fin_maps.v 71.6 KB
Newer Older
1
(* Copyright (c) 2012-2017, Robbert Krebbers. *)
2
3
4
(* This file is distributed under the terms of the BSD license. *)
(** Finite maps associate data to keys. This file defines an interface for
finite maps and collects some theory on it. Most importantly, it proves useful
5
induction principles for finite maps and implements the tactic
6
[simplify_map_eq] to simplify goals involving finite maps. *)
7
From Coq Require Import Permutation.
8
From stdpp Require Export relations orders vector.
9
10
(* FIXME: This file needs a 'Proof Using' hint, but the default we use
   everywhere makes for lots of extra ssumptions. *)
11

12
13
(** * Axiomatization of finite maps *)
(** We require Leibniz equality to be extensional on finite maps. This of
14
15
16
17
18
course limits the space of finite map implementations, but since we are mainly
interested in finite maps with numbers as indexes, we do not consider this to
be a serious limitation. The main application of finite maps is to implement
the memory, where extensionality of Leibniz equality is very important for a
convenient use in the assertions of our axiomatic semantics. *)
19

Robbert Krebbers's avatar
Robbert Krebbers committed
20
21
(** Finiteness is axiomatized by requiring that each map can be translated
to an association list. The translation to association lists is used to
22
prove well founded recursion on finite maps. *)
23

24
25
26
(** Finite map implementations are required to implement the [merge] function
which enables us to give a generic implementation of [union_with],
[intersection_with], and [difference_with]. *)
27

28
Class FinMapToList K A M := map_to_list: M  list (K * A).
Robbert Krebbers's avatar
Robbert Krebbers committed
29

30
31
Class FinMap K M `{FMap M,  A, Lookup K A (M A),  A, Empty (M A),  A,
    PartialAlter K A (M A), OMap M, Merge M,  A, FinMapToList K A (M A),
32
    EqDecision K} := {
33
34
  map_eq {A} (m1 m2 : M A) : ( i, m1 !! i = m2 !! i)  m1 = m2;
  lookup_empty {A} i : ( : M A) !! i = None;
35
36
37
38
  lookup_partial_alter {A} f (m : M A) i :
    partial_alter f i m !! i = f (m !! i);
  lookup_partial_alter_ne {A} f (m : M A) i j :
    i  j  partial_alter f i m !! j = m !! j;
39
  lookup_fmap {A B} (f : A  B) (m : M A) i : (f <$> m) !! i = f <$> m !! i;
40
  NoDup_map_to_list {A} (m : M A) : NoDup (map_to_list m);
41
42
  elem_of_map_to_list {A} (m : M A) i x :
    (i,x)  map_to_list m  m !! i = Some x;
43
  lookup_omap {A B} (f : A  option B) m i : omap f m !! i = m !! i = f;
44
  lookup_merge {A B C} (f: option A  option B  option C) `{!DiagNone f} m1 m2 i :
45
    merge f m1 m2 !! i = f (m1 !! i) (m2 !! i)
Robbert Krebbers's avatar
Robbert Krebbers committed
46
47
}.

48
49
50
(** * Derived operations *)
(** All of the following functions are defined in a generic way for arbitrary
finite map implementations. These generic implementations do not cause a
51
52
significant performance loss to make including them in the finite map interface
worthwhile. *)
53
54
55
56
57
58
59
60
61
62
Instance map_insert `{PartialAlter K A M} : Insert K A M :=
  λ i x, partial_alter (λ _, Some x) i.
Instance map_alter `{PartialAlter K A M} : Alter K A M :=
  λ f, partial_alter (fmap f).
Instance map_delete `{PartialAlter K A M} : Delete K M :=
  partial_alter (λ _, None).
Instance map_singleton `{PartialAlter K A M, Empty M} :
  SingletonM K A M := λ i x, <[i:=x]> .

Definition map_of_list `{Insert K A M, Empty M} : list (K * A)  M :=
63
  fold_right (λ p, <[p.1:=p.2]>) .
64
65
Definition map_of_collection `{Elements K C, Insert K A M, Empty M}
    (f : K  option A) (X : C) : M :=
66
  map_of_list (omap (λ i, (i,) <$> f i) (elements X)).
Robbert Krebbers's avatar
Robbert Krebbers committed
67

68
69
70
71
72
73
Instance map_union_with `{Merge M} {A} : UnionWith A (M A) :=
  λ f, merge (union_with f).
Instance map_intersection_with `{Merge M} {A} : IntersectionWith A (M A) :=
  λ f, merge (intersection_with f).
Instance map_difference_with `{Merge M} {A} : DifferenceWith A (M A) :=
  λ f, merge (difference_with f).
Robbert Krebbers's avatar
Robbert Krebbers committed
74

75
Instance map_equiv `{ A, Lookup K A (M A), Equiv A} : Equiv (M A) | 18 :=
76
  λ m1 m2,  i, m1 !! i  m2 !! i.
Robbert Krebbers's avatar
Robbert Krebbers committed
77

78
79
(** The relation [intersection_forall R] on finite maps describes that the
relation [R] holds for each pair in the intersection. *)
80
Definition map_Forall `{Lookup K A M} (P : K  A  Prop) : M  Prop :=
Robbert Krebbers's avatar
Robbert Krebbers committed
81
  λ m,  i x, m !! i = Some x  P i x.
82
Definition map_relation `{ A, Lookup K A (M A)} {A B} (R : A  B  Prop)
Robbert Krebbers's avatar
Robbert Krebbers committed
83
84
    (P : A  Prop) (Q : B  Prop) (m1 : M A) (m2 : M B) : Prop :=  i,
  option_relation R P Q (m1 !! i) (m2 !! i).
85
Definition map_included `{ A, Lookup K A (M A)} {A}
Robbert Krebbers's avatar
Robbert Krebbers committed
86
  (R : relation A) : relation (M A) := map_relation R (λ _, False) (λ _, True).
87
Definition map_disjoint `{ A, Lookup K A (M A)} {A} : relation (M A) :=
Robbert Krebbers's avatar
Robbert Krebbers committed
88
89
90
91
92
  map_relation (λ _ _, False) (λ _, True) (λ _, True).
Infix "⊥ₘ" := map_disjoint (at level 70) : C_scope.
Hint Extern 0 (_  _) => symmetry; eassumption.
Notation "( m ⊥ₘ.)" := (map_disjoint m) (only parsing) : C_scope.
Notation "(.⊥ₘ m )" := (λ m2, m2  m) (only parsing) : C_scope.
93
Instance map_subseteq `{ A, Lookup K A (M A)} {A} : SubsetEq (M A) :=
Robbert Krebbers's avatar
Robbert Krebbers committed
94
  map_included (=).
Robbert Krebbers's avatar
Robbert Krebbers committed
95
96
97
98
99

(** The union of two finite maps only has a meaningful definition for maps
that are disjoint. However, as working with partial functions is inconvenient
in Coq, we define the union as a total function. In case both finite maps
have a value at the same index, we take the value of the first map. *)
100
Instance map_union `{Merge M} {A} : Union (M A) := union_with (λ x _, Some x).
101
102
103
Instance map_intersection `{Merge M} {A} : Intersection (M A) :=
  intersection_with (λ x _, Some x).

104
105
(** The difference operation removes all values from the first map whose
index contains a value in the second map as well. *)
106
Instance map_difference `{Merge M} {A} : Difference (M A) :=
107
  difference_with (λ _ _, None).
Robbert Krebbers's avatar
Robbert Krebbers committed
108

109
110
(** A stronger variant of map that allows the mapped function to use the index
of the elements. Implemented by conversion to lists, so not very efficient. *)
111
112
Definition map_imap `{ A, Insert K A (M A),  A, Empty (M A),
     A, FinMapToList K A (M A)} {A B} (f : K  A  option B) (m : M A) : M B :=
113
114
  map_of_list (omap (λ ix, (fst ix,) <$> curry f ix) (map_to_list m)).

115
116
117
118
(** * Theorems *)
Section theorems.
Context `{FinMap K M}.

Robbert Krebbers's avatar
Robbert Krebbers committed
119
120
(** ** Setoids *)
Section setoid.
121
  Context `{Equiv A}.
122

123
124
125
126
  Lemma map_equiv_lookup_l (m1 m2 : M A) i x :
    m1  m2  m1 !! i = Some x   y, m2 !! i = Some y  x  y.
  Proof. generalize (equiv_Some_inv_l (m1 !! i) (m2 !! i) x); naive_solver. Qed.

127
128
  Global Instance map_equivalence :
    Equivalence (() : relation A)  Equivalence (() : relation (M A)).
Robbert Krebbers's avatar
Robbert Krebbers committed
129
130
  Proof.
    split.
131
132
    - by intros m i.
    - by intros m1 m2 ? i.
133
    - by intros m1 m2 m3 ?? i; trans (m2 !! i).
Robbert Krebbers's avatar
Robbert Krebbers committed
134
  Qed.
135
136
  Global Instance lookup_proper (i : K) :
    Proper (() ==> ()) (lookup (M:=M A) i).
Robbert Krebbers's avatar
Robbert Krebbers committed
137
138
  Proof. by intros m1 m2 Hm. Qed.
  Global Instance partial_alter_proper :
139
    Proper ((() ==> ()) ==> (=) ==> () ==> ()) (partial_alter (M:=M A)).
Robbert Krebbers's avatar
Robbert Krebbers committed
140
141
142
143
144
145
  Proof.
    by intros f1 f2 Hf i ? <- m1 m2 Hm j; destruct (decide (i = j)) as [->|];
      rewrite ?lookup_partial_alter, ?lookup_partial_alter_ne by done;
      try apply Hf; apply lookup_proper.
  Qed.
  Global Instance insert_proper (i : K) :
146
    Proper (() ==> () ==> ()) (insert (M:=M A) i).
Robbert Krebbers's avatar
Robbert Krebbers committed
147
  Proof. by intros ???; apply partial_alter_proper; [constructor|]. Qed.
148
149
  Global Instance singleton_proper k :
    Proper (() ==> ()) (singletonM k : A  M A).
150
151
152
153
  Proof.
    intros ???; apply insert_proper; [done|].
    intros ?. rewrite lookup_empty; constructor.
  Qed.
154
155
  Global Instance delete_proper (i : K) :
    Proper (() ==> ()) (delete (M:=M A) i).
Robbert Krebbers's avatar
Robbert Krebbers committed
156
157
  Proof. by apply partial_alter_proper; [constructor|]. Qed.
  Global Instance alter_proper :
158
    Proper ((() ==> ()) ==> (=) ==> () ==> ()) (alter (A:=A) (M:=M A)).
Robbert Krebbers's avatar
Robbert Krebbers committed
159
160
161
162
  Proof.
    intros ?? Hf; apply partial_alter_proper.
    by destruct 1; constructor; apply Hf.
  Qed.
163
  Lemma merge_ext f g `{!DiagNone f, !DiagNone g} :
Robbert Krebbers's avatar
Robbert Krebbers committed
164
    (() ==> () ==> ())%signature f g 
165
    (() ==> () ==> ())%signature (merge (M:=M) f) (merge g).
Robbert Krebbers's avatar
Robbert Krebbers committed
166
167
168
169
  Proof.
    by intros Hf ?? Hm1 ?? Hm2 i; rewrite !lookup_merge by done; apply Hf.
  Qed.
  Global Instance union_with_proper :
170
    Proper ((() ==> () ==> ()) ==> () ==> () ==>()) (union_with (M:=M A)).
Robbert Krebbers's avatar
Robbert Krebbers committed
171
172
173
  Proof.
    intros ?? Hf ?? Hm1 ?? Hm2 i; apply (merge_ext _ _); auto.
    by do 2 destruct 1; first [apply Hf | constructor].
174
  Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
175
  Global Instance map_leibniz `{!LeibnizEquiv A} : LeibnizEquiv (M A).
176
  Proof. intros m1 m2 Hm; apply map_eq; intros i. apply leibniz_equiv, Hm. Qed.
177
178
  Lemma map_equiv_empty (m : M A) : m    m = .
  Proof.
179
180
181
    split; [intros Hm; apply map_eq; intros i|intros ->].
    - generalize (Hm i). by rewrite lookup_empty, equiv_None.
    - intros ?. rewrite lookup_empty; constructor.
182
  Qed.
183
184
185
186
187
  Global Instance map_fmap_proper `{Equiv B} (f : A  B) :
    Proper (() ==> ()) f  Proper (() ==> ()) (fmap (M:=M) f).
  Proof.
    intros ? m m' ? k; rewrite !lookup_fmap. by apply option_fmap_proper.
  Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
188
189
190
End setoid.

(** ** General properties *)
191
192
193
194
195
Lemma map_eq_iff {A} (m1 m2 : M A) : m1 = m2   i, m1 !! i = m2 !! i.
Proof. split. by intros ->. apply map_eq. Qed.
Lemma map_subseteq_spec {A} (m1 m2 : M A) :
  m1  m2   i x, m1 !! i = Some x  m2 !! i = Some x.
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
196
  unfold subseteq, map_subseteq, map_relation. split; intros Hm i;
197
198
    specialize (Hm i); destruct (m1 !! i), (m2 !! i); naive_solver.
Qed.
199
200
Global Instance:  {A} (R : relation A), PreOrder R  PreOrder (map_included R).
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
201
  split; [intros m i; by destruct (m !! i); simpl|].
202
  intros m1 m2 m3 Hm12 Hm23 i; specialize (Hm12 i); specialize (Hm23 i).
203
  destruct (m1 !! i), (m2 !! i), (m3 !! i); simplify_eq/=;
204
    done || etrans; eauto.
205
Qed.
206
Global Instance: PartialOrder (() : relation (M A)).
207
Proof.
208
209
210
  split; [apply _|].
  intros m1 m2; rewrite !map_subseteq_spec.
  intros; apply map_eq; intros i; apply option_eq; naive_solver.
211
212
213
Qed.
Lemma lookup_weaken {A} (m1 m2 : M A) i x :
  m1 !! i = Some x  m1  m2  m2 !! i = Some x.
214
Proof. rewrite !map_subseteq_spec. auto. Qed.
215
216
217
218
219
220
Lemma lookup_weaken_is_Some {A} (m1 m2 : M A) i :
  is_Some (m1 !! i)  m1  m2  is_Some (m2 !! i).
Proof. inversion 1. eauto using lookup_weaken. Qed.
Lemma lookup_weaken_None {A} (m1 m2 : M A) i :
  m2 !! i = None  m1  m2  m1 !! i = None.
Proof.
221
222
  rewrite map_subseteq_spec, !eq_None_not_Some.
  intros Hm2 Hm [??]; destruct Hm2; eauto.
223
224
Qed.
Lemma lookup_weaken_inv {A} (m1 m2 : M A) i x y :
225
226
  m1 !! i = Some x  m1  m2  m2 !! i = Some y  x = y.
Proof. intros Hm1 ? Hm2. eapply lookup_weaken in Hm1; eauto. congruence. Qed.
227
228
229
230
231
232
233
234
235
Lemma lookup_ne {A} (m : M A) i j : m !! i  m !! j  i  j.
Proof. congruence. Qed.
Lemma map_empty {A} (m : M A) : ( i, m !! i = None)  m = .
Proof. intros Hm. apply map_eq. intros. by rewrite Hm, lookup_empty. Qed.
Lemma lookup_empty_is_Some {A} i : ¬is_Some (( : M A) !! i).
Proof. rewrite lookup_empty. by inversion 1. Qed.
Lemma lookup_empty_Some {A} i (x : A) : ¬ !! i = Some x.
Proof. by rewrite lookup_empty. Qed.
Lemma map_subset_empty {A} (m : M A) : m  .
236
237
238
Proof.
  intros [_ []]. rewrite map_subseteq_spec. intros ??. by rewrite lookup_empty.
Qed.
239
240
Lemma map_fmap_empty {A B} (f : A  B) : f <$> ( : M A) = .
Proof. by apply map_eq; intros i; rewrite lookup_fmap, !lookup_empty. Qed.
241
242

(** ** Properties of the [partial_alter] operation *)
243
244
245
Lemma partial_alter_ext {A} (f g : option A  option A) (m : M A) i :
  ( x, m !! i = x  f x = g x)  partial_alter f i m = partial_alter g i m.
Proof.
246
247
  intros. apply map_eq; intros j. by destruct (decide (i = j)) as [->|?];
    rewrite ?lookup_partial_alter, ?lookup_partial_alter_ne; auto.
248
249
Qed.
Lemma partial_alter_compose {A} f g (m : M A) i:
250
251
  partial_alter (f  g) i m = partial_alter f i (partial_alter g i m).
Proof.
252
253
  intros. apply map_eq. intros ii. by destruct (decide (i = ii)) as [->|?];
    rewrite ?lookup_partial_alter, ?lookup_partial_alter_ne.
254
Qed.
255
Lemma partial_alter_commute {A} f g (m : M A) i j :
256
  i  j  partial_alter f i (partial_alter g j m) =
257
258
    partial_alter g j (partial_alter f i m).
Proof.
259
260
261
262
  intros. apply map_eq; intros jj. destruct (decide (jj = j)) as [->|?].
  { by rewrite lookup_partial_alter_ne,
      !lookup_partial_alter, lookup_partial_alter_ne. }
  destruct (decide (jj = i)) as [->|?].
263
  - by rewrite lookup_partial_alter,
264
     !lookup_partial_alter_ne, lookup_partial_alter by congruence.
265
  - by rewrite !lookup_partial_alter_ne by congruence.
266
267
268
269
Qed.
Lemma partial_alter_self_alt {A} (m : M A) i x :
  x = m !! i  partial_alter (λ _, x) i m = m.
Proof.
270
271
  intros. apply map_eq. intros ii. by destruct (decide (i = ii)) as [->|];
    rewrite ?lookup_partial_alter, ?lookup_partial_alter_ne.
272
Qed.
273
Lemma partial_alter_self {A} (m : M A) i : partial_alter (λ _, m !! i) i m = m.
274
Proof. by apply partial_alter_self_alt. Qed.
275
Lemma partial_alter_subseteq {A} f (m : M A) i :
276
  m !! i = None  m  partial_alter f i m.
277
278
279
280
Proof.
  rewrite map_subseteq_spec. intros Hi j x Hj.
  rewrite lookup_partial_alter_ne; congruence.
Qed.
281
Lemma partial_alter_subset {A} f (m : M A) i :
282
  m !! i = None  is_Some (f (m !! i))  m  partial_alter f i m.
283
Proof.
284
285
286
287
  intros Hi Hfi. split; [by apply partial_alter_subseteq|].
  rewrite !map_subseteq_spec. inversion Hfi as [x Hx]. intros Hm.
  apply (Some_ne_None x). rewrite <-(Hm i x); [done|].
  by rewrite lookup_partial_alter.
288
289
290
Qed.

(** ** Properties of the [alter] operation *)
291
292
Lemma alter_ext {A} (f g : A  A) (m : M A) i :
  ( x, m !! i = Some x  f x = g x)  alter f i m = alter g i m.
293
Proof. intro. apply partial_alter_ext. intros [x|] ?; f_equal/=; auto. Qed.
294
Lemma lookup_alter {A} (f : A  A) m i : alter f i m !! i = f <$> m !! i.
295
Proof. unfold alter. apply lookup_partial_alter. Qed.
296
Lemma lookup_alter_ne {A} (f : A  A) m i j : i  j  alter f i m !! j = m !! j.
297
Proof. unfold alter. apply lookup_partial_alter_ne. Qed.
298
299
300
301
302
303
304
305
306
Lemma alter_compose {A} (f g : A  A) (m : M A) i:
  alter (f  g) i m = alter f i (alter g i m).
Proof.
  unfold alter, map_alter. rewrite <-partial_alter_compose.
  apply partial_alter_ext. by intros [?|].
Qed.
Lemma alter_commute {A} (f g : A  A) (m : M A) i j :
  i  j  alter f i (alter g j m) = alter g j (alter f i m).
Proof. apply partial_alter_commute. Qed.
307
308
309
310
Lemma lookup_alter_Some {A} (f : A  A) m i j y :
  alter f i m !! j = Some y 
    (i = j   x, m !! j = Some x  y = f x)  (i  j  m !! j = Some y).
Proof.
311
  destruct (decide (i = j)) as [->|?].
312
  - rewrite lookup_alter. naive_solver (simplify_option_eq; eauto).
313
  - rewrite lookup_alter_ne by done. naive_solver.
314
315
316
317
Qed.
Lemma lookup_alter_None {A} (f : A  A) m i j :
  alter f i m !! j = None  m !! j = None.
Proof.
318
319
  by destruct (decide (i = j)) as [->|?];
    rewrite ?lookup_alter, ?fmap_None, ?lookup_alter_ne.
320
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
321
322
Lemma alter_id {A} (f : A  A) m i :
  ( x, m !! i = Some x  f x = x)  alter f i m = m.
323
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
324
  intros Hi; apply map_eq; intros j; destruct (decide (i = j)) as [->|?].
325
  { rewrite lookup_alter; destruct (m !! j); f_equal/=; auto. }
Robbert Krebbers's avatar
Robbert Krebbers committed
326
  by rewrite lookup_alter_ne by done.
327
328
329
330
331
332
333
334
335
336
337
Qed.

(** ** Properties of the [delete] operation *)
Lemma lookup_delete {A} (m : M A) i : delete i m !! i = None.
Proof. apply lookup_partial_alter. Qed.
Lemma lookup_delete_ne {A} (m : M A) i j : i  j  delete i m !! j = m !! j.
Proof. apply lookup_partial_alter_ne. Qed.
Lemma lookup_delete_Some {A} (m : M A) i j y :
  delete i m !! j = Some y  i  j  m !! j = Some y.
Proof.
  split.
338
  - destruct (decide (i = j)) as [->|?];
339
      rewrite ?lookup_delete, ?lookup_delete_ne; intuition congruence.
340
  - intros [??]. by rewrite lookup_delete_ne.
341
Qed.
342
343
344
Lemma lookup_delete_is_Some {A} (m : M A) i j :
  is_Some (delete i m !! j)  i  j  is_Some (m !! j).
Proof. unfold is_Some; setoid_rewrite lookup_delete_Some; naive_solver. Qed.
345
346
347
Lemma lookup_delete_None {A} (m : M A) i j :
  delete i m !! j = None  i = j  m !! j = None.
Proof.
348
349
  destruct (decide (i = j)) as [->|?];
    rewrite ?lookup_delete, ?lookup_delete_ne; tauto.
350
351
352
Qed.
Lemma delete_empty {A} i : delete i ( : M A) = .
Proof. rewrite <-(partial_alter_self ) at 2. by rewrite lookup_empty. Qed.
353
Lemma delete_singleton {A} i (x : A) : delete i {[i := x]} = .
354
355
356
357
358
359
360
Proof. setoid_rewrite <-partial_alter_compose. apply delete_empty. Qed.
Lemma delete_commute {A} (m : M A) i j :
  delete i (delete j m) = delete j (delete i m).
Proof. destruct (decide (i = j)). by subst. by apply partial_alter_commute. Qed.
Lemma delete_insert_ne {A} (m : M A) i j x :
  i  j  delete i (<[j:=x]>m) = <[j:=x]>(delete i m).
Proof. intro. by apply partial_alter_commute. Qed.
361
Lemma delete_notin {A} (m : M A) i : m !! i = None  delete i m = m.
362
Proof.
363
364
  intros. apply map_eq. intros j. by destruct (decide (i = j)) as [->|?];
    rewrite ?lookup_delete, ?lookup_delete_ne.
365
366
367
368
369
370
371
372
373
374
Qed.
Lemma delete_partial_alter {A} (m : M A) i f :
  m !! i = None  delete i (partial_alter f i m) = m.
Proof.
  intros. unfold delete, map_delete. rewrite <-partial_alter_compose.
  unfold compose. by apply partial_alter_self_alt.
Qed.
Lemma delete_insert {A} (m : M A) i x :
  m !! i = None  delete i (<[i:=x]>m) = m.
Proof. apply delete_partial_alter. Qed.
375
376
Lemma insert_delete {A} (m : M A) i x : <[i:=x]>(delete i m) = <[i:=x]> m.
Proof. symmetry; apply (partial_alter_compose (λ _, Some x)). Qed.
377
Lemma delete_subseteq {A} (m : M A) i : delete i m  m.
378
379
380
Proof.
  rewrite !map_subseteq_spec. intros j x. rewrite lookup_delete_Some. tauto.
Qed.
381
Lemma delete_subseteq_compat {A} (m1 m2 : M A) i :
382
  m1  m2  delete i m1  delete i m2.
383
384
385
386
Proof.
  rewrite !map_subseteq_spec. intros ? j x.
  rewrite !lookup_delete_Some. intuition eauto.
Qed.
387
Lemma delete_subset_alt {A} (m : M A) i x : m !! i = Some x  delete i m  m.
388
Proof.
389
390
391
  split; [apply delete_subseteq|].
  rewrite !map_subseteq_spec. intros Hi. apply (None_ne_Some x).
  by rewrite <-(lookup_delete m i), (Hi i x).
392
Qed.
393
Lemma delete_subset {A} (m : M A) i : is_Some (m !! i)  delete i m  m.
394
395
396
397
398
Proof. inversion 1. eauto using delete_subset_alt. Qed.

(** ** Properties of the [insert] operation *)
Lemma lookup_insert {A} (m : M A) i x : <[i:=x]>m !! i = Some x.
Proof. unfold insert. apply lookup_partial_alter. Qed.
399
Lemma lookup_insert_rev {A}  (m : M A) i x y : <[i:=x]>m !! i = Some y  x = y.
400
Proof. rewrite lookup_insert. congruence. Qed.
401
Lemma lookup_insert_ne {A} (m : M A) i j x : i  j  <[i:=x]>m !! j = m !! j.
402
Proof. unfold insert. apply lookup_partial_alter_ne. Qed.
403
404
Lemma insert_insert {A} (m : M A) i x y : <[i:=x]>(<[i:=y]>m) = <[i:=x]>m.
Proof. unfold insert, map_insert. by rewrite <-partial_alter_compose. Qed.
405
406
407
408
409
410
411
Lemma insert_commute {A} (m : M A) i j x y :
  i  j  <[i:=x]>(<[j:=y]>m) = <[j:=y]>(<[i:=x]>m).
Proof. apply partial_alter_commute. Qed.
Lemma lookup_insert_Some {A} (m : M A) i j x y :
  <[i:=x]>m !! j = Some y  (i = j  x = y)  (i  j  m !! j = Some y).
Proof.
  split.
412
  - destruct (decide (i = j)) as [->|?];
413
      rewrite ?lookup_insert, ?lookup_insert_ne; intuition congruence.
414
  - intros [[-> ->]|[??]]; [apply lookup_insert|]. by rewrite lookup_insert_ne.
415
Qed.
416
417
418
Lemma lookup_insert_is_Some {A} (m : M A) i j x :
  is_Some (<[i:=x]>m !! j)  i = j  i  j  is_Some (m !! j).
Proof. unfold is_Some; setoid_rewrite lookup_insert_Some; naive_solver. Qed.
419
420
421
Lemma lookup_insert_None {A} (m : M A) i j x :
  <[i:=x]>m !! j = None  m !! j = None  i  j.
Proof.
422
423
424
  split; [|by intros [??]; rewrite lookup_insert_ne].
  destruct (decide (i = j)) as [->|];
    rewrite ?lookup_insert, ?lookup_insert_ne; intuition congruence.
425
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
426
Lemma insert_id {A} (m : M A) i x : m !! i = Some x  <[i:=x]>m = m.
427
428
429
430
431
432
433
434
Proof.
  intros; apply map_eq; intros j; destruct (decide (i = j)) as [->|];
    by rewrite ?lookup_insert, ?lookup_insert_ne by done.
Qed.
Lemma insert_included {A} R `{!Reflexive R} (m : M A) i x :
  ( y, m !! i = Some y  R y x)  map_included R m (<[i:=x]>m).
Proof.
  intros ? j; destruct (decide (i = j)) as [->|].
435
436
  - rewrite lookup_insert. destruct (m !! j); simpl; eauto.
  - rewrite lookup_insert_ne by done. by destruct (m !! j); simpl.
437
Qed.
438
Lemma insert_subseteq {A} (m : M A) i x : m !! i = None  m  <[i:=x]>m.
439
Proof. apply partial_alter_subseteq. Qed.
440
Lemma insert_subset {A} (m : M A) i x : m !! i = None  m  <[i:=x]>m.
441
442
Proof. intro. apply partial_alter_subset; eauto. Qed.
Lemma insert_subseteq_r {A} (m1 m2 : M A) i x :
443
  m1 !! i = None  m1  m2  m1  <[i:=x]>m2.
444
Proof.
445
446
447
  rewrite !map_subseteq_spec. intros ?? j ?.
  destruct (decide (j = i)) as [->|?]; [congruence|].
  rewrite lookup_insert_ne; auto.
448
449
Qed.
Lemma insert_delete_subseteq {A} (m1 m2 : M A) i x :
450
  m1 !! i = None  <[i:=x]> m1  m2  m1  delete i m2.
451
Proof.
452
453
454
455
  rewrite !map_subseteq_spec. intros Hi Hix j y Hj.
  destruct (decide (i = j)) as [->|]; [congruence|].
  rewrite lookup_delete_ne by done.
  apply Hix; by rewrite lookup_insert_ne by done.
456
457
Qed.
Lemma delete_insert_subseteq {A} (m1 m2 : M A) i x :
458
  m1 !! i = Some x  delete i m1  m2  m1  <[i:=x]> m2.
459
Proof.
460
461
  rewrite !map_subseteq_spec.
  intros Hix Hi j y Hj. destruct (decide (i = j)) as [->|?].
462
463
  - rewrite lookup_insert. congruence.
  - rewrite lookup_insert_ne by done. apply Hi. by rewrite lookup_delete_ne.
464
465
Qed.
Lemma insert_delete_subset {A} (m1 m2 : M A) i x :
466
  m1 !! i = None  <[i:=x]> m1  m2  m1  delete i m2.
467
Proof.
468
469
470
  intros ? [Hm12 Hm21]; split; [eauto using insert_delete_subseteq|].
  contradict Hm21. apply delete_insert_subseteq; auto.
  eapply lookup_weaken, Hm12. by rewrite lookup_insert.
471
472
Qed.
Lemma insert_subset_inv {A} (m1 m2 : M A) i x :
473
  m1 !! i = None  <[i:=x]> m1  m2 
474
475
   m2', m2 = <[i:=x]>m2'  m1  m2'  m2' !! i = None.
Proof.
476
  intros Hi Hm1m2. exists (delete i m2). split_and?.
477
478
  - rewrite insert_delete, insert_id. done.
    eapply lookup_weaken, strict_include; eauto. by rewrite lookup_insert.
479
480
  - eauto using insert_delete_subset.
  - by rewrite lookup_delete.
481
Qed.
482
Lemma insert_empty {A} i (x : A) : <[i:=x]> = {[i := x]}.
483
Proof. done. Qed.
484
485
486
487
Lemma insert_non_empty {A} (m : M A) i x : <[i:=x]>m  .
Proof.
  intros Hi%(f_equal (!! i)). by rewrite lookup_insert, lookup_empty in Hi.
Qed.
488
489
490

(** ** Properties of the singleton maps *)
Lemma lookup_singleton_Some {A} i j (x y : A) :
491
  {[i := x]} !! j = Some y  i = j  x = y.
492
Proof.
493
  rewrite <-insert_empty,lookup_insert_Some, lookup_empty; intuition congruence.
494
Qed.
495
Lemma lookup_singleton_None {A} i j (x : A) : {[i := x]} !! j = None  i  j.
496
Proof. rewrite <-insert_empty,lookup_insert_None, lookup_empty; tauto. Qed.
497
Lemma lookup_singleton {A} i (x : A) : {[i := x]} !! i = Some x.
498
Proof. by rewrite lookup_singleton_Some. Qed.
499
Lemma lookup_singleton_ne {A} i j (x : A) : i  j  {[i := x]} !! j = None.
500
Proof. by rewrite lookup_singleton_None. Qed.
501
Lemma map_non_empty_singleton {A} i (x : A) : {[i := x]}  .
502
503
504
505
Proof.
  intros Hix. apply (f_equal (!! i)) in Hix.
  by rewrite lookup_empty, lookup_singleton in Hix.
Qed.
506
Lemma insert_singleton {A} i (x y : A) : <[i:=y]>{[i := x]} = {[i := y]}.
507
Proof.
508
  unfold singletonM, map_singleton, insert, map_insert.
509
510
  by rewrite <-partial_alter_compose.
Qed.
511
Lemma alter_singleton {A} (f : A  A) i x : alter f i {[i := x]} = {[i := f x]}.
512
Proof.
513
  intros. apply map_eq. intros i'. destruct (decide (i = i')) as [->|?].
514
515
  - by rewrite lookup_alter, !lookup_singleton.
  - by rewrite lookup_alter_ne, !lookup_singleton_ne.
516
517
Qed.
Lemma alter_singleton_ne {A} (f : A  A) i j x :
518
  i  j  alter f i {[j := x]} = {[j := x]}.
519
Proof.
520
521
  intros. apply map_eq; intros i'. by destruct (decide (i = i')) as [->|?];
    rewrite ?lookup_alter, ?lookup_singleton_ne, ?lookup_alter_ne by done.
522
Qed.
523
524
Lemma singleton_non_empty {A} i (x : A) : {[i:=x]}  .
Proof. apply insert_non_empty. Qed.
525

526
527
528
529
530
(** ** Properties of the map operations *)
Lemma fmap_empty {A B} (f : A  B) : f <$>  = .
Proof. apply map_empty; intros i. by rewrite lookup_fmap, lookup_empty. Qed.
Lemma omap_empty {A B} (f : A  option B) : omap f  = .
Proof. apply map_empty; intros i. by rewrite lookup_omap, lookup_empty. Qed.
531
532
533
Lemma fmap_insert {A B} (f: A  B) m i x: f <$> <[i:=x]>m = <[i:=f x]>(f <$> m).
Proof.
  apply map_eq; intros i'; destruct (decide (i' = i)) as [->|].
534
535
  - by rewrite lookup_fmap, !lookup_insert.
  - by rewrite lookup_fmap, !lookup_insert_ne, lookup_fmap by done.
536
Qed.
537
538
539
540
541
542
Lemma fmap_delete {A B} (f: A  B) m i: f <$> delete i m = delete i (f <$> m).
Proof.
  apply map_eq; intros i'; destruct (decide (i' = i)) as [->|].
  - by rewrite lookup_fmap, !lookup_delete.
  - by rewrite lookup_fmap, !lookup_delete_ne, lookup_fmap by done.
Qed.
543
544
545
546
Lemma omap_insert {A B} (f : A  option B) m i x y :
  f x = Some y  omap f (<[i:=x]>m) = <[i:=y]>(omap f m).
Proof.
  intros; apply map_eq; intros i'; destruct (decide (i' = i)) as [->|].
547
548
  - by rewrite lookup_omap, !lookup_insert.
  - by rewrite lookup_omap, !lookup_insert_ne, lookup_omap by done.
549
Qed.
550
Lemma map_fmap_singleton {A B} (f : A  B) i x : f <$> {[i := x]} = {[i := f x]}.
551
552
553
Proof.
  by unfold singletonM, map_singleton; rewrite fmap_insert, map_fmap_empty.
Qed.
554
Lemma omap_singleton {A B} (f : A  option B) i x y :
555
  f x = Some y  omap f {[ i := x ]} = {[ i := y ]}.
556
Proof.
557
558
  intros. unfold singletonM, map_singleton.
  by erewrite omap_insert, omap_empty by eauto.
559
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
560
561
562
563
564
Lemma map_fmap_id {A} (m : M A) : id <$> m = m.
Proof. apply map_eq; intros i; by rewrite lookup_fmap, option_fmap_id. Qed.
Lemma map_fmap_compose {A B C} (f : A  B) (g : B  C) (m : M A) :
  g  f <$> m = g <$> f <$> m.
Proof. apply map_eq; intros i; by rewrite !lookup_fmap,option_fmap_compose. Qed.
565
Lemma map_fmap_equiv_ext `{Equiv A, Equiv B} (f1 f2 : A  B) m :
566
567
568
569
570
  ( i x, m !! i = Some x  f1 x  f2 x)  f1 <$> m  f2 <$> m.
Proof.
  intros Hi i; rewrite !lookup_fmap.
  destruct (m !! i) eqn:?; constructor; eauto.
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
571
572
573
574
575
576
Lemma map_fmap_ext {A B} (f1 f2 : A  B) m :
  ( i x, m !! i = Some x  f1 x = f2 x)  f1 <$> m = f2 <$> m.
Proof.
  intros Hi; apply map_eq; intros i; rewrite !lookup_fmap.
  by destruct (m !! i) eqn:?; simpl; erewrite ?Hi by eauto.
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
577
578
579
580
581
582
Lemma omap_ext {A B} (f1 f2 : A  option B) m :
  ( i x, m !! i = Some x  f1 x = f2 x)  omap f1 m = omap f2 m.
Proof.
  intros Hi; apply map_eq; intros i; rewrite !lookup_omap.
  by destruct (m !! i) eqn:?; simpl; erewrite ?Hi by eauto.
Qed.
583

584
585
(** ** Properties of conversion to lists *)
Lemma map_to_list_unique {A} (m : M A) i x y :
586
  (i,x)  map_to_list m  (i,y)  map_to_list m  x = y.
587
Proof. rewrite !elem_of_map_to_list. congruence. Qed.
588
Lemma NoDup_fst_map_to_list {A} (m : M A) : NoDup ((map_to_list m).*1).
589
Proof. eauto using NoDup_fmap_fst, map_to_list_unique, NoDup_map_to_list. Qed.
590
591
592
593
594
Lemma elem_of_map_of_list_1_help {A} (l : list (K * A)) i x :
  (i,x)  l  ( y, (i,y)  l  y = x)  map_of_list l !! i = Some x.
Proof.
  induction l as [|[j y] l IH]; csimpl; [by rewrite elem_of_nil|].
  setoid_rewrite elem_of_cons.
595
  intros [?|?] Hdup; simplify_eq; [by rewrite lookup_insert|].
596
  destruct (decide (i = j)) as [->|].
597
598
  - rewrite lookup_insert; f_equal; eauto.
  - rewrite lookup_insert_ne by done; eauto.
599
Qed.
600
Lemma elem_of_map_of_list_1 {A} (l : list (K * A)) i x :
601
  NoDup (l.*1)  (i,x)  l  map_of_list l !! i = Some x.
602
Proof.
603
604
  intros ? Hx; apply elem_of_map_of_list_1_help; eauto using NoDup_fmap_fst.
  intros y; revert Hx. rewrite !elem_of_list_lookup; intros [i' Hi'] [j' Hj'].
605
  cut (i' = j'); [naive_solver|]. apply NoDup_lookup with (l.*1) i;
606
    by rewrite ?list_lookup_fmap, ?Hi', ?Hj'.
607
608
Qed.
Lemma elem_of_map_of_list_2 {A} (l : list (K * A)) i x :
609
  map_of_list l !! i = Some x  (i,x)  l.
610
Proof.
611
612
613
  induction l as [|[j y] l IH]; simpl; [by rewrite lookup_empty|].
  rewrite elem_of_cons. destruct (decide (i = j)) as [->|];
    rewrite ?lookup_insert, ?lookup_insert_ne; intuition congruence.
614
615
Qed.
Lemma elem_of_map_of_list {A} (l : list (K * A)) i x :
616
  NoDup (l.*1)  (i,x)  l  map_of_list l !! i = Some x.
617
Proof. split; auto using elem_of_map_of_list_1, elem_of_map_of_list_2. Qed.
618
Lemma not_elem_of_map_of_list_1 {A} (l : list (K * A)) i :
619
  i  l.*1  map_of_list l !! i = None.
620
Proof.
621
622
  rewrite elem_of_list_fmap, eq_None_not_Some. intros Hi [x ?]; destruct Hi.
  exists (i,x); simpl; auto using elem_of_map_of_list_2.
623
624
Qed.
Lemma not_elem_of_map_of_list_2 {A} (l : list (K * A)) i :
625
  map_of_list l !! i = None  i  l.*1.
626
Proof.
627
  induction l as [|[j y] l IH]; csimpl; [rewrite elem_of_nil; tauto|].
628
  rewrite elem_of_cons. destruct (decide (i = j)); simplify_eq.
629
630
  - by rewrite lookup_insert.
  - by rewrite lookup_insert_ne; intuition.
631
632
Qed.
Lemma not_elem_of_map_of_list {A} (l : list (K * A)) i :
633
  i  l.*1  map_of_list l !! i = None.
634
Proof. red; auto using not_elem_of_map_of_list_1,not_elem_of_map_of_list_2. Qed.
635
Lemma map_of_list_proper {A} (l1 l2 : list (K * A)) :
636
  NoDup (l1.*1)  l1  l2  map_of_list l1 = map_of_list l2.
637
638
639
640
641
Proof.
  intros ? Hperm. apply map_eq. intros i. apply option_eq. intros x.
  by rewrite <-!elem_of_map_of_list; rewrite <-?Hperm.
Qed.
Lemma map_of_list_inj {A} (l1 l2 : list (K * A)) :
642
  NoDup (l1.*1)  NoDup (l2.*1)  map_of_list l1 = map_of_list l2  l1  l2.
643
Proof.
644
  intros ?? Hl1l2. apply NoDup_Permutation; auto using (NoDup_fmap_1 fst).
645
646
  intros [i x]. by rewrite !elem_of_map_of_list, Hl1l2.
Qed.
647
Lemma map_of_to_list {A} (m : M A) : map_of_list (map_to_list m) = m.
648
649
650
Proof.
  apply map_eq. intros i. apply option_eq. intros x.
  by rewrite <-elem_of_map_of_list, elem_of_map_to_list
651
    by auto using NoDup_fst_map_to_list.
652
653
Qed.
Lemma map_to_of_list {A} (l : list (K * A)) :
654
  NoDup (l.*1)  map_to_list (map_of_list l)  l.
655
Proof. auto using map_of_list_inj, NoDup_fst_map_to_list, map_of_to_list. Qed.
656
Lemma map_to_list_inj {A} (m1 m2 : M A) :
657
  map_to_list m1  map_to_list m2  m1 = m2.
658
Proof.
659
  intros. rewrite <-(map_of_to_list m1), <-(map_of_to_list m2).
660
  auto using map_of_list_proper, NoDup_fst_map_to_list.
661
Qed.
662
663
664
665
666
667
Lemma map_to_of_list_flip {A} (m1 : M A) l2 :
  map_to_list m1  l2  m1 = map_of_list l2.
Proof.
  intros. rewrite <-(map_of_to_list m1).
  auto using map_of_list_proper, NoDup_fst_map_to_list.
Qed.
668
669
670
671
672
673
674
675