base.v 19.2 KB
Newer Older
1
2
3
4
5
6
(* Copyright (c) 2012, Robbert Krebbers. *)
(* This file is distributed under the terms of the BSD license. *)
(** This file collects type class interfaces, notations, and general theorems
that are used throughout the whole development. Most importantly it contains
abstract interfaces for ordered structures, collections, and various other data
structures. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
7
8
9
10
Global Generalizable All Variables.
Global Set Automatic Coercions Import.
Require Export Morphisms RelationClasses List Bool Utf8 Program Setoid NArith.

11
12
13
14
15
(** * General *)
(** The following coercion allows us to use Booleans as propositions. *)
Coercion Is_true : bool >-> Sortclass.

(** Ensure that [simpl] unfolds [id] and [compose] when fully applied. *)
16
17
18
Arguments id _ _/.
Arguments compose _ _ _ _ _ _ /.

19
20
21
22
(** Change [True] and [False] into notations in order to enable overloading.
We will use this in the file [assertions] to give [True] and [False] a
different interpretation in [assert_scope] used for assertions of our axiomatic
semantics. *)
23
24
Notation "'True'" := True : type_scope.
Notation "'False'" := False : type_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
25

26
27
(** Throughout this development we use [C_scope] for all general purpose
notations that do not belong to a more specific scope. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
28
29
30
Delimit Scope C_scope with C.
Global Open Scope C_scope.

31
(** Introduce some Haskell style like notations. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
32
33
34
35
36
37
38
39
40
Notation "(=)" := eq (only parsing) : C_scope.
Notation "( x =)" := (eq x) (only parsing) : C_scope.
Notation "(= x )" := (λ y, eq y x) (only parsing) : C_scope.
Notation "(≠)" := (λ x y, x  y) (only parsing) : C_scope.
Notation "( x ≠)" := (λ y, x  y) (only parsing) : C_scope.
Notation "(≠ x )" := (λ y, y  x) (only parsing) : C_scope.

Hint Extern 0 (?x = ?x) => reflexivity.

41
42
43
Notation "(→)" := (λ x y, x  y) (only parsing) : C_scope.
Notation "( T →)" := (λ y, T  y) (only parsing) : C_scope.
Notation "(→ T )" := (λ y, y  T) (only parsing) : C_scope.
44
Notation "t $ r" := (t r)
45
  (at level 65, right associativity, only parsing) : C_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
46
47
48
49
Infix "∘" := compose : C_scope.
Notation "(∘)" := compose (only parsing) : C_scope.
Notation "( f ∘)" := (compose f) (only parsing) : C_scope.
Notation "(∘ f )" := (λ g, compose g f) (only parsing) : C_scope.
50
51
52

(** Set convenient implicit arguments for [existT] and introduce notations. *)
Arguments existT {_ _} _ _.
Robbert Krebbers's avatar
Robbert Krebbers committed
53
54
55
Notation "x ↾ p" := (exist _ x p) (at level 20) : C_scope.
Notation "` x" := (proj1_sig x) : C_scope.

56
57
58
59
(** * Type classes *)
(** ** Provable propositions *)
(** This type class collects provable propositions. It is useful to constraint
type classes by arbitrary propositions. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
60
61
Class PropHolds (P : Prop) := prop_holds: P.

62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
Hint Extern 0 (PropHolds _) => assumption : typeclass_instances.
Instance: Proper (iff ==> iff) PropHolds.
Proof. now repeat intro. Qed.

Ltac solve_propholds :=
  match goal with
  | [ |- PropHolds (?P) ] => apply _
  | [ |- ?P ] => change (PropHolds P); apply _
  end.

(** ** Decidable propositions *)
(** This type class by (Spitters/van der Weegen, 2011) collects decidable
propositions. For example to declare a parameter expressing decidable equality
on a type [A] we write [`{∀ x y : A, Decision (x = y)}] and use it by writing
[decide (x = y)]. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
77
78
79
Class Decision (P : Prop) := decide : {P} + {¬P}.
Arguments decide _ {_}.

80
81
82
(** ** Setoid equality *)
(** We define an operational type class for setoid equality. This is based on
(Spitters/van der Weegen, 2011). *)
Robbert Krebbers's avatar
Robbert Krebbers committed
83
84
85
86
87
88
89
90
91
92
Class Equiv A := equiv: relation A.
Infix "≡" := equiv (at level 70, no associativity) : C_scope.
Notation "(≡)" := equiv (only parsing) : C_scope.
Notation "( x ≡)" := (equiv x) (only parsing) : C_scope.
Notation "(≡ x )" := (λ y, y  x) (only parsing) : C_scope.
Notation "(≢)" := (λ x y, ¬x  y) (only parsing) : C_scope.
Notation "x ≢ y":= (¬x  y) (at level 70, no associativity) : C_scope.
Notation "( x ≢)" := (λ y, x  y) (only parsing) : C_scope.
Notation "(≢ x )" := (λ y, y  x) (only parsing) : C_scope.

93
94
95
96
97
98
99
100
(** A [Params f n] instance forces the setoid rewriting mechanism not to
rewrite in the first [n] arguments of the function [f]. We will declare such
instances for all operational type classes in this development. *)
Instance: Params (@equiv) 2.

(** The following instance forces [setoid_replace] to use setoid equality
(for types that have an [Equiv] instance) rather than the standard Leibniz
equality. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
101
102
103
Instance equiv_default_relation `{Equiv A} : DefaultRelation () | 3.
Hint Extern 0 (?x  ?x) => reflexivity.

104
105
106
107
108
(** ** Operations on collections *)
(** We define operational type classes for the standard operations and
relations on collections: the empty collection [∅], the union [(∪)],
intersection [(∩)], difference [(∖)], and the singleton [{[_]}]
operation, and the subset [(⊆)] and element of [(∈)] relation. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
109
110
111
112
Class Empty A := empty: A.
Notation "∅" := empty : C_scope.

Class Union A := union: A  A  A.
113
Instance: Params (@union) 2.
Robbert Krebbers's avatar
Robbert Krebbers committed
114
115
116
117
118
119
Infix "∪" := union (at level 50, left associativity) : C_scope.
Notation "(∪)" := union (only parsing) : C_scope.
Notation "( x ∪)" := (union x) (only parsing) : C_scope.
Notation "(∪ x )" := (λ y, union y x) (only parsing) : C_scope.

Class Intersection A := intersection: A  A  A.
120
Instance: Params (@intersection) 2.
Robbert Krebbers's avatar
Robbert Krebbers committed
121
122
123
124
125
126
Infix "∩" := intersection (at level 40) : C_scope.
Notation "(∩)" := intersection (only parsing) : C_scope.
Notation "( x ∩)" := (intersection x) (only parsing) : C_scope.
Notation "(∩ x )" := (λ y, intersection y x) (only parsing) : C_scope.

Class Difference A := difference: A  A  A.
127
Instance: Params (@difference) 2.
Robbert Krebbers's avatar
Robbert Krebbers committed
128
129
130
131
132
Infix "∖" := difference (at level 40) : C_scope.
Notation "(∖)" := difference (only parsing) : C_scope.
Notation "( x ∖)" := (difference x) (only parsing) : C_scope.
Notation "(∖ x )" := (λ y, difference y x) (only parsing) : C_scope.

133
134
135
136
137
138
Class Singleton A B := singleton: A  B.
Instance: Params (@singleton) 3.
Notation "{[ x ]}" := (singleton x) : C_scope.
Notation "{[ x ; y ; .. ; z ]}" :=
  (union .. (union (singleton x) (singleton y)) .. (singleton z)) : C_scope.

Robbert Krebbers's avatar
Robbert Krebbers committed
139
Class SubsetEq A := subseteq: A  A  Prop.
140
Instance: Params (@subseteq) 2.
Robbert Krebbers's avatar
Robbert Krebbers committed
141
142
143
144
145
146
147
148
149
150
151
152
Infix "⊆" := subseteq (at level 70) : C_scope.
Notation "(⊆)" := subseteq (only parsing) : C_scope.
Notation "( X ⊆ )" := (subseteq X) (only parsing) : C_scope.
Notation "( ⊆ X )" := (λ Y, subseteq Y X) (only parsing) : C_scope.
Notation "X ⊈ Y" := (¬X  Y) (at level 70) : C_scope.
Notation "(⊈)" := (λ X Y, X  Y) (only parsing) : C_scope.
Notation "( X ⊈ )" := (λ Y, X  Y) (only parsing) : C_scope.
Notation "( ⊈ X )" := (λ Y, Y  X) (only parsing) : C_scope.

Hint Extern 0 (?x  ?x) => reflexivity.

Class ElemOf A B := elem_of: A  B  Prop.
153
Instance: Params (@elem_of) 3.
Robbert Krebbers's avatar
Robbert Krebbers committed
154
155
156
157
158
159
160
161
162
Infix "∈" := elem_of (at level 70) : C_scope.
Notation "(∈)" := elem_of (only parsing) : C_scope.
Notation "( x ∈)" := (elem_of x) (only parsing) : C_scope.
Notation "(∈ X )" := (λ x, elem_of x X) (only parsing) : C_scope.
Notation "x ∉ X" := (¬x  X) (at level 80) : C_scope.
Notation "(∉)" := (λ x X, x  X) (only parsing) : C_scope.
Notation "( x ∉)" := (λ X, x  X) (only parsing) : C_scope.
Notation "(∉ X )" := (λ x, x  X) (only parsing) : C_scope.

163
(** ** Operations on maps *)
164
165
(** In this section we define operational type classes for the operations
on maps. In the file [fin_maps] we will axiomatize finite maps.
166
The function lookup [m !! k] should yield the element at key [k] in [m]. *)
167
168
Class Lookup (K : Type) (M : Type  Type) :=
  lookup:  {A}, K  M A  option A.
169
170
171
172
173
174
175
176
177
Instance: Params (@lookup) 4.

Notation "m !! i" := (lookup i m) (at level 20) : C_scope.
Notation "(!!)" := lookup (only parsing) : C_scope.
Notation "( m !!)" := (λ i, lookup i m) (only parsing) : C_scope.
Notation "(!! i )" := (lookup i) (only parsing) : C_scope.

(** The function insert [<[k:=a]>m] should update the element at key [k] with
value [a] in [m]. *)
178
Class Insert (K : Type) (M : Type  Type) :=
179
180
181
182
183
  insert:  {A}, K  A  M A  M A.
Instance: Params (@insert) 4.
Notation "<[ k := a ]>" := (insert k a)
  (at level 5, right associativity, format "<[ k := a ]>") : C_scope.

184
185
186
187
188
189
(** The function delete [delete k m] should delete the value at key [k] in
[m]. If the key [k] is not a member of [m], the original map should be
returned. *)
Class Delete (K : Type) (M : Type  Type) :=
  delete:  {A}, K  M A  M A.
Instance: Params (@delete) 4.
190
191

(** The function [alter f k m] should update the value at key [k] using the
192
193
function [f], which is called with the original value. *)
Class Alter (K : Type) (M : Type  Type) :=
194
195
196
197
  alter:  {A}, (A  A)  K  M A  M A.
Instance: Params (@alter) 4.

(** The function [alter f k m] should update the value at key [k] using the
198
199
200
201
function [f], which is called with the original value at key [k] or [None]
if [k] is not a member of [m]. The value at [k] should be deleted if [f] 
yields [None]. *)
Class PartialAlter (K : Type) (M : Type  Type) :=
202
203
204
205
206
  partial_alter:  {A}, (option A  option A)  K  M A  M A.
Instance: Params (@partial_alter) 4.

(** The function [dom C m] should yield the domain of [m]. That is a finite
collection of type [C] that contains the keys that are a member of [m]. *)
207
208
209
Class Dom (K : Type) (M : Type  Type) :=
  dom:  {A} C `{Empty C} `{Union C} `{Singleton K C}, M A  C.
Instance: Params (@dom) 8.
210
211
212
213

(** The function [merge f m1 m2] should merge the maps [m1] and [m2] by
constructing a new map whose value at key [k] is [f (m1 !! k) (m2 !! k)]
provided that [k] is a member of either [m1] or [m2].*)
214
Class Merge (M : Type  Type) :=
215
216
217
218
219
220
221
  merge:  {A}, (option A  option A  option A)  M A  M A  M A.
Instance: Params (@merge) 3.

(** We lift the insert and delete operation to lists of elements. *)
Definition insert_list `{Insert K M} {A} (l : list (K * A)) (m : M A) : M A :=
  fold_right (λ p, <[ fst p := snd p ]>) m l.
Instance: Params (@insert_list) 4.
222
Definition delete_list `{Delete K M} {A} (l : list K) (m : M A) : M A :=
223
  fold_right delete m l.
224
Instance: Params (@delete_list) 4.
225
226
227
228

(** The function [union_with f m1 m2] should yield the union of [m1] and [m2]
using the function [f] to combine values of members that are in both [m1] and
[m2]. *)
229
Class UnionWith (M : Type  Type) :=
230
  union_with:  {A}, (A  A  A)  M A  M A  M A.
231
232
233
Instance: Params (@union_with) 3.

(** Similarly for the intersection and difference. *)
234
Class IntersectionWith (M : Type  Type) :=
235
  intersection_with:  {A}, (A  A  A)  M A  M A  M A.
236
Instance: Params (@intersection_with) 3.
237
Class DifferenceWith (M : Type  Type) :=
238
  difference_with:  {A}, (A  A  option A)  M A  M A  M A.
239
Instance: Params (@difference_with) 3.
Robbert Krebbers's avatar
Robbert Krebbers committed
240

241
242
243
244
(** ** Common properties *)
(** These operational type classes allow us to refer to common mathematical
properties in a generic way. For example, for injectivity of [(k ++)] it
allows us to write [injective (k ++)] instead of [app_inv_head k]. *)
245
246
247
248
249
250
251
252
253
254
255
256
Class Injective {A B} R S (f : A  B) :=
  injective:  x y : A, S (f x) (f y)  R x y.
Class Idempotent {A} R (f : A  A  A) :=
  idempotent:  x, R (f x x) x.
Class Commutative {A B} R (f : B  B  A) :=
  commutative:  x y, R (f x y) (f y x).
Class LeftId {A} R (i : A) (f : A  A  A) :=
  left_id:  x, R (f i x) x.
Class RightId {A} R (i : A) (f : A  A  A) :=
  right_id:  x, R (f x i) x.
Class Associative {A} R (f : A  A  A) :=
  associative:  x y z, R (f x (f y z)) (f (f x y) z).
Robbert Krebbers's avatar
Robbert Krebbers committed
257
258
259
260
261
262
263
264

Arguments injective {_ _ _ _} _ {_} _ _ _.
Arguments idempotent {_ _} _ {_} _.
Arguments commutative {_ _ _} _ {_} _ _.
Arguments left_id {_ _} _ _ {_} _.
Arguments right_id {_ _} _ _ {_} _.
Arguments associative {_ _} _ {_} _ _ _.

265
266
267
(** The following lemmas are more specific versions of the projections of the
above type classes. These lemmas allow us to enforce Coq not to use the setoid
rewriting mechanism. *)
268
269
Lemma idempotent_eq {A} (f : A  A  A) `{!Idempotent (=) f} x :
  f x x = x.
270
Proof. auto. Qed.
271
272
Lemma commutative_eq {A B} (f : B  B  A) `{!Commutative (=) f} x y :
  f x y = f y x.
273
Proof. auto. Qed.
274
275
Lemma left_id_eq {A} (i : A) (f : A  A  A) `{!LeftId (=) i f} x :
  f i x = x.
276
Proof. auto. Qed.
277
278
Lemma right_id_eq {A} (i : A) (f : A  A  A) `{!RightId (=) i f} x :
  f x i = x.
279
Proof. auto. Qed.
280
281
Lemma associative_eq {A} (f : A  A  A) `{!Associative (=) f} x y z :
  f x (f y z) = f (f x y) z.
282
283
Proof. auto. Qed.

284
285
286
287
(** ** Monadic operations *)
(** We do use the operation type classes for monads merely for convenient
overloading of notations and do not formalize any theory on monads (we do not
define a class with the monad laws). *)
Robbert Krebbers's avatar
Robbert Krebbers committed
288
289
290
291
292
293
294
295
296
Section monad_ops.
  Context (M : Type  Type).

  Class MRet := mret:  {A}, A  M A.
  Class MBind := mbind:  {A B}, (A  M B)  M A  M B.
  Class MJoin := mjoin:  {A}, M (M A)  M A.
  Class FMap := fmap:  {A B}, (A  B)  M A  M B.
End monad_ops.

297
Instance: Params (@mret) 3.
Robbert Krebbers's avatar
Robbert Krebbers committed
298
Arguments mret {M MRet A} _.
299
Instance: Params (@mbind) 4.
Robbert Krebbers's avatar
Robbert Krebbers committed
300
Arguments mbind {M MBind A B} _ _.
301
Instance: Params (@mjoin) 3.
Robbert Krebbers's avatar
Robbert Krebbers committed
302
Arguments mjoin {M MJoin A} _.
303
Instance: Params (@fmap) 4.
Robbert Krebbers's avatar
Robbert Krebbers committed
304
305
306
Arguments fmap {M FMap A B} _ _.

Notation "m ≫= f" := (mbind f m) (at level 60, right associativity) : C_scope.
307
308
Notation "x ← y ; z" := (y = (λ x : _, z))
  (at level 65, next at level 35, right associativity) : C_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
309
310
Infix "<$>" := fmap (at level 65, right associativity, only parsing) : C_scope.

311
312
(** ** Axiomatization of ordered structures *)
(** A pre-order equiped with a smallest element. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
313
314
315
316
317
Class BoundedPreOrder A `{Empty A} `{SubsetEq A} := {
  bounded_preorder :>> PreOrder ();
  subseteq_empty x :   x
}.

318
319
320
321
(** We do not include equality in the following interfaces so as to avoid the
need for proofs that the  relations and operations respect setoid equality.
Instead, we will define setoid equality in a generic way as
[λ X Y, X ⊆ Y ∧ Y ⊆ X]. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
322
323
324
325
326
327
328
329
330
331
332
333
334
Class BoundedJoinSemiLattice A `{Empty A} `{SubsetEq A} `{Union A} := {
  jsl_preorder :>> BoundedPreOrder A;
  subseteq_union_l x y : x  x  y;
  subseteq_union_r x y : y  x  y;
  union_least x y z : x  z  y  z  x  y  z
}.
Class MeetSemiLattice A `{Empty A} `{SubsetEq A} `{Intersection A} := {
  msl_preorder :>> BoundedPreOrder A;
  subseteq_intersection_l x y : x  y  x;
  subseteq_intersection_r x y : x  y  y;
  intersection_greatest x y z : z  x  z  y  z  x  y
}.

335
336
337
338
(** ** Axiomatization of collections *)
(** The class [Collection A C] axiomatizes a collection of type [C] with
elements of type [A]. Since [C] is not dependent on [A], we use the monomorphic
[Map] type class instead of the polymorphic [FMap]. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
339
Class Map A C := map: (A  A)  (C  C).
340
341
Instance: Params (@map) 3.
Class Collection A C `{ElemOf A C} `{Empty C} `{Union C}
Robbert Krebbers's avatar
Robbert Krebbers committed
342
    `{Intersection C} `{Difference C} `{Singleton A C} `{Map A C} := {
343
  not_elem_of_empty (x : A) : x  ;
344
  elem_of_singleton (x y : A) : x  {[ y ]}  x = y;
Robbert Krebbers's avatar
Robbert Krebbers committed
345
346
347
348
349
350
  elem_of_union X Y (x : A) : x  X  Y  x  X  x  Y;
  elem_of_intersection X Y (x : A) : x  X  Y  x  X  x  Y;
  elem_of_difference X Y (x : A) : x  X  Y  x  X  x  Y;
  elem_of_map f X (x : A) : x  map f X   y, x = f y  y  X
}.

351
352
353
(** We axiomative a finite collection as a collection whose elements can be
enumerated as a list. These elements, given by the [elements] function, may be
in any order and should not contain duplicates. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
354
Class Elements A C := elements: C  list A.
355
356
Instance: Params (@elements) 3.
Class FinCollection A C `{Empty C} `{Union C} `{Intersection C} `{Difference C}
Robbert Krebbers's avatar
Robbert Krebbers committed
357
358
359
360
    `{Singleton A C} `{ElemOf A C} `{Map A C} `{Elements A C} := {
  fin_collection :>> Collection A C;
  elements_spec X x : x  X  In x (elements X);
  elements_nodup X : NoDup (elements X)
361
362
363
}.
Class Size C := size: C  nat.
Instance: Params (@size) 2.
Robbert Krebbers's avatar
Robbert Krebbers committed
364

365
366
367
(** The function [fresh X] yields an element that is not contained in [X]. We
will later prove that [fresh] is [Proper] with respect to the induced setoid
equality on collections. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
368
Class Fresh A C := fresh: C  A.
369
Instance: Params (@fresh) 3.
Robbert Krebbers's avatar
Robbert Krebbers committed
370
Class FreshSpec A C `{!Fresh A C} `{!ElemOf A C} := {
371
  fresh_proper_alt X Y : ( x, x  X  x  Y)  fresh X = fresh Y;
Robbert Krebbers's avatar
Robbert Krebbers committed
372
373
374
  is_fresh (X : C) : fresh X  X
}.

375
376
377
378
(** * Miscellaneous *)
Lemma proj1_sig_inj {A} (P : A  Prop) x (Px : P x) y (Py : P y) :
  xPx = yPy  x = y.
Proof. now injection 1. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
379

380
381
382
383
Lemma symmetry_iff `(R : relation A) `{!Symmetric R} (x y : A) :
  R x y  R y x.
Proof. intuition. Qed.

384
385
386
(** ** Pointwise relations *)
(** These instances are in Coq trunk since revision 15455, but are not in Coq
8.4 yet. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
387
388
389
390
391
392
393
394
395
396
Instance pointwise_reflexive {A} `{R : relation B} :
  Reflexive R  Reflexive (pointwise_relation A R) | 9.
Proof. firstorder. Qed.
Instance pointwise_symmetric {A} `{R : relation B} :
  Symmetric R  Symmetric (pointwise_relation A R) | 9.
Proof. firstorder. Qed.
Instance pointwise_transitive {A} `{R : relation B} :
  Transitive R  Transitive (pointwise_relation A R) | 9.
Proof. firstorder. Qed.

397
(** ** Products *)
398
399
400
401
402
403
Definition fst_map {A A' B} (f : A  A') (p : A * B) : A' * B :=
  (f (fst p), snd p).
Definition snd_map {A B B'} (f : B  B') (p : A * B) : A * B' :=
  (fst p, f (snd p)).
Definition prod_relation {A B} (R1 : relation A) (R2 : relation B) :
  relation (A * B) := λ x y, R1 (fst x) (fst y)  R2 (snd x) (snd y).
Robbert Krebbers's avatar
Robbert Krebbers committed
404
405
406

Section prod_relation.
  Context `{R1 : relation A} `{R2 : relation B}.
407
408
  Global Instance:
    Reflexive R1  Reflexive R2  Reflexive (prod_relation R1 R2).
Robbert Krebbers's avatar
Robbert Krebbers committed
409
  Proof. firstorder eauto. Qed.
410
411
  Global Instance:
    Symmetric R1  Symmetric R2  Symmetric (prod_relation R1 R2).
Robbert Krebbers's avatar
Robbert Krebbers committed
412
  Proof. firstorder eauto. Qed.
413
414
  Global Instance:
    Transitive R1  Transitive R2  Transitive (prod_relation R1 R2).
Robbert Krebbers's avatar
Robbert Krebbers committed
415
  Proof. firstorder eauto. Qed.
416
417
  Global Instance:
    Equivalence R1  Equivalence R2  Equivalence (prod_relation R1 R2).
Robbert Krebbers's avatar
Robbert Krebbers committed
418
419
420
421
422
423
424
425
426
  Proof. split; apply _. Qed.
  Global Instance: Proper (R1 ==> R2 ==> prod_relation R1 R2) pair.
  Proof. firstorder eauto. Qed.
  Global Instance: Proper (prod_relation R1 R2 ==> R1) fst.
  Proof. firstorder eauto. Qed.
  Global Instance: Proper (prod_relation R1 R2 ==> R2) snd.
  Proof. firstorder eauto. Qed.
End prod_relation.

427
(** ** Other *)
428
429
Definition lift_relation {A B} (R : relation A)
  (f : B  A) : relation B := λ x y, R (f x) (f y).
Robbert Krebbers's avatar
Robbert Krebbers committed
430
431
432
Definition lift_relation_equivalence {A B} (R : relation A) (f : B  A) :
  Equivalence R  Equivalence (lift_relation R f).
Proof. unfold lift_relation. firstorder. Qed.
433
434
Hint Extern 0 (Equivalence (lift_relation _ _)) =>
  eapply @lift_relation_equivalence : typeclass_instances.
Robbert Krebbers's avatar
Robbert Krebbers committed
435
436
437
438
439
440
441
442
443
444
445
446
447
448

Instance:  A B (x : B), Commutative (=) (λ _ _ : A, x).
Proof. easy. Qed.
Instance:  A (x : A), Associative (=) (λ _ _ : A, x).
Proof. easy. Qed.
Instance:  A, Associative (=) (λ x _ : A, x).
Proof. easy. Qed.
Instance:  A, Associative (=) (λ _ x : A, x).
Proof. easy. Qed.
Instance:  A, Idempotent (=) (λ x _ : A, x).
Proof. easy. Qed.
Instance:  A, Idempotent (=) (λ _ x : A, x).
Proof. easy. Qed.

449
450
Instance left_id_propholds {A} (R : relation A) i f :
  LeftId R i f   x, PropHolds (R (f i x) x).
Robbert Krebbers's avatar
Robbert Krebbers committed
451
Proof. easy. Qed.
452
453
Instance right_id_propholds {A} (R : relation A) i f :
  RightId R i f   x, PropHolds (R (f x i) x).
Robbert Krebbers's avatar
Robbert Krebbers committed
454
Proof. easy. Qed.
455
456
Instance idem_propholds {A} (R : relation A) f :
  Idempotent R f   x, PropHolds (R (f x x) x).
Robbert Krebbers's avatar
Robbert Krebbers committed
457
Proof. easy. Qed.