fin_maps.v 71.6 KB
Newer Older
1
(* Copyright (c) 2012-2017, Robbert Krebbers. *)
2 3 4
(* This file is distributed under the terms of the BSD license. *)
(** Finite maps associate data to keys. This file defines an interface for
finite maps and collects some theory on it. Most importantly, it proves useful
5
induction principles for finite maps and implements the tactic
6
[simplify_map_eq] to simplify goals involving finite maps. *)
7
From Coq Require Import Permutation.
8
From stdpp Require Export relations orders vector.
9 10
(* FIXME: This file needs a 'Proof Using' hint, but the default we use
   everywhere makes for lots of extra ssumptions. *)
11

12 13
(** * Axiomatization of finite maps *)
(** We require Leibniz equality to be extensional on finite maps. This of
14 15 16 17 18
course limits the space of finite map implementations, but since we are mainly
interested in finite maps with numbers as indexes, we do not consider this to
be a serious limitation. The main application of finite maps is to implement
the memory, where extensionality of Leibniz equality is very important for a
convenient use in the assertions of our axiomatic semantics. *)
19

Robbert Krebbers's avatar
Robbert Krebbers committed
20 21
(** Finiteness is axiomatized by requiring that each map can be translated
to an association list. The translation to association lists is used to
22
prove well founded recursion on finite maps. *)
23

24 25 26
(** Finite map implementations are required to implement the [merge] function
which enables us to give a generic implementation of [union_with],
[intersection_with], and [difference_with]. *)
27

28
Class FinMapToList K A M := map_to_list: M  list (K * A).
Robbert Krebbers's avatar
Robbert Krebbers committed
29

30 31
Class FinMap K M `{FMap M,  A, Lookup K A (M A),  A, Empty (M A),  A,
    PartialAlter K A (M A), OMap M, Merge M,  A, FinMapToList K A (M A),
32
    EqDecision K} := {
33 34
  map_eq {A} (m1 m2 : M A) : ( i, m1 !! i = m2 !! i)  m1 = m2;
  lookup_empty {A} i : ( : M A) !! i = None;
35 36 37 38
  lookup_partial_alter {A} f (m : M A) i :
    partial_alter f i m !! i = f (m !! i);
  lookup_partial_alter_ne {A} f (m : M A) i j :
    i  j  partial_alter f i m !! j = m !! j;
39
  lookup_fmap {A B} (f : A  B) (m : M A) i : (f <$> m) !! i = f <$> m !! i;
40
  NoDup_map_to_list {A} (m : M A) : NoDup (map_to_list m);
41 42
  elem_of_map_to_list {A} (m : M A) i x :
    (i,x)  map_to_list m  m !! i = Some x;
43
  lookup_omap {A B} (f : A  option B) m i : omap f m !! i = m !! i = f;
44
  lookup_merge {A B C} (f: option A  option B  option C) `{!DiagNone f} m1 m2 i :
45
    merge f m1 m2 !! i = f (m1 !! i) (m2 !! i)
Robbert Krebbers's avatar
Robbert Krebbers committed
46 47
}.

48 49 50
(** * Derived operations *)
(** All of the following functions are defined in a generic way for arbitrary
finite map implementations. These generic implementations do not cause a
51 52
significant performance loss to make including them in the finite map interface
worthwhile. *)
53 54 55 56 57 58 59 60 61 62
Instance map_insert `{PartialAlter K A M} : Insert K A M :=
  λ i x, partial_alter (λ _, Some x) i.
Instance map_alter `{PartialAlter K A M} : Alter K A M :=
  λ f, partial_alter (fmap f).
Instance map_delete `{PartialAlter K A M} : Delete K M :=
  partial_alter (λ _, None).
Instance map_singleton `{PartialAlter K A M, Empty M} :
  SingletonM K A M := λ i x, <[i:=x]> .

Definition map_of_list `{Insert K A M, Empty M} : list (K * A)  M :=
63
  fold_right (λ p, <[p.1:=p.2]>) .
64 65
Definition map_of_collection `{Elements K C, Insert K A M, Empty M}
    (f : K  option A) (X : C) : M :=
66
  map_of_list (omap (λ i, (i,) <$> f i) (elements X)).
Robbert Krebbers's avatar
Robbert Krebbers committed
67

68 69 70 71 72 73
Instance map_union_with `{Merge M} {A} : UnionWith A (M A) :=
  λ f, merge (union_with f).
Instance map_intersection_with `{Merge M} {A} : IntersectionWith A (M A) :=
  λ f, merge (intersection_with f).
Instance map_difference_with `{Merge M} {A} : DifferenceWith A (M A) :=
  λ f, merge (difference_with f).
Robbert Krebbers's avatar
Robbert Krebbers committed
74

75
Instance map_equiv `{ A, Lookup K A (M A), Equiv A} : Equiv (M A) | 18 :=
76
  λ m1 m2,  i, m1 !! i  m2 !! i.
Robbert Krebbers's avatar
Robbert Krebbers committed
77

78 79
(** The relation [intersection_forall R] on finite maps describes that the
relation [R] holds for each pair in the intersection. *)
80
Definition map_Forall `{Lookup K A M} (P : K  A  Prop) : M  Prop :=
Robbert Krebbers's avatar
Robbert Krebbers committed
81
  λ m,  i x, m !! i = Some x  P i x.
82
Definition map_relation `{ A, Lookup K A (M A)} {A B} (R : A  B  Prop)
Robbert Krebbers's avatar
Robbert Krebbers committed
83 84
    (P : A  Prop) (Q : B  Prop) (m1 : M A) (m2 : M B) : Prop :=  i,
  option_relation R P Q (m1 !! i) (m2 !! i).
85
Definition map_included `{ A, Lookup K A (M A)} {A}
Robbert Krebbers's avatar
Robbert Krebbers committed
86
  (R : relation A) : relation (M A) := map_relation R (λ _, False) (λ _, True).
87
Definition map_disjoint `{ A, Lookup K A (M A)} {A} : relation (M A) :=
Robbert Krebbers's avatar
Robbert Krebbers committed
88 89 90 91 92
  map_relation (λ _ _, False) (λ _, True) (λ _, True).
Infix "⊥ₘ" := map_disjoint (at level 70) : C_scope.
Hint Extern 0 (_  _) => symmetry; eassumption.
Notation "( m ⊥ₘ.)" := (map_disjoint m) (only parsing) : C_scope.
Notation "(.⊥ₘ m )" := (λ m2, m2  m) (only parsing) : C_scope.
93
Instance map_subseteq `{ A, Lookup K A (M A)} {A} : SubsetEq (M A) :=
Robbert Krebbers's avatar
Robbert Krebbers committed
94
  map_included (=).
Robbert Krebbers's avatar
Robbert Krebbers committed
95 96 97 98 99

(** The union of two finite maps only has a meaningful definition for maps
that are disjoint. However, as working with partial functions is inconvenient
in Coq, we define the union as a total function. In case both finite maps
have a value at the same index, we take the value of the first map. *)
100
Instance map_union `{Merge M} {A} : Union (M A) := union_with (λ x _, Some x).
101 102 103
Instance map_intersection `{Merge M} {A} : Intersection (M A) :=
  intersection_with (λ x _, Some x).

104 105
(** The difference operation removes all values from the first map whose
index contains a value in the second map as well. *)
106
Instance map_difference `{Merge M} {A} : Difference (M A) :=
107
  difference_with (λ _ _, None).
Robbert Krebbers's avatar
Robbert Krebbers committed
108

109 110
(** A stronger variant of map that allows the mapped function to use the index
of the elements. Implemented by conversion to lists, so not very efficient. *)
111 112
Definition map_imap `{ A, Insert K A (M A),  A, Empty (M A),
     A, FinMapToList K A (M A)} {A B} (f : K  A  option B) (m : M A) : M B :=
113 114
  map_of_list (omap (λ ix, (fst ix,) <$> curry f ix) (map_to_list m)).

115 116 117 118
(** * Theorems *)
Section theorems.
Context `{FinMap K M}.

Robbert Krebbers's avatar
Robbert Krebbers committed
119 120
(** ** Setoids *)
Section setoid.
121
  Context `{Equiv A}.
122

123 124 125 126
  Lemma map_equiv_lookup_l (m1 m2 : M A) i x :
    m1  m2  m1 !! i = Some x   y, m2 !! i = Some y  x  y.
  Proof. generalize (equiv_Some_inv_l (m1 !! i) (m2 !! i) x); naive_solver. Qed.

127 128
  Global Instance map_equivalence :
    Equivalence (() : relation A)  Equivalence (() : relation (M A)).
Robbert Krebbers's avatar
Robbert Krebbers committed
129 130
  Proof.
    split.
131 132
    - by intros m i.
    - by intros m1 m2 ? i.
133
    - by intros m1 m2 m3 ?? i; trans (m2 !! i).
Robbert Krebbers's avatar
Robbert Krebbers committed
134
  Qed.
135 136
  Global Instance lookup_proper (i : K) :
    Proper (() ==> ()) (lookup (M:=M A) i).
Robbert Krebbers's avatar
Robbert Krebbers committed
137 138
  Proof. by intros m1 m2 Hm. Qed.
  Global Instance partial_alter_proper :
139
    Proper ((() ==> ()) ==> (=) ==> () ==> ()) (partial_alter (M:=M A)).
Robbert Krebbers's avatar
Robbert Krebbers committed
140 141 142 143 144 145
  Proof.
    by intros f1 f2 Hf i ? <- m1 m2 Hm j; destruct (decide (i = j)) as [->|];
      rewrite ?lookup_partial_alter, ?lookup_partial_alter_ne by done;
      try apply Hf; apply lookup_proper.
  Qed.
  Global Instance insert_proper (i : K) :
146
    Proper (() ==> () ==> ()) (insert (M:=M A) i).
Robbert Krebbers's avatar
Robbert Krebbers committed
147
  Proof. by intros ???; apply partial_alter_proper; [constructor|]. Qed.
148 149
  Global Instance singleton_proper k :
    Proper (() ==> ()) (singletonM k : A  M A).
150 151 152 153
  Proof.
    intros ???; apply insert_proper; [done|].
    intros ?. rewrite lookup_empty; constructor.
  Qed.
154 155
  Global Instance delete_proper (i : K) :
    Proper (() ==> ()) (delete (M:=M A) i).
Robbert Krebbers's avatar
Robbert Krebbers committed
156 157
  Proof. by apply partial_alter_proper; [constructor|]. Qed.
  Global Instance alter_proper :
158
    Proper ((() ==> ()) ==> (=) ==> () ==> ()) (alter (A:=A) (M:=M A)).
Robbert Krebbers's avatar
Robbert Krebbers committed
159 160 161 162
  Proof.
    intros ?? Hf; apply partial_alter_proper.
    by destruct 1; constructor; apply Hf.
  Qed.
163
  Lemma merge_ext f g `{!DiagNone f, !DiagNone g} :
Robbert Krebbers's avatar
Robbert Krebbers committed
164
    (() ==> () ==> ())%signature f g 
165
    (() ==> () ==> ())%signature (merge (M:=M) f) (merge g).
Robbert Krebbers's avatar
Robbert Krebbers committed
166 167 168 169
  Proof.
    by intros Hf ?? Hm1 ?? Hm2 i; rewrite !lookup_merge by done; apply Hf.
  Qed.
  Global Instance union_with_proper :
170
    Proper ((() ==> () ==> ()) ==> () ==> () ==>()) (union_with (M:=M A)).
Robbert Krebbers's avatar
Robbert Krebbers committed
171 172 173
  Proof.
    intros ?? Hf ?? Hm1 ?? Hm2 i; apply (merge_ext _ _); auto.
    by do 2 destruct 1; first [apply Hf | constructor].
174
  Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
175
  Global Instance map_leibniz `{!LeibnizEquiv A} : LeibnizEquiv (M A).
176
  Proof. intros m1 m2 Hm; apply map_eq; intros i. apply leibniz_equiv, Hm. Qed.
177 178
  Lemma map_equiv_empty (m : M A) : m    m = .
  Proof.
179 180 181
    split; [intros Hm; apply map_eq; intros i|intros ->].
    - generalize (Hm i). by rewrite lookup_empty, equiv_None.
    - intros ?. rewrite lookup_empty; constructor.
182
  Qed.
183 184 185 186 187
  Global Instance map_fmap_proper `{Equiv B} (f : A  B) :
    Proper (() ==> ()) f  Proper (() ==> ()) (fmap (M:=M) f).
  Proof.
    intros ? m m' ? k; rewrite !lookup_fmap. by apply option_fmap_proper.
  Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
188 189 190
End setoid.

(** ** General properties *)
191 192 193 194 195
Lemma map_eq_iff {A} (m1 m2 : M A) : m1 = m2   i, m1 !! i = m2 !! i.
Proof. split. by intros ->. apply map_eq. Qed.
Lemma map_subseteq_spec {A} (m1 m2 : M A) :
  m1  m2   i x, m1 !! i = Some x  m2 !! i = Some x.
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
196
  unfold subseteq, map_subseteq, map_relation. split; intros Hm i;
197 198
    specialize (Hm i); destruct (m1 !! i), (m2 !! i); naive_solver.
Qed.
199 200
Global Instance:  {A} (R : relation A), PreOrder R  PreOrder (map_included R).
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
201
  split; [intros m i; by destruct (m !! i); simpl|].
202
  intros m1 m2 m3 Hm12 Hm23 i; specialize (Hm12 i); specialize (Hm23 i).
203
  destruct (m1 !! i), (m2 !! i), (m3 !! i); simplify_eq/=;
204
    done || etrans; eauto.
205
Qed.
206
Global Instance: PartialOrder (() : relation (M A)).
207
Proof.
208 209 210
  split; [apply _|].
  intros m1 m2; rewrite !map_subseteq_spec.
  intros; apply map_eq; intros i; apply option_eq; naive_solver.
211 212 213
Qed.
Lemma lookup_weaken {A} (m1 m2 : M A) i x :
  m1 !! i = Some x  m1  m2  m2 !! i = Some x.
214
Proof. rewrite !map_subseteq_spec. auto. Qed.
215 216 217 218 219 220
Lemma lookup_weaken_is_Some {A} (m1 m2 : M A) i :
  is_Some (m1 !! i)  m1  m2  is_Some (m2 !! i).
Proof. inversion 1. eauto using lookup_weaken. Qed.
Lemma lookup_weaken_None {A} (m1 m2 : M A) i :
  m2 !! i = None  m1  m2  m1 !! i = None.
Proof.
221 222
  rewrite map_subseteq_spec, !eq_None_not_Some.
  intros Hm2 Hm [??]; destruct Hm2; eauto.
223 224
Qed.
Lemma lookup_weaken_inv {A} (m1 m2 : M A) i x y :
225 226
  m1 !! i = Some x  m1  m2  m2 !! i = Some y  x = y.
Proof. intros Hm1 ? Hm2. eapply lookup_weaken in Hm1; eauto. congruence. Qed.
227 228 229 230 231 232 233 234 235
Lemma lookup_ne {A} (m : M A) i j : m !! i  m !! j  i  j.
Proof. congruence. Qed.
Lemma map_empty {A} (m : M A) : ( i, m !! i = None)  m = .
Proof. intros Hm. apply map_eq. intros. by rewrite Hm, lookup_empty. Qed.
Lemma lookup_empty_is_Some {A} i : ¬is_Some (( : M A) !! i).
Proof. rewrite lookup_empty. by inversion 1. Qed.
Lemma lookup_empty_Some {A} i (x : A) : ¬ !! i = Some x.
Proof. by rewrite lookup_empty. Qed.
Lemma map_subset_empty {A} (m : M A) : m  .
236 237 238
Proof.
  intros [_ []]. rewrite map_subseteq_spec. intros ??. by rewrite lookup_empty.
Qed.
239 240
Lemma map_fmap_empty {A B} (f : A  B) : f <$> ( : M A) = .
Proof. by apply map_eq; intros i; rewrite lookup_fmap, !lookup_empty. Qed.
241 242

(** ** Properties of the [partial_alter] operation *)
243 244 245
Lemma partial_alter_ext {A} (f g : option A  option A) (m : M A) i :
  ( x, m !! i = x  f x = g x)  partial_alter f i m = partial_alter g i m.
Proof.
246 247
  intros. apply map_eq; intros j. by destruct (decide (i = j)) as [->|?];
    rewrite ?lookup_partial_alter, ?lookup_partial_alter_ne; auto.
248 249
Qed.
Lemma partial_alter_compose {A} f g (m : M A) i:
250 251
  partial_alter (f  g) i m = partial_alter f i (partial_alter g i m).
Proof.
252 253
  intros. apply map_eq. intros ii. by destruct (decide (i = ii)) as [->|?];
    rewrite ?lookup_partial_alter, ?lookup_partial_alter_ne.
254
Qed.
255
Lemma partial_alter_commute {A} f g (m : M A) i j :
256
  i  j  partial_alter f i (partial_alter g j m) =
257 258
    partial_alter g j (partial_alter f i m).
Proof.
259 260 261 262
  intros. apply map_eq; intros jj. destruct (decide (jj = j)) as [->|?].
  { by rewrite lookup_partial_alter_ne,
      !lookup_partial_alter, lookup_partial_alter_ne. }
  destruct (decide (jj = i)) as [->|?].
263
  - by rewrite lookup_partial_alter,
264
     !lookup_partial_alter_ne, lookup_partial_alter by congruence.
265
  - by rewrite !lookup_partial_alter_ne by congruence.
266 267 268 269
Qed.
Lemma partial_alter_self_alt {A} (m : M A) i x :
  x = m !! i  partial_alter (λ _, x) i m = m.
Proof.
270 271
  intros. apply map_eq. intros ii. by destruct (decide (i = ii)) as [->|];
    rewrite ?lookup_partial_alter, ?lookup_partial_alter_ne.
272
Qed.
273
Lemma partial_alter_self {A} (m : M A) i : partial_alter (λ _, m !! i) i m = m.
274
Proof. by apply partial_alter_self_alt. Qed.
275
Lemma partial_alter_subseteq {A} f (m : M A) i :
276
  m !! i = None  m  partial_alter f i m.
277 278 279 280
Proof.
  rewrite map_subseteq_spec. intros Hi j x Hj.
  rewrite lookup_partial_alter_ne; congruence.
Qed.
281
Lemma partial_alter_subset {A} f (m : M A) i :
282
  m !! i = None  is_Some (f (m !! i))  m  partial_alter f i m.
283
Proof.
284 285 286 287
  intros Hi Hfi. split; [by apply partial_alter_subseteq|].
  rewrite !map_subseteq_spec. inversion Hfi as [x Hx]. intros Hm.
  apply (Some_ne_None x). rewrite <-(Hm i x); [done|].
  by rewrite lookup_partial_alter.
288 289 290
Qed.

(** ** Properties of the [alter] operation *)
291 292
Lemma alter_ext {A} (f g : A  A) (m : M A) i :
  ( x, m !! i = Some x  f x = g x)  alter f i m = alter g i m.
293
Proof. intro. apply partial_alter_ext. intros [x|] ?; f_equal/=; auto. Qed.
294
Lemma lookup_alter {A} (f : A  A) m i : alter f i m !! i = f <$> m !! i.
295
Proof. unfold alter. apply lookup_partial_alter. Qed.
296
Lemma lookup_alter_ne {A} (f : A  A) m i j : i  j  alter f i m !! j = m !! j.
297
Proof. unfold alter. apply lookup_partial_alter_ne. Qed.
298 299 300 301 302 303 304 305 306
Lemma alter_compose {A} (f g : A  A) (m : M A) i:
  alter (f  g) i m = alter f i (alter g i m).
Proof.
  unfold alter, map_alter. rewrite <-partial_alter_compose.
  apply partial_alter_ext. by intros [?|].
Qed.
Lemma alter_commute {A} (f g : A  A) (m : M A) i j :
  i  j  alter f i (alter g j m) = alter g j (alter f i m).
Proof. apply partial_alter_commute. Qed.
307 308 309 310
Lemma lookup_alter_Some {A} (f : A  A) m i j y :
  alter f i m !! j = Some y 
    (i = j   x, m !! j = Some x  y = f x)  (i  j  m !! j = Some y).
Proof.
311
  destruct (decide (i = j)) as [->|?].
312
  - rewrite lookup_alter. naive_solver (simplify_option_eq; eauto).
313
  - rewrite lookup_alter_ne by done. naive_solver.
314 315 316 317
Qed.
Lemma lookup_alter_None {A} (f : A  A) m i j :
  alter f i m !! j = None  m !! j = None.
Proof.
318 319
  by destruct (decide (i = j)) as [->|?];
    rewrite ?lookup_alter, ?fmap_None, ?lookup_alter_ne.
320
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
321 322
Lemma alter_id {A} (f : A  A) m i :
  ( x, m !! i = Some x  f x = x)  alter f i m = m.
323
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
324
  intros Hi; apply map_eq; intros j; destruct (decide (i = j)) as [->|?].
325
  { rewrite lookup_alter; destruct (m !! j); f_equal/=; auto. }
Robbert Krebbers's avatar
Robbert Krebbers committed
326
  by rewrite lookup_alter_ne by done.
327 328 329 330 331 332 333 334 335 336 337
Qed.

(** ** Properties of the [delete] operation *)
Lemma lookup_delete {A} (m : M A) i : delete i m !! i = None.
Proof. apply lookup_partial_alter. Qed.
Lemma lookup_delete_ne {A} (m : M A) i j : i  j  delete i m !! j = m !! j.
Proof. apply lookup_partial_alter_ne. Qed.
Lemma lookup_delete_Some {A} (m : M A) i j y :
  delete i m !! j = Some y  i  j  m !! j = Some y.
Proof.
  split.
338
  - destruct (decide (i = j)) as [->|?];
339
      rewrite ?lookup_delete, ?lookup_delete_ne; intuition congruence.
340
  - intros [??]. by rewrite lookup_delete_ne.
341
Qed.
342 343 344
Lemma lookup_delete_is_Some {A} (m : M A) i j :
  is_Some (delete i m !! j)  i  j  is_Some (m !! j).
Proof. unfold is_Some; setoid_rewrite lookup_delete_Some; naive_solver. Qed.
345 346 347
Lemma lookup_delete_None {A} (m : M A) i j :
  delete i m !! j = None  i = j  m !! j = None.
Proof.
348 349
  destruct (decide (i = j)) as [->|?];
    rewrite ?lookup_delete, ?lookup_delete_ne; tauto.
350 351 352
Qed.
Lemma delete_empty {A} i : delete i ( : M A) = .
Proof. rewrite <-(partial_alter_self ) at 2. by rewrite lookup_empty. Qed.
353
Lemma delete_singleton {A} i (x : A) : delete i {[i := x]} = .
354 355 356 357 358 359 360
Proof. setoid_rewrite <-partial_alter_compose. apply delete_empty. Qed.
Lemma delete_commute {A} (m : M A) i j :
  delete i (delete j m) = delete j (delete i m).
Proof. destruct (decide (i = j)). by subst. by apply partial_alter_commute. Qed.
Lemma delete_insert_ne {A} (m : M A) i j x :
  i  j  delete i (<[j:=x]>m) = <[j:=x]>(delete i m).
Proof. intro. by apply partial_alter_commute. Qed.
361
Lemma delete_notin {A} (m : M A) i : m !! i = None  delete i m = m.
362
Proof.
363 364
  intros. apply map_eq. intros j. by destruct (decide (i = j)) as [->|?];
    rewrite ?lookup_delete, ?lookup_delete_ne.
365 366 367 368 369 370 371 372 373 374
Qed.
Lemma delete_partial_alter {A} (m : M A) i f :
  m !! i = None  delete i (partial_alter f i m) = m.
Proof.
  intros. unfold delete, map_delete. rewrite <-partial_alter_compose.
  unfold compose. by apply partial_alter_self_alt.
Qed.
Lemma delete_insert {A} (m : M A) i x :
  m !! i = None  delete i (<[i:=x]>m) = m.
Proof. apply delete_partial_alter. Qed.
375 376
Lemma insert_delete {A} (m : M A) i x : <[i:=x]>(delete i m) = <[i:=x]> m.
Proof. symmetry; apply (partial_alter_compose (λ _, Some x)). Qed.
377
Lemma delete_subseteq {A} (m : M A) i : delete i m  m.
378 379 380
Proof.
  rewrite !map_subseteq_spec. intros j x. rewrite lookup_delete_Some. tauto.
Qed.
381
Lemma delete_subseteq_compat {A} (m1 m2 : M A) i :
382
  m1  m2  delete i m1  delete i m2.
383 384 385 386
Proof.
  rewrite !map_subseteq_spec. intros ? j x.
  rewrite !lookup_delete_Some. intuition eauto.
Qed.
387
Lemma delete_subset_alt {A} (m : M A) i x : m !! i = Some x  delete i m  m.
388
Proof.
389 390 391
  split; [apply delete_subseteq|].
  rewrite !map_subseteq_spec. intros Hi. apply (None_ne_Some x).
  by rewrite <-(lookup_delete m i), (Hi i x).
392
Qed.
393
Lemma delete_subset {A} (m : M A) i : is_Some (m !! i)  delete i m  m.
394 395 396 397 398
Proof. inversion 1. eauto using delete_subset_alt. Qed.

(** ** Properties of the [insert] operation *)
Lemma lookup_insert {A} (m : M A) i x : <[i:=x]>m !! i = Some x.
Proof. unfold insert. apply lookup_partial_alter. Qed.
399
Lemma lookup_insert_rev {A}  (m : M A) i x y : <[i:=x]>m !! i = Some y  x = y.
400
Proof. rewrite lookup_insert. congruence. Qed.
401
Lemma lookup_insert_ne {A} (m : M A) i j x : i  j  <[i:=x]>m !! j = m !! j.
402
Proof. unfold insert. apply lookup_partial_alter_ne. Qed.
403 404
Lemma insert_insert {A} (m : M A) i x y : <[i:=x]>(<[i:=y]>m) = <[i:=x]>m.
Proof. unfold insert, map_insert. by rewrite <-partial_alter_compose. Qed.
405 406 407 408 409 410 411
Lemma insert_commute {A} (m : M A) i j x y :
  i  j  <[i:=x]>(<[j:=y]>m) = <[j:=y]>(<[i:=x]>m).
Proof. apply partial_alter_commute. Qed.
Lemma lookup_insert_Some {A} (m : M A) i j x y :
  <[i:=x]>m !! j = Some y  (i = j  x = y)  (i  j  m !! j = Some y).
Proof.
  split.
412
  - destruct (decide (i = j)) as [->|?];
413
      rewrite ?lookup_insert, ?lookup_insert_ne; intuition congruence.
414
  - intros [[-> ->]|[??]]; [apply lookup_insert|]. by rewrite lookup_insert_ne.
415
Qed.
416 417 418
Lemma lookup_insert_is_Some {A} (m : M A) i j x :
  is_Some (<[i:=x]>m !! j)  i = j  i  j  is_Some (m !! j).
Proof. unfold is_Some; setoid_rewrite lookup_insert_Some; naive_solver. Qed.
419 420 421
Lemma lookup_insert_None {A} (m : M A) i j x :
  <[i:=x]>m !! j = None  m !! j = None  i  j.
Proof.
422 423 424
  split; [|by intros [??]; rewrite lookup_insert_ne].
  destruct (decide (i = j)) as [->|];
    rewrite ?lookup_insert, ?lookup_insert_ne; intuition congruence.
425
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
426
Lemma insert_id {A} (m : M A) i x : m !! i = Some x  <[i:=x]>m = m.
427 428 429 430 431 432 433 434
Proof.
  intros; apply map_eq; intros j; destruct (decide (i = j)) as [->|];
    by rewrite ?lookup_insert, ?lookup_insert_ne by done.
Qed.
Lemma insert_included {A} R `{!Reflexive R} (m : M A) i x :
  ( y, m !! i = Some y  R y x)  map_included R m (<[i:=x]>m).
Proof.
  intros ? j; destruct (decide (i = j)) as [->|].
435 436
  - rewrite lookup_insert. destruct (m !! j); simpl; eauto.
  - rewrite lookup_insert_ne by done. by destruct (m !! j); simpl.
437
Qed.
438
Lemma insert_subseteq {A} (m : M A) i x : m !! i = None  m  <[i:=x]>m.
439
Proof. apply partial_alter_subseteq. Qed.
440
Lemma insert_subset {A} (m : M A) i x : m !! i = None  m  <[i:=x]>m.
441 442
Proof. intro. apply partial_alter_subset; eauto. Qed.
Lemma insert_subseteq_r {A} (m1 m2 : M A) i x :
443
  m1 !! i = None  m1  m2  m1  <[i:=x]>m2.
444
Proof.
445 446 447
  rewrite !map_subseteq_spec. intros ?? j ?.
  destruct (decide (j = i)) as [->|?]; [congruence|].
  rewrite lookup_insert_ne; auto.
448 449
Qed.
Lemma insert_delete_subseteq {A} (m1 m2 : M A) i x :
450
  m1 !! i = None  <[i:=x]> m1  m2  m1  delete i m2.
451
Proof.
452 453 454 455
  rewrite !map_subseteq_spec. intros Hi Hix j y Hj.
  destruct (decide (i = j)) as [->|]; [congruence|].
  rewrite lookup_delete_ne by done.
  apply Hix; by rewrite lookup_insert_ne by done.
456 457
Qed.
Lemma delete_insert_subseteq {A} (m1 m2 : M A) i x :
458
  m1 !! i = Some x  delete i m1  m2  m1  <[i:=x]> m2.
459
Proof.
460 461
  rewrite !map_subseteq_spec.
  intros Hix Hi j y Hj. destruct (decide (i = j)) as [->|?].
462 463
  - rewrite lookup_insert. congruence.
  - rewrite lookup_insert_ne by done. apply Hi. by rewrite lookup_delete_ne.
464 465
Qed.
Lemma insert_delete_subset {A} (m1 m2 : M A) i x :
466
  m1 !! i = None  <[i:=x]> m1  m2  m1  delete i m2.
467
Proof.
468 469 470
  intros ? [Hm12 Hm21]; split; [eauto using insert_delete_subseteq|].
  contradict Hm21. apply delete_insert_subseteq; auto.
  eapply lookup_weaken, Hm12. by rewrite lookup_insert.
471 472
Qed.
Lemma insert_subset_inv {A} (m1 m2 : M A) i x :
473
  m1 !! i = None  <[i:=x]> m1  m2 
474 475
   m2', m2 = <[i:=x]>m2'  m1  m2'  m2' !! i = None.
Proof.
476
  intros Hi Hm1m2. exists (delete i m2). split_and?.
477 478
  - rewrite insert_delete, insert_id. done.
    eapply lookup_weaken, strict_include; eauto. by rewrite lookup_insert.
479 480
  - eauto using insert_delete_subset.
  - by rewrite lookup_delete.
481
Qed.
482
Lemma insert_empty {A} i (x : A) : <[i:=x]> = {[i := x]}.
483
Proof. done. Qed.
484 485 486 487
Lemma insert_non_empty {A} (m : M A) i x : <[i:=x]>m  .
Proof.
  intros Hi%(f_equal (!! i)). by rewrite lookup_insert, lookup_empty in Hi.
Qed.
488 489 490

(** ** Properties of the singleton maps *)
Lemma lookup_singleton_Some {A} i j (x y : A) :
491
  {[i := x]} !! j = Some y  i = j  x = y.
492
Proof.
493
  rewrite <-insert_empty,lookup_insert_Some, lookup_empty; intuition congruence.
494
Qed.
495
Lemma lookup_singleton_None {A} i j (x : A) : {[i := x]} !! j = None  i  j.
496
Proof. rewrite <-insert_empty,lookup_insert_None, lookup_empty; tauto. Qed.
497
Lemma lookup_singleton {A} i (x : A) : {[i := x]} !! i = Some x.
498
Proof. by rewrite lookup_singleton_Some. Qed.
499
Lemma lookup_singleton_ne {A} i j (x : A) : i  j  {[i := x]} !! j = None.
500
Proof. by rewrite lookup_singleton_None. Qed.
501
Lemma map_non_empty_singleton {A} i (x : A) : {[i := x]}  .
502 503 504 505
Proof.
  intros Hix. apply (f_equal (!! i)) in Hix.
  by rewrite lookup_empty, lookup_singleton in Hix.
Qed.
506
Lemma insert_singleton {A} i (x y : A) : <[i:=y]>{[i := x]} = {[i := y]}.
507
Proof.
508
  unfold singletonM, map_singleton, insert, map_insert.
509 510
  by rewrite <-partial_alter_compose.
Qed.
511
Lemma alter_singleton {A} (f : A  A) i x : alter f i {[i := x]} = {[i := f x]}.
512
Proof.
513
  intros. apply map_eq. intros i'. destruct (decide (i = i')) as [->|?].
514 515
  - by rewrite lookup_alter, !lookup_singleton.
  - by rewrite lookup_alter_ne, !lookup_singleton_ne.
516 517
Qed.
Lemma alter_singleton_ne {A} (f : A  A) i j x :
518
  i  j  alter f i {[j := x]} = {[j := x]}.
519
Proof.
520 521
  intros. apply map_eq; intros i'. by destruct (decide (i = i')) as [->|?];
    rewrite ?lookup_alter, ?lookup_singleton_ne, ?lookup_alter_ne by done.
522
Qed.
523 524
Lemma singleton_non_empty {A} i (x : A) : {[i:=x]}  .
Proof. apply insert_non_empty. Qed.
525

526 527 528 529 530
(** ** Properties of the map operations *)
Lemma fmap_empty {A B} (f : A  B) : f <$>  = .
Proof. apply map_empty; intros i. by rewrite lookup_fmap, lookup_empty. Qed.
Lemma omap_empty {A B} (f : A  option B) : omap f  = .
Proof. apply map_empty; intros i. by rewrite lookup_omap, lookup_empty. Qed.
531 532 533
Lemma fmap_insert {A B} (f: A  B) m i x: f <$> <[i:=x]>m = <[i:=f x]>(f <$> m).
Proof.
  apply map_eq; intros i'; destruct (decide (i' = i)) as [->|].
534 535
  - by rewrite lookup_fmap, !lookup_insert.
  - by rewrite lookup_fmap, !lookup_insert_ne, lookup_fmap by done.
536
Qed.
537 538 539 540 541 542
Lemma fmap_delete {A B} (f: A  B) m i: f <$> delete i m = delete i (f <$> m).
Proof.
  apply map_eq; intros i'; destruct (decide (i' = i)) as [->|].
  - by rewrite lookup_fmap, !lookup_delete.
  - by rewrite lookup_fmap, !lookup_delete_ne, lookup_fmap by done.
Qed.
543 544 545 546
Lemma omap_insert {A B} (f : A  option B) m i x y :
  f x = Some y  omap f (<[i:=x]>m) = <[i:=y]>(omap f m).
Proof.
  intros; apply map_eq; intros i'; destruct (decide (i' = i)) as [->|].
547 548
  - by rewrite lookup_omap, !lookup_insert.
  - by rewrite lookup_omap, !lookup_insert_ne, lookup_omap by done.
549
Qed.
550
Lemma map_fmap_singleton {A B} (f : A  B) i x : f <$> {[i := x]} = {[i := f x]}.
551 552 553
Proof.
  by unfold singletonM, map_singleton; rewrite fmap_insert, map_fmap_empty.
Qed.
554
Lemma omap_singleton {A B} (f : A  option B) i x y :
555
  f x = Some y  omap f {[ i := x ]} = {[ i := y ]}.
556
Proof.
557 558
  intros. unfold singletonM, map_singleton.
  by erewrite omap_insert, omap_empty by eauto.
559
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
560 561 562 563 564
Lemma map_fmap_id {A} (m : M A) : id <$> m = m.
Proof. apply map_eq; intros i; by rewrite lookup_fmap, option_fmap_id. Qed.
Lemma map_fmap_compose {A B C} (f : A  B) (g : B  C) (m : M A) :
  g  f <$> m = g <$> f <$> m.
Proof. apply map_eq; intros i; by rewrite !lookup_fmap,option_fmap_compose. Qed.
565
Lemma map_fmap_equiv_ext `{Equiv A, Equiv B} (f1 f2 : A  B) m :
566 567 568 569 570
  ( i x, m !! i = Some x  f1 x  f2 x)  f1 <$> m  f2 <$> m.
Proof.
  intros Hi i; rewrite !lookup_fmap.
  destruct (m !! i) eqn:?; constructor; eauto.
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
571 572 573 574 575 576
Lemma map_fmap_ext {A B} (f1 f2 : A  B) m :
  ( i x, m !! i = Some x  f1 x = f2 x)  f1 <$> m = f2 <$> m.
Proof.
  intros Hi; apply map_eq; intros i; rewrite !lookup_fmap.
  by destruct (m !! i) eqn:?; simpl; erewrite ?Hi by eauto.
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
577 578 579 580 581 582
Lemma omap_ext {A B} (f1 f2 : A  option B) m :
  ( i x, m !! i = Some x  f1 x = f2 x)  omap f1 m = omap f2 m.
Proof.
  intros Hi; apply map_eq; intros i; rewrite !lookup_omap.
  by destruct (m !! i) eqn:?; simpl; erewrite ?Hi by eauto.
Qed.
583

584 585
(** ** Properties of conversion to lists *)
Lemma map_to_list_unique {A} (m : M A) i x y :
586
  (i,x)  map_to_list m  (i,y)  map_to_list m  x = y.
587
Proof. rewrite !elem_of_map_to_list. congruence. Qed.
588
Lemma NoDup_fst_map_to_list {A} (m : M A) : NoDup ((map_to_list m).*1).
589
Proof. eauto using NoDup_fmap_fst, map_to_list_unique, NoDup_map_to_list. Qed.
590 591 592 593 594
Lemma elem_of_map_of_list_1_help {A} (l : list (K * A)) i x :
  (i,x)  l  ( y, (i,y)  l  y = x)  map_of_list l !! i = Some x.
Proof.
  induction l as [|[j y] l IH]; csimpl; [by rewrite elem_of_nil|].
  setoid_rewrite elem_of_cons.
595
  intros [?|?] Hdup; simplify_eq; [by rewrite lookup_insert|].
596
  destruct (decide (i = j)) as [->|].
597 598
  - rewrite lookup_insert; f_equal; eauto.
  - rewrite lookup_insert_ne by done; eauto.
599
Qed.
600
Lemma elem_of_map_of_list_1 {A} (l : list (K * A)) i x :
601
  NoDup (l.*1)  (i,x)  l  map_of_list l !! i = Some x.
602
Proof.
603 604
  intros ? Hx; apply elem_of_map_of_list_1_help; eauto using NoDup_fmap_fst.
  intros y; revert Hx. rewrite !elem_of_list_lookup; intros [i' Hi'] [j' Hj'].
605
  cut (i' = j'); [naive_solver|]. apply NoDup_lookup with (l.*1) i;
606
    by rewrite ?list_lookup_fmap, ?Hi', ?Hj'.
607 608
Qed.
Lemma elem_of_map_of_list_2 {A} (l : list (K * A)) i x :
609
  map_of_list l !! i = Some x  (i,x)  l.
610
Proof.
611 612 613
  induction l as [|[j y] l IH]; simpl; [by rewrite lookup_empty|].
  rewrite elem_of_cons. destruct (decide (i = j)) as [->|];
    rewrite ?lookup_insert, ?lookup_insert_ne; intuition congruence.
614 615
Qed.
Lemma elem_of_map_of_list {A} (l : list (K * A)) i x :
616
  NoDup (l.*1)  (i,x)  l  map_of_list l !! i = Some x.
617
Proof. split; auto using elem_of_map_of_list_1, elem_of_map_of_list_2. Qed.
618
Lemma not_elem_of_map_of_list_1 {A} (l : list (K * A)) i :
619
  i  l.*1  map_of_list l !! i = None.
620
Proof.
621 622
  rewrite elem_of_list_fmap, eq_None_not_Some. intros Hi [x ?]; destruct Hi.
  exists (i,x); simpl; auto using elem_of_map_of_list_2.
623 624
Qed.
Lemma not_elem_of_map_of_list_2 {A} (l : list (K * A)) i :
625
  map_of_list l !! i = None  i  l.*1.
626
Proof.
627
  induction l as [|[j y] l IH]; csimpl; [rewrite elem_of_nil; tauto|].
628
  rewrite elem_of_cons. destruct (decide (i = j)); simplify_eq.
629 630
  - by rewrite lookup_insert.
  - by rewrite lookup_insert_ne; intuition.
631 632
Qed.
Lemma not_elem_of_map_of_list {A} (l : list (K * A)) i :
633
  i  l.*1  map_of_list l !! i = None.
634
Proof. red; auto using not_elem_of_map_of_list_1,not_elem_of_map_of_list_2. Qed.
635
Lemma map_of_list_proper {A} (l1 l2 : list (K * A)) :
636
  NoDup (l1.*1)  l1  l2  map_of_list l1 = map_of_list l2.
637 638 639 640 641
Proof.
  intros ? Hperm. apply map_eq. intros i. apply option_eq. intros x.
  by rewrite <-!elem_of_map_of_list; rewrite <-?Hperm.
Qed.
Lemma map_of_list_inj {A} (l1 l2 : list (K * A)) :
642
  NoDup (l1.*1)  NoDup (l2.*1)  map_of_list l1 = map_of_list l2  l1  l2.
643
Proof.
644
  intros ?? Hl1l2. apply NoDup_Permutation; auto using (NoDup_fmap_1 fst).
645 646
  intros [i x]. by rewrite !elem_of_map_of_list, Hl1l2.
Qed.
647
Lemma map_of_to_list {A} (m : M A) : map_of_list (map_to_list m) = m.
648 649 650
Proof.
  apply map_eq. intros i. apply option_eq. intros x.
  by rewrite <-elem_of_map_of_list, elem_of_map_to_list
651
    by auto using NoDup_fst_map_to_list.
652 653
Qed.
Lemma map_to_of_list {A} (l : list (K * A)) :
654
  NoDup (l.*1)  map_to_list (map_of_list l)  l.
655
Proof. auto using map_of_list_inj, NoDup_fst_map_to_list, map_of_to_list. Qed.
656
Lemma map_to_list_inj {A} (m1 m2 : M A) :