint
type classes by arbitrary propositions. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
111
112
Class PropHolds (P : Prop) := prop_holds: P.

113
114
Hint Extern 0 (PropHolds _) => assumption : typeclass_instances.
Instance: Proper (iff ==> iff) PropHolds.
115
Proof. repeat intro; trivial. Qed.
116
117
118

Ltac solve_propholds :=
  match goal with
119
120
  | |- PropHolds (?P) => apply _
  | |- ?P => change (PropHolds P); apply _
121
122
123
124
125
126
127
  end.

(** ** Decidable propositions *)
(** This type class by (Spitters/van der Weegen, 2011) collects decidable
propositions. For example to declare a parameter expressing decidable equality
on a type [A] we write [`{∀ x y : A, Decision (x = y)}] and use it by writing
[decide (x = y)]. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
128
129
130
Class Decision (P : Prop) := decide : {P} + {¬P}.
Arguments decide _ {_}.

131
132
(** ** Inhabited types *)
(** This type class collects types that are inhabited. *)
133
Class Inhabited (A : Type) : Type := populate { inhabitant : A }.
134
135
136
137
138
139
Arguments populate {_} _.

Instance unit_inhabited: Inhabited unit := populate ().
Instance list_inhabited {A} : Inhabited (list A) := populate [].
Instance prod_inhabited {A B} (iA : Inhabited A)
    (iB : Inhabited B) : Inhabited (A * B) :=
140
  match iA, iB with populate x, populate y => populate (x,y) end.
141
Instance sum_inhabited_l {A B} (iA : Inhabited A) : Inhabited (A + B) :=
142
  match iA with populate x => populate (inl x) end.
143
Instance sum_inhabited_r {A B} (iB : Inhabited A) : Inhabited (A + B) :=
144
  match iB with populate y => populate (inl y) end.
145
146
Instance option_inhabited {A} : Inhabited (option A) := populate None.

147
148
149
150
151
152
(** ** Proof irrelevant types *)
(** This type class collects types that are proof irrelevant. That means, all
elements of the type are equal. We use this notion only used for propositions,
but by universe polymorphism we can generalize it. *)
Class ProofIrrel (A : Type) : Prop := proof_irrel (x y : A) : x = y.

153
154
155
(** ** Setoid equality *)
(** We define an operational type class for setoid equality. This is based on
(Spitters/van der Weegen, 2011). *)
Robbert Krebbers's avatar
Robbert Krebbers committed
156
157
158
Class Equiv A := equiv: relation A.
Infix "≡" := equiv (at level 70, no associativity) : C_scope.
Notation "(≡)" := equiv (only parsing) : C_scope.
159
160
161
162
163
164
Notation "( X ≡)" := (equiv X) (only parsing) : C_scope.
Notation "(≡ X )" := (λ Y, Y  X) (only parsing) : C_scope.
Notation "(≢)" := (λ X Y, ¬X  Y) (only parsing) : C_scope.
Notation "X ≢ Y":= (¬X  Y) (at level 70, no associativity) : C_scope.
Notation "( X ≢)" := (λ Y, X  Y) (only parsing) : C_scope.
Notation "(≢ X )" := (λ Y, Y  X) (only parsing) : C_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
165

166
167
168
169
(** The type class [LeibnizEquiv] collects setoid equalities that coincide
with Leibniz equality. We provide the tactic [fold_leibniz] to transform such
setoid equalities into Leibniz equalities, and [unfold_leibniz] for the
reverse. *)
170
171
172
173
174
Class LeibnizEquiv A `{Equiv A} := leibniz_equiv x y : x  y  x = y.
Lemma leibniz_equiv_iff `{LeibnizEquiv A, !Reflexive (@equiv A _)} (x y : A) :
  x  y  x = y.
Proof. split. apply leibniz_equiv. intros ->; reflexivity. Qed.
 
175
176
177
Ltac fold_leibniz := repeat
  match goal with
  | H : context [ @equiv ?A _ _ _ ] |- _ =>
178
    setoid_rewrite (leibniz_equiv_iff (A:=A)) in H
179
  | |- context [ @equiv ?A _ _ _ ] =>
180
    setoid_rewrite (leibniz_equiv_iff (A:=A))
181
182
183
184
  end.
Ltac unfold_leibniz := repeat
  match goal with
  | H : context [ @eq ?A _ _ ] |- _ =>
185
    setoid_rewrite <-(leibniz_equiv_iff (A:=A)) in H
186
  | |- context [ @eq ?A _ _ ] =>
187
    setoid_rewrite <-(leibniz_equiv_iff (A:=A))
188
189
  end.

190
191
Definition equivL {A} : Equiv A := (=).

192
193
194
195
196
197
198
199
(** A [Params f n] instance forces the setoid rewriting mechanism not to
rewrite in the first [n] arguments of the function [f]. We will declare such
instances for all operational type classes in this development. *)
Instance: Params (@equiv) 2.

(** The following instance forces [setoid_replace] to use setoid equality
(for types that have an [Equiv] instance) rather than the standard Leibniz
equality. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
200
Instance equiv_default_relation `{Equiv A} : DefaultRelation () | 3.
201
Hint Extern 0 (_  _) => reflexivity.
202
Hint Extern 0 (_  _) => symmetry; assumption.
Robbert Krebbers's avatar
Robbert Krebbers committed
203

204
(** ** Operations on collections *)
205
(** We define operational type classes for the traditional operations and
206
relations on collections: the empty collection [∅], the union [(∪)],
207
208
intersection [(∩)], and difference [(∖)], the singleton [{[_]}], the subset
[(⊆)] and element of [(∈)] relation, and disjointess [(⊥)]. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
209
210
211
Class Empty A := empty: A.
Notation "∅" := empty : C_scope.

212
213
214
Class Top A := top : A.
Notation "⊤" := top : C_scope.

Robbert Krebbers's avatar
Robbert Krebbers committed
215
Class Union A := union: A  A  A.
216
Instance: Params (@union) 2.
Robbert Krebbers's avatar
Robbert Krebbers committed
217
218
219
220
Infix "∪" := union (at level 50, left associativity) : C_scope.
Notation "(∪)" := union (only parsing) : C_scope.
Notation "( x ∪)" := (union x) (only parsing) : C_scope.
Notation "(∪ x )" := (λ y, union y x) (only parsing) : C_scope.
221
222
223
224
225
226
Infix "∪*" := (zip_with ()) (at level 50, left associativity) : C_scope.
Notation "(∪*)" := (zip_with ()) (only parsing) : C_scope.
Infix "∪**" := (zip_with (zip_with ()))
  (at level 50, left associativity) : C_scope.
Infix "∪*∪**" := (zip_with (prod_zip () (*)))
  (at level 50, left associativity) : C_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
227

228
Definition union_list `{Empty A} `{Union A} : list A  A := fold_right () .
229
230
231
Arguments union_list _ _ _ !_ /.
Notation "⋃ l" := (union_list l) (at level 20, format "⋃  l") : C_scope.

Robbert Krebbers's avatar
Robbert Krebbers committed
232
Class Intersection A := intersection: A  A  A.
233
Instance: Params (@intersection) 2.
Robbert Krebbers's avatar
Robbert Krebbers committed
234
235
236
237
238
239
Infix "∩" := intersection (at level 40) : C_scope.
Notation "(∩)" := intersection (only parsing) : C_scope.
Notation "( x ∩)" := (intersection x) (only parsing) : C_scope.
Notation "(∩ x )" := (λ y, intersection y x) (only parsing) : C_scope.

Class Difference A := difference: A  A  A.
240
Instance: Params (@difference) 2.
Robbert Krebbers's avatar
Robbert Krebbers committed
241
242
243
244
Infix "∖" := difference (at level 40) : C_scope.
Notation "(∖)" := difference (only parsing) : C_scope.
Notation "( x ∖)" := (difference x) (only parsing) : C_scope.
Notation "(∖ x )" := (λ y, difference y x) (only parsing) : C_scope.
245
246
247
248
249
250
Infix "∖*" := (zip_with ()) (at level 40, left associativity) : C_scope.
Notation "(∖*)" := (zip_with ()) (only parsing) : C_scope.
Infix "∖**" := (zip_with (zip_with ()))
  (at level 40, left associativity) : C_scope.
Infix "∖*∖**" := (zip_with (prod_zip () (*)))
  (at level 50, left associativity) : C_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
251

252
253
Class Singleton A B := singleton: A  B.
Instance: Params (@singleton) 3.
254
Notation "{[ x ]}" := (singleton x) (at level 1) : C_scope.
255
Notation "{[ x ; y ; .. ; z ]}" :=
256
257
258
259
260
261
  (union .. (union (singleton x) (singleton y)) .. (singleton z))
  (at level 1) : C_scope.
Notation "{[ x , y ]}" := (singleton (x,y))
  (at level 1, y at next level) : C_scope.
Notation "{[ x , y , z ]}" := (singleton (x,y,z))
  (at level 1, y at next level, z at next level) : C_scope.
262

263
Class SubsetEq A := subseteq: relation A.
264
Instance: Params (@subseteq) 2.
Robbert Krebbers's avatar
Robbert Krebbers committed
265
266
267
Infix "⊆" := subseteq (at level 70) : C_scope.
Notation "(⊆)" := subseteq (only parsing) : C_scope.
Notation "( X ⊆ )" := (subseteq X) (only parsing) : C_scope.
268
Notation "( ⊆ X )" := (λ Y, Y  X) (only parsing) : C_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
269
270
271
272
Notation "X ⊈ Y" := (¬X  Y) (at level 70) : C_scope.
Notation "(⊈)" := (λ X Y, X  Y) (only parsing) : C_scope.
Notation "( X ⊈ )" := (λ Y, X  Y) (only parsing) : C_scope.
Notation "( ⊈ X )" := (λ Y, Y  X) (only parsing) : C_scope.
273
274
275
276
277
278
279
Infix "⊆*" := (Forall2 ()) (at level 70) : C_scope.
Notation "(⊆*)" := (Forall2 ()) (only parsing) : C_scope.
Infix "⊆**" := (Forall2 (*)) (at level 70) : C_scope.
Infix "⊆1*" := (Forall2 (λ p q, p.1  q.1)) (at level 70) : C_scope.
Infix "⊆2*" := (Forall2 (λ p q, p.2  q.2)) (at level 70) : C_scope.
Infix "⊆1**" := (Forall2 (λ p q, p.1 * q.1)) (at level 70) : C_scope.
Infix "⊆2**" := (Forall2 (λ p q, p.2 * q.2)) (at level 70) : C_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
280

281
Hint Extern 0 (_  _) => reflexivity.
282
283
284
Hint Extern 0 (_ * _) => reflexivity.
Hint Extern 0 (_ ** _) => reflexivity.

285
286
Definition strict {A} (R : relation A) : relation A := λ X Y, R X Y  ¬R Y X.
Instance: Params (@strict) 2.
287
288
289
290
Infix "⊂" := (strict ()) (at level 70) : C_scope.
Notation "(⊂)" := (strict ()) (only parsing) : C_scope.
Notation "( X ⊂ )" := (strict () X) (only parsing) : C_scope.
Notation "( ⊂ X )" := (λ Y, Y  X) (only parsing) : C_scope.
291
292
293
294
Notation "X ⊄  Y" := (¬X  Y) (at level 70) : C_scope.
Notation "(⊄)" := (λ X Y, X  Y) (only parsing) : C_scope.
Notation "( X ⊄ )" := (λ Y, X  Y) (only parsing) : C_scope.
Notation "( ⊄ X )" := (λ Y, Y  X) (only parsing) : C_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
295

296
297
298
299
300
(** The class [Lexico A] is used for the lexicographic order on [A]. This order
is used to create finite maps, finite sets, etc, and is typically different from
the order [(⊆)]. *)
Class Lexico A := lexico: relation A.

Robbert Krebbers's avatar
Robbert Krebbers committed
301
Class ElemOf A B := elem_of: A  B  Prop.
302
Instance: Params (@elem_of) 3.
Robbert Krebbers's avatar
Robbert Krebbers committed
303
304
305
306
307
308
309
310
311
Infix "∈" := elem_of (at level 70) : C_scope.
Notation "(∈)" := elem_of (only parsing) : C_scope.
Notation "( x ∈)" := (elem_of x) (only parsing) : C_scope.
Notation "(∈ X )" := (λ x, elem_of x X) (only parsing) : C_scope.
Notation "x ∉ X" := (¬x  X) (at level 80) : C_scope.
Notation "(∉)" := (λ x X, x  X) (only parsing) : C_scope.
Notation "( x ∉)" := (λ X, x  X) (only parsing) : C_scope.
Notation "(∉ X )" := (λ x, x  X) (only parsing) : C_scope.

Robbert Krebbers's avatar
Robbert Krebbers committed
312
313
314
315
Class Disjoint A := disjoint : A  A  Prop.
Instance: Params (@disjoint) 2.
Infix "⊥" := disjoint (at level 70) : C_scope.
Notation "(⊥)" := disjoint (only parsing) : C_scope.
316
Notation "( X ⊥.)" := (disjoint X) (only parsing) : C_scope.
317
Notation "(.⊥ X )" := (λ Y, Y  X) (only parsing) : C_scope.
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
Infix "⊥*" := (Forall2 ()) (at level 70) : C_scope.
Notation "(⊥*)" := (Forall2 ()) (only parsing) : C_scope.
Infix "⊥**" := (Forall2 (*)) (at level 70) : C_scope.
Infix "⊥1*" := (Forall2 (λ p q, p.1  q.1)) (at level 70) : C_scope.
Infix "⊥2*" := (Forall2 (λ p q, p.2  q.2)) (at level 70) : C_scope.
Infix "⊥1**" := (Forall2 (λ p q, p.1 * q.1)) (at level 70) : C_scope.
Infix "⊥2**" := (Forall2 (λ p q, p.2 * q.2)) (at level 70) : C_scope.
Hint Extern 0 (_  _) => symmetry; eassumption.
Hint Extern 0 (_ * _) => symmetry; eassumption.

Class DisjointE E A := disjointE : E  A  A  Prop.
Instance: Params (@disjointE) 4.
Notation "X ⊥{ Γ } Y" := (disjointE Γ X Y)
  (at level 70, format "X  ⊥{ Γ }  Y") : C_scope.
Notation "(⊥{ Γ } )" := (disjointE Γ) (only parsing, Γ at level 1) : C_scope.
Notation "Xs ⊥{ Γ }* Ys" := (Forall2 ({Γ}) Xs Ys)
  (at level 70, format "Xs  ⊥{ Γ }*  Ys") : C_scope.
Notation "(⊥{ Γ }* )" := (Forall2 ({Γ}))
  (only parsing, Γ at level 1) : C_scope.
Notation "X ⊥{ Γ1 , Γ2 , .. , Γ3 } Y" := (disjoint (pair .. (Γ1, Γ2) .. Γ3) X Y)
  (at level 70, format "X  ⊥{ Γ1 , Γ2 , .. , Γ3 }  Y") : C_scope.
Notation "Xs ⊥{ Γ1 , Γ2 , .. , Γ3 }* Ys" :=
  (Forall2 (disjoint (pair .. (Γ1, Γ2) .. Γ3)) Xs Ys)
  (at level 70, format "Xs  ⊥{ Γ1 ,  Γ2 , .. , Γ3 }*  Ys") : C_scope.
Hint Extern 0 (_ {_} _) => symmetry; eassumption.
343
344
345

Class DisjointList A := disjoint_list : list A  Prop.
Instance: Params (@disjoint_list) 2.
346
Notation "⊥ Xs" := (disjoint_list Xs) (at level 20, format "⊥  Xs") : C_scope.
347

348
349
350
351
352
353
Section disjoint_list.
  Context `{Disjoint A, Union A, Empty A}.
  Inductive disjoint_list_default : DisjointList A :=
    | disjoint_nil_2 :  (@nil A)
    | disjoint_cons_2 (X : A) (Xs : list A) : X   Xs   Xs   (X :: Xs).
  Global Existing Instance disjoint_list_default.
354

355
  Lemma disjoint_list_nil  :  @nil A  True.
356
357
358
  Proof. split; constructor. Qed.
  Lemma disjoint_list_cons X Xs :  (X :: Xs)  X   Xs   Xs.
  Proof. split. inversion_clear 1; auto. intros [??]. constructor; auto. Qed.
359
End disjoint_list.
360
361

Class Filter A B := filter:  (P : A  Prop) `{ x, Decision (P x)}, B  B.
362
363
364

(** ** Monadic operations *)
(** We define operational type classes for the monadic operations bind, join 
365
366
367
and fmap. We use these type classes merely for convenient overloading of
notations and do not formalize any theory on monads (we do not even define a
class with the monad laws). *)
368
369
Class MRet (M : Type  Type) := mret:  {A}, A  M A.
Arguments mret {_ _ _} _.
370
Instance: Params (@mret) 3.
371
372
Class MBind (M : Type  Type) := mbind :  {A B}, (A  M B)  M A  M B.
Arguments mbind {_ _ _ _} _ !_ /.
373
Instance: Params (@mbind) 4.
374
Class MJoin (M : Type  Type) := mjoin:  {A}, M (M A)  M A.
375
Arguments mjoin {_ _ _} !_ /.
376
Instance: Params (@mjoin) 3.
377
378
Class FMap (M : Type  Type) := fmap :  {A B}, (A  B)  M A  M B.
Arguments fmap {_ _ _ _} _ !_ /.
379
Instance: Params (@fmap) 4.
380
381
Class OMap (M : Type  Type) := omap:  {A B}, (A  option B)  M A  M B.
Arguments omap {_ _ _ _} _ !_ /.
382
Instance: Params (@omap) 4.
383

384
385
386
387
388
389
Notation "m ≫= f" := (mbind f m) (at level 60, right associativity) : C_scope.
Notation "( m ≫=)" := (λ f, mbind f m) (only parsing) : C_scope.
Notation "(≫= f )" := (mbind f) (only parsing) : C_scope.
Notation "(≫=)" := (λ m f, mbind f m) (only parsing) : C_scope.

Notation "x ← y ; z" := (y = (λ x : _, z))
Robbert Krebbers's avatar
Robbert Krebbers committed
390
  (at level 65, only parsing, right associativity) : C_scope.
391
Infix "<$>" := fmap (at level 60, right associativity) : C_scope.
392
Notation "' ( x1 , x2 ) ← y ; z" :=
393
  (y = (λ x : _, let ' (x1, x2) := x in z))
Robbert Krebbers's avatar
Robbert Krebbers committed
394
  (at level 65, only parsing, right associativity) : C_scope.
395
Notation "' ( x1 , x2 , x3 ) ← y ; z" :=
396
  (y = (λ x : _, let ' (x1,x2,x3) := x in z))
Robbert Krebbers's avatar
Robbert Krebbers committed
397
  (at level 65, only parsing, right associativity) : C_scope.
398
Notation "' ( x1 , x2 , x3  , x4 ) ← y ; z" :=
399
  (y = (λ x : _, let ' (x1,x2,x3,x4) := x in z))
Robbert Krebbers's avatar
Robbert Krebbers committed
400
  (at level 65, only parsing, right associativity) : C_scope.
401
402
Notation "' ( x1 , x2 , x3  , x4 , x5 ) ← y ; z" :=
  (y = (λ x : _, let ' (x1,x2,x3,x4,x5) := x in z))
Robbert Krebbers's avatar
Robbert Krebbers committed
403
  (at level 65, only parsing, right associativity) : C_scope.
404
405
Notation "' ( x1 , x2 , x3  , x4 , x5 , x6 ) ← y ; z" :=
  (y = (λ x : _, let ' (x1,x2,x3,x4,x5,x6) := x in z))
Robbert Krebbers's avatar
Robbert Krebbers committed
406
  (at level 65, only parsing, right associativity) : C_scope.
407

408
409
410
411
412
Notation "ps .*1" := (fmap (M:=list) fst ps)
  (at level 10, format "ps .*1").
Notation "ps .*2" := (fmap (M:=list) snd ps)
  (at level 10, format "ps .*2").

413
Class MGuard (M : Type  Type) :=
414
415
416
  mguard:  P {dec : Decision P} {A}, (P  M A)  M A.
Arguments mguard _ _ _ !_ _ _ /.
Notation "'guard' P ; o" := (mguard P (λ _, o))
Robbert Krebbers's avatar
Robbert Krebbers committed
417
  (at level 65, only parsing, right associativity) : C_scope.
418
Notation "'guard' P 'as' H ; o" := (mguard P (λ H, o))
Robbert Krebbers's avatar
Robbert Krebbers committed
419
  (at level 65, only parsing, right associativity) : C_scope.
420

421
(** ** Operations on maps *)
422
423
(** In this section we define operational type classes for the operations
on maps. In the file [fin_maps] we will axiomatize finite maps.
424
The function look up [m !! k] should yield the element at key [k] in [m]. *)
425
Class Lookup (K A M : Type) := lookup: K  M  option A.
426
427
428
Instance: Params (@lookup) 4.
Notation "m !! i" := (lookup i m) (at level 20) : C_scope.
Notation "(!!)" := lookup (only parsing) : C_scope.
429
Notation "( m !!)" := (λ i, m !! i) (only parsing) : C_scope.
430
Notation "(!! i )" := (lookup i) (only parsing) : C_scope.
431
Arguments lookup _ _ _ _ !_ !_ / : simpl nomatch.
432

433
434
435
436
437
(** The singleton map *)
Class SingletonM K A M := singletonM: K  A  M.
Instance: Params (@singletonM) 5.
Notation "{[ x ↦ y ]}" := (singletonM x y) (at level 1) : C_scope.

438
439
(** The function insert [<[k:=a]>m] should update the element at key [k] with
value [a] in [m]. *)
440
Class Insert (K A M : Type) := insert: K  A  M  M.
Robbert Krebbers's avatar
Robbert Krebbers committed
441
Instance: Params (@insert) 5.
442
443
Notation "<[ k := a ]>" := (insert k a)
  (at level 5, right associativity, format "<[ k := a ]>") : C_scope.
444
Arguments insert _ _ _ _ !_ _ !_ / : simpl nomatch.
445

446
447
448
(** The function delete [delete k m] should delete the value at key [k] in
[m]. If the key [k] is not a member of [m], the original map should be
returned. *)
449
Class Delete (K M : Type) := delete: K  M  M.
Robbert Krebbers's avatar
Robbert Krebbers committed
450
Instance: Params (@delete) 4.
451
Arguments delete _ _ _ !_ !_ / : simpl nomatch.
452
453

(** The function [alter f k m] should update the value at key [k] using the
454
function [f], which is called with the original value. *)
455
Class Alter (K A M : Type) := alter: (A  A)  K  M  M.
456
Instance: Params (@alter) 5.
457
Arguments alter {_ _ _ _} _ !_ !_ / : simpl nomatch.
458
459

(** The function [alter f k m] should update the value at key [k] using the
460
461
462
function [f], which is called with the original value at key [k] or [None]
if [k] is not a member of [m]. The value at [k] should be deleted if [f] 
yields [None]. *)
463
464
Class PartialAlter (K A M : Type) :=
  partial_alter: (option A  option A)  K  M  M.
465
Instance: Params (@partial_alter) 4.
466
Arguments partial_alter _ _ _ _ _ !_ !_ / : simpl nomatch.
467
468
469

(** The function [dom C m] should yield the domain of [m]. That is a finite
collection of type [C] that contains the keys that are a member of [m]. *)
470
471
472
Class Dom (M C : Type) := dom: M  C.
Instance: Params (@dom) 3.
Arguments dom {_} _ {_} !_ / : simpl nomatch, clear implicits.
473
474

(** The function [merge f m1 m2] should merge the maps [m1] and [m2] by
475
476
477
478
479
constructing a new map whose value at key [k] is [f (m1 !! k) (m2 !! k)].*)
Class Merge (M : Type  Type) :=
  merge:  {A B C}, (option A  option B  option C)  M A  M B  M C.
Instance: Params (@merge) 4.
Arguments merge _ _ _ _ _ _ !_ !_ / : simpl nomatch.
480

481
482
483
484
485
(** The function [union_with f m1 m2] is supposed to yield the union of [m1]
and [m2] using the function [f] to combine values of members that are in
both [m1] and [m2]. *)
Class UnionWith (A M : Type) :=
  union_with: (A  A  option A)  M  M  M.
486
Instance: Params (@union_with) 3.
487
Arguments union_with {_ _ _} _ !_ !_ / : simpl nomatch.
488

489
490
491
(** Similarly for intersection and difference. *)
Class IntersectionWith (A M : Type) :=
  intersection_with: (A  A  option A)  M  M  M.
492
Instance: Params (@intersection_with) 3.
493
494
Arguments intersection_with {_ _ _} _ !_ !_ / : simpl nomatch.

495
496
Class DifferenceWith (A M : Type) :=
  difference_with: (A  A  option A)  M  M  M.
497
Instance: Params (@difference_with) 3.
498
Arguments difference_with {_ _ _} _ !_ !_ / : simpl nomatch.
Robbert Krebbers's avatar
Robbert Krebbers committed
499

500
501
502
503
Definition intersection_with_list `{IntersectionWith A M}
  (f : A  A  option A) : M  list M  M := fold_right (intersection_with f).
Arguments intersection_with_list _ _ _ _ _ !_ /.

504
505
506
507
508
509
510
511
Class LookupE (E K A M : Type) := lookupE: E  K  M  option A.
Instance: Params (@lookupE) 6.
Notation "m !!{ Γ } i" := (lookupE Γ i m)
  (at level 20, format "m  !!{ Γ }  i") : C_scope.
Notation "(!!{ Γ } )" := (lookupE Γ) (only parsing, Γ at level 1) : C_scope.
Arguments lookupE _ _ _ _ _ _ !_ !_ / : simpl nomatch.

Class InsertE (E K A M : Type) := insertE: E  K  A  M  M.
Robbert Krebbers's avatar
Robbert Krebbers committed
512
Instance: Params (@insertE) 6.
513
514
515
516
Notation "<[ k := a ]{ Γ }>" := (insertE Γ k a)
  (at level 5, right associativity, format "<[ k := a ]{ Γ }>") : C_scope.
Arguments insertE _ _ _ _ _ _ !_ _ !_ / : simpl nomatch.

517
518
519
(** ** Common properties *)
(** These operational type classes allow us to refer to common mathematical
properties in a generic way. For example, for injectivity of [(k ++)] it
520
521
522
523
allows us to write [inj (k ++)] instead of [app_inv_head k]. *)
Class Inj {A B} (R : relation A) (S : relation B) (f : A  B) : Prop :=
  inj x y : S (f x) (f y)  R x y.
Class Inj2 {A B C} (R1 : relation A) (R2 : relation B)
524
    (S : relation C) (f : A  B  C) : Prop :=
525
  inj2 x1 x2 y1 y2 : S (f x1 x2) (f y1 y2)  R1 x1 y1  R2 x2 y2.
526
Class Cancel {A B} (S : relation B) (f : A  B) (g : B  A) : Prop :=
527
528
529
530
531
532
533
  cancel :  x, S (f (g x)) x.
Class Surj {A B} (R : relation B) (f : A  B) :=
  surj y :  x, R (f x) y.
Class IdemP {A} (R : relation A) (f : A  A  A) : Prop :=
  idemp x : R (f x x) x.
Class Comm {A B} (R : relation A) (f : B  B  A) : Prop :=
  comm x y : R (f x y) (f y x).
534
Class LeftId {A} (R : relation A) (i : A) (f : A  A  A) : Prop :=
535
  left_id x : R (f i x) x.
536
Class RightId {A} (R : relation A) (i : A) (f : A  A  A) : Prop :=
537
538
539
  right_id x : R (f x i) x.
Class Assoc {A} (R : relation A) (f : A  A  A) : Prop :=
  assoc x y z : R (f x (f y z)) (f (f x y) z).
540
Class LeftAbsorb {A} (R : relation A) (i : A) (f : A  A  A) : Prop :=
541
  left_absorb x : R (f i x) i.
542
Class RightAbsorb {A} (R : relation A) (i : A) (f : A  A  A) : Prop :=
543
544
545
  right_absorb x : R (f x i) i.
Class AntiSymm {A} (R S : relation A) : Prop :=
  anti_symm x y : S x y  S y x  R x y.
546
547
Class Total {A} (R : relation A) := total x y : R x y  R y x.
Class Trichotomy {A} (R : relation A) :=
548
  trichotomy x y : R x y  x = y  R y x.
549
Class TrichotomyT {A} (R : relation A) :=
550
  trichotomyT x y : {R x y} + {x = y} + {R y x}.
Robbert Krebbers's avatar
Robbert Krebbers committed
551

552
Arguments irreflexivity {_} _ {_} _ _.
553
554
Arguments inj {_ _ _ _} _ {_} _ _ _.
Arguments inj2 {_ _ _ _ _ _} _ {_} _ _ _ _ _.
555
Arguments cancel {_ _ _} _ _ {_} _.
556
557
558
Arguments surj {_ _ _} _ {_} _.
Arguments idemp {_ _} _ {_} _.
Arguments comm {_ _ _} _ {_} _ _.
Robbert Krebbers's avatar
Robbert Krebbers committed
559
560
Arguments left_id {_ _} _ _ {_} _.
Arguments right_id {_ _} _ _ {_} _.
561
Arguments assoc {_ _} _ {_} _ _ _.
562
563
Arguments left_absorb {_ _} _ _ {_} _.
Arguments right_absorb {_ _} _ _ {_} _.
564
Arguments anti_symm {_ _} _ {_} _ _ _ _.
565
566
567
Arguments total {_} _ {_} _ _.
Arguments trichotomy {_} _ {_} _ _.
Arguments trichotomyT {_} _ {_} _ _.
568

569
Instance id_inj {A} : Inj (=) (=) (@id A).
570
571
Proof. intros ??; auto. Qed.

572
573
574
(** The following lemmas are specific versions of the projections of the above
type classes for Leibniz equality. These lemmas allow us to enforce Coq not to
use the setoid rewriting mechanism. *)
575
Lemma idemp_L {A} (f : A  A  A) `{!IdemP (=) f} x : f x x = x.
576
Proof. auto. Qed.
577
Lemma comm_L {A B} (f : B  B  A) `{!Comm (=) f} x y :
578
  f x y = f y x.
579
Proof. auto. Qed.
580
Lemma left_id_L {A} (i : A) (f : A  A  A) `{!LeftId (=) i f} x : f i x = x.
581
Proof. auto. Qed.
582
Lemma right_id_L {A} (i : A) (f : A  A  A) `{!RightId (=) i f} x : f x i = x.
583
Proof. auto. Qed.
584
Lemma assoc_L {A} (f : A  A  A) `{!Assoc (=) f} x y z :
585
  f x (f y z) = f (f x y) z.
586
Proof. auto. Qed.
587
Lemma left_absorb_L {A} (i : A) (f : A  A  A) `{!LeftAbsorb (=) i f} x :
588
589
  f i x = i.
Proof. auto. Qed.
590
Lemma right_absorb_L {A} (i : A) (f : A  A  A) `{!RightAbsorb (=) i f} x :
591
592
  f x i = i.
Proof. auto. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
593

594
(** ** Axiomatization of ordered structures *)
595
596
(** The classes [PreOrder], [PartialOrder], and [TotalOrder] use an arbitrary
relation [R] instead of [⊆] to support multiple orders on the same type. *)
597
Class PartialOrder {A} (R : relation A) : Prop := {
598
  partial_order_pre :> PreOrder R;
599
  partial_order_anti_symm :> AntiSymm (=) R
600
601
}.
Class TotalOrder {A} (R : relation A) : Prop := {
602
603
  total_order_partial :> PartialOrder R;
  total_order_trichotomy :> Trichotomy (strict R)
604
605
}.

606
607
608
609
610
611
(** We do not use a setoid equality in the following interfaces to avoid the
need for proofs that the relations and operations are proper. Instead, we
define setoid equality generically [λ X Y, X ⊆ Y ∧ Y ⊆ X]. *)
Class EmptySpec A `{Empty A, SubsetEq A} : Prop := subseteq_empty X :   X.
Class JoinSemiLattice A `{SubsetEq A, Union A} : Prop := {
  join_semi_lattice_pre :>> PreOrder ();
612
613
614
  union_subseteq_l X Y : X  X  Y;
  union_subseteq_r X Y : Y  X  Y;
  union_least X Y Z : X  Z  Y  Z  X  Y  Z
Robbert Krebbers's avatar
Robbert Krebbers committed
615
}.
616
617
Class MeetSemiLattice A `{SubsetEq A, Intersection A} : Prop := {
  meet_semi_lattice_pre :>> PreOrder ();
618
619
620
  intersection_subseteq_l X Y : X  Y  X;
  intersection_subseteq_r X Y : X  Y  Y;
  intersection_greatest X Y Z : Z  X  Z  Y  Z  X  Y
Robbert Krebbers's avatar
Robbert Krebbers committed
621
}.
622
623
624
625
Class Lattice A `{SubsetEq A, Union A, Intersection A} : Prop := {
  lattice_join :>> JoinSemiLattice A;
  lattice_meet :>> MeetSemiLattice A;
  lattice_distr X Y Z : (X  Y)  (X  Z)  X  (Y  Z)
626
}.
627

628
(** ** Axiomatization of collections *)
629
630
(** The class [SimpleCollection A C] axiomatizes a collection of type [C] with
elements of type [A]. *)
631
Instance: Params (@map) 3.
632
633
Class SimpleCollection A C `{ElemOf A C,
    Empty C, Singleton A C, Union C} : Prop := {
634
  not_elem_of_empty (x : A) : x  ;
635
  elem_of_singleton (x y : A) : x  {[ y ]}  x = y;
636
637
  elem_of_union X Y (x : A) : x  X  Y  x  X  x  Y
}.
638
639
Class Collection A C `{ElemOf A C, Empty C, Singleton A C,
    Union C, Intersection C, Difference C} : Prop := {
640
  collection_simple :>> SimpleCollection A C;
Robbert Krebbers's avatar
Robbert Krebbers committed
641
  elem_of_intersection X Y (x : A) : x  X  Y  x  X  x  Y;
642
643
  elem_of_difference X Y (x : A) : x  X  Y  x  X  x  Y
}.
644
645
Class CollectionOps A C `{ElemOf A C, Empty C, Singleton A C, Union C,
    Intersection C, Difference C, IntersectionWith A C, Filter A C} : Prop := {
646
  collection_ops :>> Collection A C;
647
  elem_of_intersection_with (f : A  A  option A) X Y (x : A) :
648
    x  intersection_with f X Y   x1 x2, x1  X  x2  Y  f x1 x2 = Some x;
649
  elem_of_filter X P `{ x, Decision (P x)} x : x  filter P X  P x  x  X
Robbert Krebbers's avatar
Robbert Krebbers committed
650
651
}.

652
653
654
(** We axiomative a finite collection as a collection whose elements can be
enumerated as a list. These elements, given by the [elements] function, may be
in any order and should not contain duplicates. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
655
Class Elements A C := elements: C  list A.
656
Instance: Params (@elements) 3.
657
658
659
660
661
662
663
664
665
666
667
668
669

(** We redefine the standard library's [In] and [NoDup] using type classes. *)
Inductive elem_of_list {A} : ElemOf A (list A) :=
  | elem_of_list_here (x : A) l : x  x :: l
  | elem_of_list_further (x y : A) l : x  l  x  y :: l.
Existing Instance elem_of_list.

Inductive NoDup {A} : list A  Prop :=
  | NoDup_nil_2 : NoDup []
  | NoDup_cons_2 x l : x  l  NoDup l  NoDup (x :: l).

(** Decidability of equality of the carrier set is admissible, but we add it
anyway so as to avoid cycles in type class search. *)
670
671
672
Class FinCollection A C `{ElemOf A C, Empty C, Singleton A C,
    Union C, Intersection C, Difference C,
    Elements A C,  x y : A, Decision (x = y)} : Prop := {
Robbert Krebbers's avatar
Robbert Krebbers committed
673
  fin_collection :>> Collection A C;
674
675
  elem_of_elements X x : x  elements X  x  X;
  NoDup_elements X : NoDup (elements X)
676
677
}.
Class Size C := size: C  nat.
678
Arguments size {_ _} !_ / : simpl nomatch.
679
Instance: Params (@size) 2.
Robbert Krebbers's avatar
Robbert Krebbers committed
680

681
682
683
684
685
686
687
688
(** The class [Collection M] axiomatizes a type constructor [M] that can be
used to construct a collection [M A] with elements of type [A]. The advantage
of this class, compared to [Collection], is that it also axiomatizes the
the monadic operations. The disadvantage, is that not many inhabits are
possible (we will only provide an inhabitant using unordered lists without
duplicates removed). More interesting implementations typically need
decidability of equality, or a total order on the elements, which do not fit
in a type constructor of type [Type → Type]. *)
689
690
691
Class CollectionMonad M `{ A, ElemOf A (M A),
     A, Empty (M A),  A, Singleton A (M A),  A, Union (M A),
    !MBind M, !MRet M, !FMap M, !MJoin M} : Prop := {
692
693
694
  collection_monad_simple A :> SimpleCollection A (M A);
  elem_of_bind {A B} (f : A  M B) (X : M A) (x : B) :
    x  X = f   y, x  f y  y  X;
695
  elem_of_ret {A} (x y : A) : x  mret y  x = y;
696
697
  elem_of_fmap {A B} (f : A  B) (X : M A) (x : B) :
    x  f <$> X   y, x = f y  y  X;
698
  elem_of_join {A} (X : M (M A)) (x : A) : x  mjoin X   Y, x  Y  Y  X
699
700
}.

701
702
703
(** The function [fresh X] yields an element that is not contained in [X]. We
will later prove that [fresh] is [Proper] with respect to the induced setoid
equality on collections. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
704
Class Fresh A C := fresh: C  A.
705
Instance: Params (@fresh) 3.
706
707
Class FreshSpec A C `{ElemOf A C,
    Empty C, Singleton A C, Union C, Fresh A C} : Prop := {
708
  fresh_collection_simple :>> SimpleCollection A C;
709
  fresh_proper_alt X Y : ( x, x  X  x  Y)  fresh X = fresh Y;
Robbert Krebbers's avatar
Robbert Krebbers committed
710
711
712
  is_fresh (X : C) : fresh X  X
}.

713
714
715
(** * Booleans *)
(** The following coercion allows us to use Booleans as propositions. *)
Coercion Is_true : bool >-> Sortclass.
716
Hint Unfold Is_true.
717
Hint Immediate Is_true_eq_left.
718
Hint Resolve orb_prop_intro andb_prop_intro.
719
720
721
722
723
724
725
726
727
728
729
Notation "(&&)" := andb (only parsing).
Notation "(||)" := orb (only parsing).
Infix "&&*" := (zip_with (&&)) (at level 40).
Infix "||*" := (zip_with (||)) (at level 50).

Definition bool_le (β1 β2 : bool) : Prop := negb β1 || β2.
Infix "=.>" := bool_le (at level 70).
Infix "=.>*" := (Forall2 bool_le) (at level 70).
Instance: PartialOrder bool_le.
Proof. repeat split; repeat intros [|]; compute; tauto. Qed.

730
731
732
733
734
735
736
737
738
Lemma andb_True b1 b2 : b1 && b2  b1  b2.
Proof. destruct b1, b2; simpl; tauto. Qed.
Lemma orb_True b1 b2 : b1 || b2  b1  b2.
Proof. destruct b1, b2; simpl; tauto. Qed.
Lemma negb_True b : negb b  ¬b.
Proof. destruct b; simpl; tauto. Qed.
Lemma Is_true_false (b : bool) : b = false  ¬b.
Proof. now intros -> ?. Qed.