natmap.v 8.88 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
(* Copyright (c) 2012-2013, Robbert Krebbers. *)
(* This file is distributed under the terms of the BSD license. *)
(** This files implements finite maps whose keys range over Coq's data type of
unary natural numbers [nat]. *)
Require Import fin_maps.

Notation natmap_raw A := (list (option A)).
Definition natmap_wf {A} (l : natmap_raw A) :=
  match last l with
  | None => True
  | Some x => is_Some x
  end.
Instance natmap_wf_pi {A} (l : natmap_raw A) : ProofIrrel (natmap_wf l).
Proof. unfold natmap_wf. case_match; apply _. Qed.

Lemma natmap_wf_inv {A} (o : option A) (l : natmap_raw A)  :
  natmap_wf (o :: l)  natmap_wf l.
Proof. by destruct l. Qed.
Lemma natmap_wf_lookup {A} (l : natmap_raw A) :
  natmap_wf l  l  []   i x, mjoin (l !! i) = Some x.
Proof.
  intros Hwf Hl. induction l as [|[x|] l IH]; simpl.
  * done.
  * exists 0. simpl. eauto.
  * destruct IH as (i&x&?); eauto using natmap_wf_inv.
    { intro. subst. inversion Hwf. }
    by exists (S i) x.
Qed.

Definition natmap (A : Type) : Type := sig (@natmap_wf A).

Instance natmap_empty {A} : Empty (natmap A) := []  I.
Instance natmap_lookup {A} : Lookup nat A (natmap A) :=
  λ i m, mjoin (`m !! i).

Fixpoint natmap_singleton_raw {A} (i : nat) (x : A) : natmap_raw A :=
  match i with
  | 0 => [Some x]
  | S i => None :: natmap_singleton_raw i x
  end.
Lemma natmap_singleton_wf {A} (i : nat) (x : A) :
  natmap_wf (natmap_singleton_raw i x).
Proof.
  unfold natmap_wf, last.
  induction i as [|i]; simpl; repeat case_match; simplify_equality; eauto.
  by destruct i.
Qed.
Lemma natmap_lookup_singleton_raw {A} (i : nat) (x : A) :
  mjoin (natmap_singleton_raw i x !! i) = Some x.
Proof. induction i; simpl; auto. Qed.
Lemma natmap_lookup_singleton_raw_ne {A} (i j : nat) (x : A) :
  i  j  mjoin (natmap_singleton_raw i x !! j) = None.
Proof. revert j; induction i; intros [|?]; simpl; auto with congruence. Qed.
Hint Rewrite @natmap_lookup_singleton_raw : natmap.

Definition natmap_cons_canon {A} (o : option A) (l : natmap_raw A) :=
  match o, l with
  | None, [] => []
  | _, _ => o :: l
  end.
Lemma natmap_cons_canon_wf {A} (o : option A) (l : natmap_raw A) :
  natmap_wf l  natmap_wf (natmap_cons_canon o l).
Proof. unfold natmap_wf, last. destruct o, l; simpl; eauto. Qed.
Lemma natmap_cons_canon_O {A} (o : option A) (l : natmap_raw A) :
  mjoin (natmap_cons_canon o l !! 0) = o.
Proof. by destruct o, l. Qed.
Lemma natmap_cons_canon_S {A} (o : option A) (l : natmap_raw A) i :
  natmap_cons_canon o l !! S i = l !! i.
Proof. by destruct o, l. Qed.
Hint Rewrite @natmap_cons_canon_O @natmap_cons_canon_S : natmap.

Definition natmap_alter_raw {A} (f : option A  option A) :
    nat  natmap_raw A  natmap_raw A :=
  fix go i l {struct l} :=
  match l with
  | [] =>
     match f None with
     | Some x => natmap_singleton_raw i x
     | None => []
     end
  | o :: l =>
     match i with
     | 0 => natmap_cons_canon (f o) l
     | S i => natmap_cons_canon o (go i l)
     end
  end.
Lemma natmap_alter_wf {A} (f : option A  option A) i l :
  natmap_wf l  natmap_wf (natmap_alter_raw f i l).
Proof.
  revert i. induction l; [intro | intros [|?]]; simpl; repeat case_match;
    eauto using natmap_singleton_wf, natmap_cons_canon_wf, natmap_wf_inv.
Qed.
Instance natmap_alter {A} : PartialAlter nat A (natmap A) := λ f i m,
  natmap_alter_raw f i (`m)natmap_alter_wf _ _ _ (proj2_sig m).
Lemma natmap_lookup_alter_raw {A} (f : option A  option A) i l :
  mjoin (natmap_alter_raw f i l !! i) = f (mjoin (l !! i)).
Proof.
  revert i. induction l; intros [|?]; simpl; repeat case_match; simpl;
    autorewrite with natmap; auto.
Qed.
Lemma natmap_lookup_alter_raw_ne {A} (f : option A  option A) i j l :
  i  j  mjoin (natmap_alter_raw f i l !! j) = mjoin (l !! j).
Proof.
  revert i j. induction l; intros [|?] [|?] ?; simpl;
    repeat case_match; simpl; autorewrite with natmap; auto with congruence.
  rewrite natmap_lookup_singleton_raw_ne; congruence.
Qed.

Definition natmap_merge_aux {A B} (f : option A  option B) :
    natmap_raw A  natmap_raw B :=
  fix go l :=
  match l with
  | [] => []
  | o :: l => natmap_cons_canon (f o) (go l)
  end.
Lemma natmap_merge_aux_wf {A B} (f : option A  option B) l :
  natmap_wf l  natmap_wf (natmap_merge_aux f l).
Proof. induction l; simpl; eauto using natmap_cons_canon_wf, natmap_wf_inv. Qed.
Lemma natmap_lookup_merge_aux {A B} (f : option A  option B) l i :
  f None = None 
  mjoin (natmap_merge_aux f l !! i) = f (mjoin (l !! i)).
Proof.
  revert i. induction l; intros [|?]; simpl; autorewrite with natmap; auto.
Qed.
Hint Rewrite @natmap_lookup_merge_aux : natmap.

Definition natmap_merge_raw {A B C} (f : option A  option B  option C) :
    natmap_raw A  natmap_raw B  natmap_raw C :=
  fix go l1 l2 :=
  match l1, l2 with
  | [], l2 => natmap_merge_aux (f None) l2
  | l1, [] => natmap_merge_aux (flip f None) l1
  | o1 :: l1, o2 :: l2 => natmap_cons_canon (f o1 o2) (go l1 l2)
  end.
Lemma natmap_merge_wf {A B C} (f : option A  option B  option C) l1 l2 :
  natmap_wf l1  natmap_wf l2  natmap_wf (natmap_merge_raw f l1 l2).
Proof.
  revert l2. induction l1; intros [|??]; simpl;
    eauto using natmap_merge_aux_wf, natmap_cons_canon_wf, natmap_wf_inv.
Qed.
Lemma natmap_lookup_merge_raw {A B C} (f : option A  option B  option C) l1 l2 i :
  f None None = None 
  mjoin (natmap_merge_raw f l1 l2 !! i) = f (mjoin (l1 !! i)) (mjoin (l2 !! i)).
Proof.
  intros. revert i l2. induction l1; intros [|?] [|??]; simpl;
    autorewrite with natmap; auto.
Qed.
Instance natmap_merge: Merge natmap := λ A B C f m1 m2,
  natmap_merge_raw f _ _  natmap_merge_wf _ _ _ (proj2_sig m1) (proj2_sig m2).

Fixpoint natmap_to_list_raw {A} (i : nat) (l : natmap_raw A) : list (nat * A) :=
  match l with
  | [] => []
  | None :: l => natmap_to_list_raw (S i) l
  | Some x :: l => (i,x) :: natmap_to_list_raw (S i) l
  end.
Lemma natmap_elem_of_to_list_raw_aux {A} j (l : natmap_raw A) i x :
  (i,x)  natmap_to_list_raw j l   i', i = i' + j  mjoin (l !! i') = Some x.
Proof.
  split.
  * revert j. induction l as [|[y|] l IH]; intros j; simpl.
    + by rewrite elem_of_nil.
    + rewrite elem_of_cons. intros [?|?]; simplify_equality.
      - by exists 0.
      - destruct (IH (S j)) as (i'&?&?); auto.
        exists (S i'); simpl; auto with lia.
    + intros. destruct (IH (S j)) as (i'&?&?); auto.
      exists (S i'); simpl; auto with lia.
  * intros (i'&?&Hi'). subst. revert i' j Hi'.
    induction l as [|[y|] l IH]; intros i j ?; simpl.
    + done.
    + destruct i as [|i]; simplify_equality; [left|].
      right. rewrite NPeano.Nat.add_succ_comm. by apply (IH i (S j)).
    + destruct i as [|i]; simplify_equality.
      rewrite NPeano.Nat.add_succ_comm. by apply (IH i (S j)).
Qed.
Lemma natmap_elem_of_to_list_raw {A} (l : natmap_raw A) i x :
  (i,x)  natmap_to_list_raw 0 l  mjoin (l !! i) = Some x.
Proof.
  rewrite natmap_elem_of_to_list_raw_aux. setoid_rewrite plus_0_r. naive_solver.
Qed.
Lemma natmap_to_list_raw_nodup {A} i (l : natmap_raw A) :
  NoDup (natmap_to_list_raw i l).
Proof.
  revert i. induction l as [|[?|] ? IH]; simpl; try constructor; auto.
  rewrite natmap_elem_of_to_list_raw_aux. intros (?&?&?). lia.
Qed.
Instance natmap_to_list {A} : FinMapToList nat A (natmap A) := λ m,
  natmap_to_list_raw 0 (`m).

Definition natmap_map_raw {A B} (f : A  B) : natmap_raw A  natmap_raw B :=
  fmap (fmap f).
Lemma natmap_map_wf {A B} (f : A  B) l :
  natmap_wf l  natmap_wf (natmap_map_raw f l).
Proof.
  unfold natmap_wf, last.
  induction l; simpl; repeat case_match; simplify_equality; eauto.
  simpl. by rewrite fmap_is_Some.
Qed.
Lemma natmap_lookup_map_raw {A B} (f : A  B) i l :
  mjoin (natmap_map_raw f l !! i) = f <$> mjoin (l !! i).
Proof. unfold natmap_map_raw. rewrite list_lookup_fmap. by destruct (l !! i). Qed.
Instance natmap_map: FMap natmap := λ A B f m,
  natmap_map_raw f _  natmap_map_wf _ _ (proj2_sig m).

Instance: FinMap nat natmap.
Proof.
  split.
  * unfold lookup, natmap_lookup. intros A [l1 Hl1] [l2 Hl2] E.
    apply (sig_eq_pi _). revert l2 Hl1 Hl2 E. simpl.
    induction l1 as [|[x|] l1 IH]; intros [|[y|] l2] Hl1 Hl2 E; simpl in *.
    + done.
    + by specialize (E 0).
    + destruct (natmap_wf_lookup (None :: l2)) as [i [??]]; auto with congruence.
    + by specialize (E 0).
    + f_equal. apply (E 0). apply IH; eauto using natmap_wf_inv.
      intros i. apply (E (S i)).
    + by specialize (E 0).
    + destruct (natmap_wf_lookup (None :: l1)) as [i [??]]; auto with congruence.
    + by specialize (E 0).
    + f_equal. apply IH; eauto using natmap_wf_inv.
      intros i. apply (E (S i)).
  * done.
  * intros ?? [??] ?. apply natmap_lookup_alter_raw.
  * intros ?? [??] ??. apply natmap_lookup_alter_raw_ne.
  * intros ??? [??] ?. apply natmap_lookup_map_raw.
  * intros ? [??]. by apply natmap_to_list_raw_nodup.
  * intros ? [??] ??. by apply natmap_elem_of_to_list_raw.
  * intros ????? [??] [??] ?. by apply natmap_lookup_merge_raw.
Qed.