fin_maps.v 11.5 KB
Newer Older
Robbert Krebbers's avatar
Robbert Krebbers committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
Require Export prelude.

Class FinMap K M `{ A, Empty (M A)} `{Lookup K M} `{FMap M} 
    `{PartialAlter K M} `{ A, Dom K (M A)} `{Merge M} := {
  finmap_eq {A} (m1 m2 : M A) : ( i, m1 !! i = m2 !! i)  m1 = m2;
  lookup_empty {A} i : ( : M A) !! i = None;
  lookup_partial_alter {A} f (m : M A) i : partial_alter f i m !! i = f (m !! i);
  lookup_partial_alter_ne {A} f (m : M A) i j : i  j  partial_alter f i m !! j = m !! j;
  lookup_fmap {A B} (f : A  B) (m : M A) i : (f <$> m) !! i = f <$> m !! i;
  elem_of_dom C {A} `{Collection K C} (m : M A) i : i  dom C m  is_Some (m !! i);
  merge_spec {A} f `{!PropHolds (f None None = None)} 
    (m1 m2 : M A) i : merge f m1 m2 !! i = f (m1 !! i) (m2 !! i)
}.

Instance finmap_alter `{PartialAlter K M} : Alter K M := λ A f, partial_alter (fmap f).
Instance finmap_insert `{PartialAlter K M} : Insert K M := λ A k x, partial_alter (λ _, Some x) k.
Instance finmap_delete `{PartialAlter K M} {A} : Delete K (M A) := partial_alter (λ _, None).
Instance finmap_singleton `{PartialAlter K M} {A} `{Empty (M A)} : Singleton (K * A) (M A) := λ p,
  partial_alter (λ _, Some (snd p)) (fst p) .

Definition insert_list `{Insert K M} {A} (l : list (K * A)) (m : M A) : M A := fold_right (λ p, <[ fst p := snd p ]>) m l.

Instance finmap_union `{Merge M} : UnionWith M := λ A f, merge (union_with f).
Instance finmap_intersect `{Merge M} : IntersectWith M := λ A f, merge (intersect_with f).

Section finmap.
  Context `{FinMap K M} `{ i j : K, Decision (i = j)} {A : Type}.

  Global Instance finmap_subseteq: SubsetEq (M A) := λ m n,  i x, m !! i = Some x  n !! i = Some x.
  Global Instance: BoundedPreOrder (M A).
  Proof. split. firstorder. intros m i x. rewrite lookup_empty. discriminate. Qed.

  Lemma not_elem_of_dom C `{Collection K C} (m : M A) i : i  dom C m  m !! i = None.
  Proof. now rewrite (elem_of_dom C), eq_None_not_Some. Qed.

  Lemma finmap_empty (m : M A) : ( i, m !! i = None)  m = .
  Proof. intros Hm. apply finmap_eq. intros. now rewrite Hm, lookup_empty. Qed.
  Lemma dom_empty C `{Collection K C} : dom C ( : M A)  .
  Proof. split; intro. rewrite (elem_of_dom C), lookup_empty. simplify_is_Some. simplify_elem_of. Qed.
  Lemma dom_empty_inv C `{Collection K C} (m : M A) : dom C m    m = .
  Proof. intros E. apply finmap_empty. intros. apply (not_elem_of_dom C). rewrite E. simplify_elem_of. Qed.

  Lemma lookup_empty_not i : ¬is_Some (( : M A) !! i).
  Proof. rewrite lookup_empty. simplify_is_Some. Qed.
  Lemma lookup_empty_Some i (x : A) : ¬ !! i = Some x.
  Proof. rewrite lookup_empty. discriminate. Qed.

  Lemma lookup_singleton i (x : A) : {{ (i, x) }} !! i = Some x.
  Proof. unfold singleton, finmap_singleton. apply lookup_partial_alter. Qed.
  Lemma lookup_singleton_ne i j (x : A) : i  j  {{ (i, x) }} !! j = None.
  Proof.
    unfold singleton, finmap_singleton.
    intros. rewrite <-(lookup_empty j). now apply lookup_partial_alter_ne.
  Qed.
  Lemma lookup_ne (m : M A) i j : m !! i  m !! j  i  j.
  Proof. congruence. Qed.

  Lemma partial_alter_compose (m : M A) i f g :
    partial_alter (f  g) i m = partial_alter f i (partial_alter g i m).
  Proof.
    intros. apply finmap_eq. intros ii. case (decide (i = ii)).
     intros. subst. now rewrite !lookup_partial_alter.
    intros. now rewrite !lookup_partial_alter_ne.
  Qed.
  Lemma partial_alter_comm (m : M A) i j f g :
    i  j  partial_alter f i (partial_alter g j m) = partial_alter g j (partial_alter f i m).
  Proof.
    intros. apply finmap_eq. intros jj. case (decide (jj = j)).
     intros. subst. now rewrite lookup_partial_alter_ne, !lookup_partial_alter, lookup_partial_alter_ne.
    intros. case (decide (jj = i)).
     intros. subst. now rewrite lookup_partial_alter, !lookup_partial_alter_ne, lookup_partial_alter by congruence.
    intros. now rewrite !lookup_partial_alter_ne by congruence.
  Qed.
  Lemma partial_alter_self_alt (m : M A) i x :
    x = m !! i  partial_alter (λ _, x) i m = m.
  Proof.
    intros. apply finmap_eq. intros ii. case (decide (i = ii)).
     intros. subst. now rewrite lookup_partial_alter.
    intros. now rewrite lookup_partial_alter_ne.
  Qed.
  Lemma partial_alter_self (m : M A) i : partial_alter (λ _, m !! i) i m = m.
  Proof. now apply partial_alter_self_alt. Qed.

  Lemma lookup_insert (m : M A) i x : <[ i := x ]> m !! i = Some x.
  Proof. unfold insert. apply lookup_partial_alter. Qed.
  Lemma lookup_insert_rev (m : M A) i x y : <[ i := x ]> m !! i = Some y  x = y.
  Proof. rewrite lookup_insert. congruence. Qed.
  Lemma lookup_insert_ne (m : M A) i j x : i  j  <[ i := x ]> m !! j = m !! j.
  Proof. unfold insert. apply lookup_partial_alter_ne. Qed.
  Lemma insert_comm (m : M A) i j x y : i  j  <[ i := x ]>(<[ j := y ]>m) = <[ j := y ]>(<[ i := x ]>m).
  Proof. apply partial_alter_comm. Qed.

  Lemma lookup_delete (m : M A) i : delete i m !! i = None.
  Proof. apply lookup_partial_alter. Qed.
  Lemma lookup_delete_Some (m : M A) i j : is_Some (delete i m !! j)  i  j.
  Proof. intros Hm ?. subst. rewrite lookup_delete in Hm. now apply None_not_is_Some in Hm. Qed.
  Lemma lookup_delete_ne (m : M A) i j : i  j  delete i m !! j = m !! j.
  Proof. apply lookup_partial_alter_ne. Qed.
99 100 101 102 103 104 105 106 107 108 109 110 111
  Lemma lookup_delete_None (m : M A) i j : m !! j = None  delete i m !! j = None.
  Proof.
    destruct (decide (i = j)).
     subst. now rewrite lookup_delete.
    now rewrite lookup_delete_ne.
  Qed.
  Lemma delete_lookup_None (m : M A) i : m !! i = None  delete i m = m.
  Proof.
    intros. apply finmap_eq. intros j. destruct (decide (i = j)).
     subst. rewrite lookup_delete. congruence.
    now apply lookup_delete_ne.
  Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
  Lemma delete_empty i : delete i ( : M A) = .
  Proof. rewrite <-(partial_alter_self ) at 2. now rewrite lookup_empty. Qed.
  Lemma delete_singleton i (x : A) : delete i {{ (i, x) }} = .
  Proof. setoid_rewrite <-partial_alter_compose. apply delete_empty. Qed.
  Lemma delete_comm (m : M A) i j : delete i (delete j m) = delete j (delete i m).
  Proof. destruct (decide (i = j)). now subst. now apply partial_alter_comm. Qed.
  Lemma delete_partial_alter (m : M A) i f : m !! i = None  delete i (partial_alter f i m) = m.
  Proof.
    intros. unfold delete, finmap_delete. rewrite <-partial_alter_compose. 
    rapply partial_alter_self_alt. congruence.
  Qed.
  Lemma delete_partial_alter_dom C `{Collection K C} (m : M A) i f : 
    i  dom C m  delete i (partial_alter f i m) = m.
  Proof. rewrite (not_elem_of_dom C). apply delete_partial_alter. Qed.
  Lemma delete_insert (m : M A) i x : m !! i = None  delete i (<[i := x]>m) = m.
  Proof. apply delete_partial_alter. Qed.
  Lemma delete_insert_dom C `{Collection K C} (m : M A) i x : i  dom C m  delete i (<[i := x]>m) = m.
  Proof. rewrite (not_elem_of_dom C). apply delete_partial_alter. Qed.
  Lemma insert_delete (m : M A) i x : m !! i = Some x  <[i := x]>(delete i m) = m.
  Proof.
    intros Hmi. unfold delete, finmap_delete, insert, finmap_insert.
    rewrite <-partial_alter_compose. unfold compose. rewrite <-Hmi.
    now apply partial_alter_self_alt.
  Qed.

  Lemma elem_of_dom_delete C `{Collection K C} (m : M A) i j : i  dom C (delete j m)  i  j  i  dom C m.
  Proof.
    rewrite !(elem_of_dom C). split.
     intros. assert (j  i) by (eapply lookup_delete_Some; eauto).
     erewrite <-lookup_delete_ne; eauto.
    intros [??]. now rewrite lookup_delete_ne by congruence.
  Qed.
  Lemma not_elem_of_dom_delete C `{Collection K C} (m : M A) i : i  dom C (delete i m).
  Proof. apply (not_elem_of_dom C), lookup_delete. Qed.

  Lemma finmap_ind C (P : M A  Prop) `{FinCollection K C} :
    P   ( i x m, i  dom C m  P m  P (<[ i := x ]>m))   m, P m.
  Proof.
    intros Hemp Hinsert.
    intros m. apply (collection_ind (λ X,  m, dom C m  X  P m)) with (dom C m).
       solve_proper.
      clear m. intros m Hm. rewrite finmap_empty. easy.
      intros. rewrite <-(not_elem_of_dom C), Hm. now simplify_elem_of.
     clear m. intros i X Hi IH m Hdom.
     assert (is_Some (m !! i)) as [x Hx].
      apply (elem_of_dom C). rewrite Hdom. clear Hdom. now simplify_elem_of.
     rewrite <-(insert_delete m i x) by easy. apply Hinsert.
      now apply (not_elem_of_dom_delete C).
     apply IH. apply elem_of_equiv. intros.
     rewrite (elem_of_dom_delete C). rewrite Hdom.
     clear Hdom. simplify_elem_of.
    easy.
  Qed.

  Section merge.
    Context (f : option A  option A  option A).

    Global Instance: LeftId (=) None f  LeftId (=)  (merge f).
    Proof.
      intros ??. apply finmap_eq. intros.
      now rewrite !(merge_spec f), lookup_empty, (left_id None f).
    Qed.
    Global Instance: RightId (=) None f  RightId (=)  (merge f).
    Proof.
      intros ??. apply finmap_eq. intros.
      now rewrite !(merge_spec f), lookup_empty, (right_id None f).
    Qed.
    Global Instance: Idempotent (=) f  Idempotent (=) (merge f).
    Proof. intros ??. apply finmap_eq. intros. now rewrite !(merge_spec f). Qed.

    Context `{!PropHolds (f None None = None)}.

    Lemma merge_spec_alt m1 m2 m :
      ( i, m !! i = f (m1 !! i) (m2 !! i))  merge f m1 m2 = m.
    Proof.
      split; [| intro; subst; apply (merge_spec _) ].
      intros Hlookup. apply finmap_eq. intros. rewrite Hlookup.
      apply (merge_spec _).
    Qed.

    Lemma merge_comm m1 m2 :
      ( i, f (m1 !! i) (m2 !! i) = f (m2 !! i) (m1 !! i))  merge f m1 m2 = merge f m2 m1.
    Proof. intros. apply finmap_eq. intros. now rewrite !(merge_spec f). Qed.
    Global Instance: Commutative (=) f  Commutative (=) (merge f).
    Proof. intros ???. apply merge_comm. intros. now apply (commutative f). Qed.

    Lemma merge_assoc m1 m2 m3 :
      ( i, f (m1 !! i) (f (m2 !! i) (m3 !! i)) = f (f (m1 !! i) (m2 !! i)) (m3 !! i))  
      merge f m1 (merge f m2 m3) = merge f (merge f m1 m2) m3.
    Proof. intros. apply finmap_eq. intros. now rewrite !(merge_spec f). Qed.
    Global Instance: Associative (=) f  Associative (=) (merge f).
    Proof. intros ????. apply merge_assoc. intros. now apply (associative f). Qed.
  End merge.

  Section union_intersect.
    Context (f : A  A  A).

    Lemma finmap_union_merge m1 m2 i x y :
      m1 !! i = Some x  m2 !! i = Some y  union_with f m1 m2 !! i = Some (f x y).
    Proof. intros Hx Hy. unfold union_with, finmap_union. now rewrite (merge_spec _), Hx, Hy. Qed.   
    Lemma finmap_union_l m1 m2 i x :
      m1 !! i = Some x  m2 !! i = None  union_with f m1 m2 !! i = Some x.
    Proof. intros Hx Hy. unfold union_with, finmap_union. now rewrite (merge_spec _), Hx, Hy. Qed.
    Lemma finmap_union_r m1 m2 i y :
      m1 !! i = None  m2 !! i = Some y  union_with f m1 m2 !! i = Some y.
    Proof. intros Hx Hy. unfold union_with, finmap_union. now rewrite (merge_spec _), Hx, Hy. Qed.
    Lemma finmap_union_None m1 m2 i :
      union_with f m1 m2 !! i = None  m1 !! i = None  m2 !! i = None.
    Proof.
      unfold union_with, finmap_union. rewrite (merge_spec _).
      destruct (m1 !! i), (m2 !! i); compute; intuition congruence.
    Qed.

    Global Instance: LeftId (=)  (union_with f : M A  M A  M A) := _.
    Global Instance: RightId (=)  (union_with f : M A  M A  M A) := _.
    Global Instance: Commutative (=) f  Commutative (=) (union_with f : M A  M A  M A) := _.
    Global Instance: Associative (=) f  Associative (=) (union_with f : M A  M A  M A) := _.
    Global Instance: Idempotent (=) f  Idempotent (=) (union_with f : M A  M A  M A) := _.
  End union_intersect.
End finmap.