list.v 165 KB
Newer Older
1
(* Copyright (c) 2012-2017, Coq-std++ developers. *)
2
3
4
(* This file is distributed under the terms of the BSD license. *)
(** This file collects general purpose definitions and theorems on lists that
are not in the Coq standard library. *)
5
From Coq Require Export Permutation.
6
From stdpp Require Export numbers base option.
7
Set Default Proof Using "Type*".
Robbert Krebbers's avatar
Robbert Krebbers committed
8

9
10
11
Arguments length {_} _ : assert.
Arguments cons {_} _ _ : assert.
Arguments app {_} _ _ : assert.
12
13
14
15

Instance: Params (@length) 1.
Instance: Params (@cons) 1.
Instance: Params (@app) 1.
Robbert Krebbers's avatar
Robbert Krebbers committed
16

17
18
19
Notation tail := tl.
Notation take := firstn.
Notation drop := skipn.
20

21
22
23
Arguments tail {_} _ : assert.
Arguments take {_} !_ !_ / : assert.
Arguments drop {_} !_ !_ / : assert.
24

25
26
27
28
Instance: Params (@tail) 1.
Instance: Params (@take) 1.
Instance: Params (@drop) 1.

29
30
Arguments Permutation {_} _ _ : assert.
Arguments Forall_cons {_} _ _ _ _ _ : assert.
31
Remove Hints Permutation_cons : typeclass_instances.
32

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
Notation "(::)" := cons (only parsing) : stdpp_scope.
Notation "( x ::)" := (cons x) (only parsing) : stdpp_scope.
Notation "(:: l )" := (λ x, cons x l) (only parsing) : stdpp_scope.
Notation "(++)" := app (only parsing) : stdpp_scope.
Notation "( l ++)" := (app l) (only parsing) : stdpp_scope.
Notation "(++ k )" := (λ l, app l k) (only parsing) : stdpp_scope.

Infix "≡ₚ" := Permutation (at level 70, no associativity) : stdpp_scope.
Notation "(≡ₚ)" := Permutation (only parsing) : stdpp_scope.
Notation "( x ≡ₚ)" := (Permutation x) (only parsing) : stdpp_scope.
Notation "(≡ₚ x )" := (λ y, y  x) (only parsing) : stdpp_scope.
Notation "(≢ₚ)" := (λ x y, ¬x  y) (only parsing) : stdpp_scope.
Notation "x ≢ₚ y":= (¬x  y) (at level 70, no associativity) : stdpp_scope.
Notation "( x ≢ₚ)" := (λ y, x ≢ₚ y) (only parsing) : stdpp_scope.
Notation "(≢ₚ x )" := (λ y, y ≢ₚ x) (only parsing) : stdpp_scope.
48

Robbert Krebbers's avatar
Robbert Krebbers committed
49
50
51
Instance maybe_cons {A} : Maybe2 (@cons A) := λ l,
  match l with x :: l => Some (x,l) | _ => None end.

52
(** * Definitions *)
53
54
55
56
57
58
(** Setoid equality lifted to lists *)
Inductive list_equiv `{Equiv A} : Equiv (list A) :=
  | nil_equiv : []  []
  | cons_equiv x y l k : x  y  l  k  x :: l  y :: k.
Existing Instance list_equiv.

59
60
(** The operation [l !! i] gives the [i]th element of the list [l], or [None]
in case [i] is out of bounds. *)
61
62
Instance list_lookup {A} : Lookup nat A (list A) :=
  fix go i l {struct l} : option A := let _ : Lookup _ _ _ := @go in
63
  match l with
64
  | [] => None | x :: l => match i with 0 => Some x | S i => l !! i end
65
  end.
66
67
68

(** The operation [alter f i l] applies the function [f] to the [i]th element
of [l]. In case [i] is out of bounds, the list is returned unchanged. *)
69
Instance list_alter {A} : Alter nat A (list A) := λ f,
70
  fix go i l {struct l} :=
71
72
  match l with
  | [] => []
73
  | x :: l => match i with 0 => f x :: l | S i => x :: go i l end
74
  end.
75

76
77
(** The operation [<[i:=x]> l] overwrites the element at position [i] with the
value [x]. In case [i] is out of bounds, the list is returned unchanged. *)
78
79
Instance list_insert {A} : Insert nat A (list A) :=
  fix go i y l {struct l} := let _ : Insert _ _ _ := @go in
80
81
82
83
  match l with
  | [] => []
  | x :: l => match i with 0 => y :: l | S i => x :: <[i:=y]>l end
  end.
84
85
86
87
88
Fixpoint list_inserts {A} (i : nat) (k l : list A) : list A :=
  match k with
  | [] => l
  | y :: k => <[i:=y]>(list_inserts (S i) k l)
  end.
89
Instance: Params (@list_inserts) 1.
90

91
92
93
(** The operation [delete i l] removes the [i]th element of [l] and moves
all consecutive elements one position ahead. In case [i] is out of bounds,
the list is returned unchanged. *)
94
95
Instance list_delete {A} : Delete nat (list A) :=
  fix go (i : nat) (l : list A) {struct l} : list A :=
96
97
  match l with
  | [] => []
98
  | x :: l => match i with 0 => l | S i => x :: @delete _ _ go i l end
99
  end.
100
101
102

(** The function [option_list o] converts an element [Some x] into the
singleton list [[x]], and [None] into the empty list [[]]. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
103
Definition option_list {A} : option A  list A := option_rect _ (λ x, [x]) [].
104
105
Instance: Params (@option_list) 1.
Instance maybe_list_singleton {A} : Maybe (λ x : A, [x]) := λ l,
106
  match l with [x] => Some x | _ => None end.
Robbert Krebbers's avatar
Robbert Krebbers committed
107
108
109
110

(** The function [filter P l] returns the list of elements of [l] that
satisfies [P]. The order remains unchanged. *)
Instance list_filter {A} : Filter A (list A) :=
111
  fix go P _ l := let _ : Filter _ _ := @go in
Robbert Krebbers's avatar
Robbert Krebbers committed
112
113
  match l with
  | [] => []
114
  | x :: l => if decide (P x) then x :: filter P l else filter P l
115
116
117
118
  end.

(** The function [list_find P l] returns the first index [i] whose element
satisfies the predicate [P]. *)
119
Definition list_find {A} P `{ x, Decision (P x)} : list A  option (nat * A) :=
120
121
  fix go l :=
  match l with
122
123
  | [] => None
  | x :: l => if decide (P x) then Some (0,x) else prod_map S id <$> go l
124
  end.
125
Instance: Params (@list_find) 3.
Robbert Krebbers's avatar
Robbert Krebbers committed
126
127
128
129

(** The function [replicate n x] generates a list with length [n] of elements
with value [x]. *)
Fixpoint replicate {A} (n : nat) (x : A) : list A :=
130
  match n with 0 => [] | S n => x :: replicate n x end.
131
Instance: Params (@replicate) 2.
Robbert Krebbers's avatar
Robbert Krebbers committed
132
133
134

(** The function [reverse l] returns the elements of [l] in reverse order. *)
Definition reverse {A} (l : list A) : list A := rev_append l [].
135
Instance: Params (@reverse) 1.
Robbert Krebbers's avatar
Robbert Krebbers committed
136

137
138
139
140
(** The function [last l] returns the last element of the list [l], or [None]
if the list [l] is empty. *)
Fixpoint last {A} (l : list A) : option A :=
  match l with [] => None | [x] => Some x | _ :: l => last l end.
141
Instance: Params (@last) 1.
142

Robbert Krebbers's avatar
Robbert Krebbers committed
143
144
145
146
147
148
(** The function [resize n y l] takes the first [n] elements of [l] in case
[length l ≤ n], and otherwise appends elements with value [x] to [l] to obtain
a list of length [n]. *)
Fixpoint resize {A} (n : nat) (y : A) (l : list A) : list A :=
  match l with
  | [] => replicate n y
149
  | x :: l => match n with 0 => [] | S n => x :: resize n y l end
Robbert Krebbers's avatar
Robbert Krebbers committed
150
  end.
151
Arguments resize {_} !_ _ !_ : assert.
152
Instance: Params (@resize) 2.
Robbert Krebbers's avatar
Robbert Krebbers committed
153

154
155
156
(** The function [reshape k l] transforms [l] into a list of lists whose sizes
are specified by [k]. In case [l] is too short, the resulting list will be
padded with empty lists. In case [l] is too long, it will be truncated. *)
157
158
Fixpoint reshape {A} (szs : list nat) (l : list A) : list (list A) :=
  match szs with
159
  | [] => [] | sz :: szs => take sz l :: reshape szs (drop sz l)
160
  end.
161
Instance: Params (@reshape) 2.
162

163
Definition sublist_lookup {A} (i n : nat) (l : list A) : option (list A) :=
164
165
166
167
  guard (i + n  length l); Some (take n (drop i l)).
Definition sublist_alter {A} (f : list A  list A)
    (i n : nat) (l : list A) : list A :=
  take i l ++ f (take n (drop i l)) ++ drop (i + n) l.
168

169
170
171
172
(** Functions to fold over a list. We redefine [foldl] with the arguments in
the same order as in Haskell. *)
Notation foldr := fold_right.
Definition foldl {A B} (f : A  B  A) : A  list B  A :=
173
  fix go a l := match l with [] => a | x :: l => go (f a x) l end.
174
175
176

(** The monadic operations. *)
Instance list_ret: MRet list := λ A x, x :: @nil A.
177
178
Instance list_fmap : FMap list := λ A B f,
  fix go (l : list A) := match l with [] => [] | x :: l => f x :: go l end.
179
180
181
182
183
184
Instance list_omap : OMap list := λ A B f,
  fix go (l : list A) :=
  match l with
  | [] => []
  | x :: l => match f x with Some y => y :: go l | None => go l end
  end.
185
186
Instance list_bind : MBind list := λ A B f,
  fix go (l : list A) := match l with [] => [] | x :: l => f x ++ go l end.
187
188
Instance list_join: MJoin list :=
  fix go A (ls : list (list A)) : list A :=
189
  match ls with [] => [] | l :: ls => l ++ @mjoin _ go _ ls end.
190
Definition mapM `{MBind M, MRet M} {A B} (f : A  M B) : list A  M (list B) :=
191
  fix go l :=
192
  match l with [] => mret [] | x :: l => y  f x; k  go l; mret (y :: k) end.
193
194
195

(** We define stronger variants of map and fold that allow the mapped
function to use the index of the elements. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
196
197
198
199
200
Fixpoint imap {A B} (f : nat  A  B) (l : list A) : list B :=
  match l with
  | [] => []
  | x :: l => f 0 x :: imap (f  S) l
  end.
201

202
Definition zipped_map {A B} (f : list A  list A  A  B) :
Robbert Krebbers's avatar
Robbert Krebbers committed
203
204
205
206
207
    list A  list A  list B := fix go l k :=
  match k with
  | [] => []
  | x :: k => f l k x :: go (x :: l) k
  end.
208

Robbert Krebbers's avatar
Robbert Krebbers committed
209
Fixpoint imap2 {A B C} (f : nat  A  B  C) (l : list A) (k : list B) : list C :=
Robbert Krebbers's avatar
Robbert Krebbers committed
210
  match l, k with
Robbert Krebbers's avatar
Robbert Krebbers committed
211
212
  | [], _ | _, [] => []
  | x :: l, y :: k => f 0 x y :: imap2 (f  S) l k
Robbert Krebbers's avatar
Robbert Krebbers committed
213
214
  end.

215
216
217
218
219
Inductive zipped_Forall {A} (P : list A  list A  A  Prop) :
    list A  list A  Prop :=
  | zipped_Forall_nil l : zipped_Forall P l []
  | zipped_Forall_cons l k x :
     P l k x  zipped_Forall P (x :: l) k  zipped_Forall P l (x :: k).
220
221
Arguments zipped_Forall_nil {_ _} _ : assert.
Arguments zipped_Forall_cons {_ _} _ _ _ _ _ : assert.
222

223
224
225
226
227
228
229
(** The function [mask f βs l] applies the function [f] to elements in [l] at
positions that are [true] in [βs]. *)
Fixpoint mask {A} (f : A  A) (βs : list bool) (l : list A) : list A :=
  match βs, l with
  | β :: βs, x :: l => (if β then f x else x) :: mask f βs l
  | _, _ => l
  end.
230
231
232
233

(** The function [permutations l] yields all permutations of [l]. *)
Fixpoint interleave {A} (x : A) (l : list A) : list (list A) :=
  match l with
234
  | [] => [[x]]| y :: l => (x :: y :: l) :: ((y ::) <$> interleave x l)
235
236
  end.
Fixpoint permutations {A} (l : list A) : list (list A) :=
237
  match l with [] => [[]] | x :: l => permutations l = interleave x end.
238

Robbert Krebbers's avatar
Robbert Krebbers committed
239
240
241
242
(** The predicate [suffix] holds if the first list is a suffix of the second.
The predicate [prefix] holds if the first list is a prefix of the second. *)
Definition suffix {A} : relation (list A) := λ l1 l2,  k, l2 = k ++ l1.
Definition prefix {A} : relation (list A) := λ l1 l2,  k, l2 = l1 ++ k.
243
244
Infix "`suffix_of`" := suffix (at level 70) : stdpp_scope.
Infix "`prefix_of`" := prefix (at level 70) : stdpp_scope.
245
246
Hint Extern 0 (_ `prefix_of` _) => reflexivity.
Hint Extern 0 (_ `suffix_of` _) => reflexivity.
Robbert Krebbers's avatar
Robbert Krebbers committed
247

248
Section prefix_suffix_ops.
249
250
  Context `{EqDecision A}.

Robbert Krebbers's avatar
Robbert Krebbers committed
251
  Definition max_prefix : list A  list A  list A * list A * list A :=
252
253
254
255
256
    fix go l1 l2 :=
    match l1, l2 with
    | [], l2 => ([], l2, [])
    | l1, [] => (l1, [], [])
    | x1 :: l1, x2 :: l2 =>
257
      if decide_rel (=) x1 x2
258
      then prod_map id (x1 ::) (go l1 l2) else (x1 :: l1, x2 :: l2, [])
259
    end.
Robbert Krebbers's avatar
Robbert Krebbers committed
260
261
  Definition max_suffix (l1 l2 : list A) : list A * list A * list A :=
    match max_prefix (reverse l1) (reverse l2) with
262
263
    | (k1, k2, k3) => (reverse k1, reverse k2, reverse k3)
    end.
Robbert Krebbers's avatar
Robbert Krebbers committed
264
265
  Definition strip_prefix (l1 l2 : list A) := (max_prefix l1 l2).1.2.
  Definition strip_suffix (l1 l2 : list A) := (max_suffix l1 l2).1.2.
266
End prefix_suffix_ops.
Robbert Krebbers's avatar
Robbert Krebbers committed
267

268
(** A list [l1] is a sublist of [l2] if [l2] is obtained by removing elements
269
270
271
from [l1] without changing the order. *)
Inductive sublist {A} : relation (list A) :=
  | sublist_nil : sublist [] []
272
  | sublist_skip x l1 l2 : sublist l1 l2  sublist (x :: l1) (x :: l2)
273
  | sublist_cons x l1 l2 : sublist l1 l2  sublist l1 (x :: l2).
274
Infix "`sublist_of`" := sublist (at level 70) : stdpp_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
275
Hint Extern 0 (_ `sublist_of` _) => reflexivity.
276

Robbert Krebbers's avatar
Robbert Krebbers committed
277
(** A list [l2] submseteq a list [l1] if [l2] is obtained by removing elements
278
from [l1] while possiblity changing the order. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
279
280
281
282
283
284
Inductive submseteq {A} : relation (list A) :=
  | submseteq_nil : submseteq [] []
  | submseteq_skip x l1 l2 : submseteq l1 l2  submseteq (x :: l1) (x :: l2)
  | submseteq_swap x y l : submseteq (y :: x :: l) (x :: y :: l)
  | submseteq_cons x l1 l2 : submseteq l1 l2  submseteq l1 (x :: l2)
  | submseteq_trans l1 l2 l3 : submseteq l1 l2  submseteq l2 l3  submseteq l1 l3.
285
Infix "⊆+" := submseteq (at level 70) : stdpp_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
286
Hint Extern 0 (_ + _) => reflexivity.
287

288
289
290
291
292
293
294
295
296
297
298
299
300
301
(** Removes [x] from the list [l]. The function returns a [Some] when the
+removal succeeds and [None] when [x] is not in [l]. *)
Fixpoint list_remove `{EqDecision A} (x : A) (l : list A) : option (list A) :=
  match l with
  | [] => None
  | y :: l => if decide (x = y) then Some l else (y ::) <$> list_remove x l
  end.

(** Removes all elements in the list [k] from the list [l]. The function returns
a [Some] when the removal succeeds and [None] some element of [k] is not in [l]. *)
Fixpoint list_remove_list `{EqDecision A} (k : list A) (l : list A) : option (list A) :=
  match k with
  | [] => Some l | x :: k => list_remove x l = list_remove_list k
  end.
302

303
304
305
306
307
Inductive Forall3 {A B C} (P : A  B  C  Prop) :
     list A  list B  list C  Prop :=
  | Forall3_nil : Forall3 P [] [] []
  | Forall3_cons x y z l k k' :
     P x y z  Forall3 P l k k'  Forall3 P (x :: l) (y :: k) (z :: k').
308

309
310
(** Set operations on lists *)
Instance list_subseteq {A} : SubsetEq (list A) := λ l1 l2,  x, x  l1  x  l2.
311

312
Section list_set.
313
  Context `{dec : EqDecision A}.
314
  Global Instance elem_of_list_dec : RelDecision (@elem_of A (list A) _).
315
316
  Proof.
   refine (
317
    fix go x l :=
318
319
    match l return Decision (x  l) with
    | [] => right _
320
    | y :: l => cast_if_or (decide (x = y)) (go x l)
321
322
323
324
325
326
327
328
329
330
331
332
333
    end); clear go dec; subst; try (by constructor); abstract by inversion 1.
  Defined.
  Fixpoint remove_dups (l : list A) : list A :=
    match l with
    | [] => []
    | x :: l =>
      if decide_rel () x l then remove_dups l else x :: remove_dups l
    end.
  Fixpoint list_difference (l k : list A) : list A :=
    match l with
    | [] => []
    | x :: l =>
      if decide_rel () x k
334
      then list_difference l k else x :: list_difference l k
335
    end.
336
  Definition list_union (l k : list A) : list A := list_difference l k ++ k.
337
338
339
340
341
  Fixpoint list_intersection (l k : list A) : list A :=
    match l with
    | [] => []
    | x :: l =>
      if decide_rel () x k
342
      then x :: list_intersection l k else list_intersection l k
343
344
345
346
347
348
349
350
351
    end.
  Definition list_intersection_with (f : A  A  option A) :
    list A  list A  list A := fix go l k :=
    match l with
    | [] => []
    | x :: l => foldr (λ y,
        match f x y with None => id | Some z => (z ::) end) (go l k) k
    end.
End list_set.
352
353

(** * Basic tactics on lists *)
Robbert Krebbers's avatar
Robbert Krebbers committed
354
(** The tactic [discriminate_list] discharges a goal if it submseteq
355
356
a list equality involving [(::)] and [(++)] of two lists that have a different
length as one of its hypotheses. *)
357
Tactic Notation "discriminate_list" hyp(H) :=
358
  apply (f_equal length) in H;
359
  repeat (csimpl in H || rewrite app_length in H); exfalso; lia.
360
361
Tactic Notation "discriminate_list" :=
  match goal with H : @eq (list _) _ _ |- _ => discriminate_list H end.
362

363
(** The tactic [simplify_list_eq] simplifies hypotheses involving
364
365
equalities on lists using injectivity of [(::)] and [(++)]. Also, it simplifies
lookups in singleton lists. *)
366
Lemma app_inj_1 {A} (l1 k1 l2 k2 : list A) :
367
368
  length l1 = length k1  l1 ++ l2 = k1 ++ k2  l1 = k1  l2 = k2.
Proof. revert k1. induction l1; intros [|??]; naive_solver. Qed.
369
Lemma app_inj_2 {A} (l1 k1 l2 k2 : list A) :
370
371
  length l2 = length k2  l1 ++ l2 = k1 ++ k2  l1 = k1  l2 = k2.
Proof.
372
  intros ? Hl. apply app_inj_1; auto.
373
374
  apply (f_equal length) in Hl. rewrite !app_length in Hl. lia.
Qed.
375
Ltac simplify_list_eq :=
376
  repeat match goal with
377
  | _ => progress simplify_eq/=
378
  | H : _ ++ _ = _ ++ _ |- _ => first
379
    [ apply app_inv_head in H | apply app_inv_tail in H
380
381
    | apply app_inj_1 in H; [destruct H|done]
    | apply app_inj_2 in H; [destruct H|done] ]
Robbert Krebbers's avatar
Robbert Krebbers committed
382
  | H : [?x] !! ?i = Some ?y |- _ =>
383
    destruct i; [change (Some x = Some y) in H | discriminate]
384
  end.
385

386
387
(** * General theorems *)
Section general_properties.
Robbert Krebbers's avatar
Robbert Krebbers committed
388
Context {A : Type}.
389
390
Implicit Types x y z : A.
Implicit Types l k : list A.
Robbert Krebbers's avatar
Robbert Krebbers committed
391

392
Global Instance: Inj2 (=) (=) (=) (@cons A).
393
Proof. by injection 1. Qed.
394
Global Instance:  k, Inj (=) (=) (k ++).
395
Proof. intros ???. apply app_inv_head. Qed.
396
Global Instance:  k, Inj (=) (=) (++ k).
397
Proof. intros ???. apply app_inv_tail. Qed.
398
Global Instance: Assoc (=) (@app A).
399
400
401
402
403
Proof. intros ???. apply app_assoc. Qed.
Global Instance: LeftId (=) [] (@app A).
Proof. done. Qed.
Global Instance: RightId (=) [] (@app A).
Proof. intro. apply app_nil_r. Qed.
404

405
Lemma app_nil l1 l2 : l1 ++ l2 = []  l1 = []  l2 = [].
406
Proof. split. apply app_eq_nil. by intros [-> ->]. Qed.
407
408
Lemma app_singleton l1 l2 x :
  l1 ++ l2 = [x]  l1 = []  l2 = [x]  l1 = [x]  l2 = [].
409
Proof. split. apply app_eq_unit. by intros [[-> ->]|[-> ->]]. Qed.
410
411
412
Lemma cons_middle x l1 l2 : l1 ++ x :: l2 = l1 ++ [x] ++ l2.
Proof. done. Qed.
Lemma list_eq l1 l2 : ( i, l1 !! i = l2 !! i)  l1 = l2.
413
Proof.
414
  revert l2. induction l1 as [|x l1 IH]; intros [|y l2] H.
415
416
417
  - done.
  - discriminate (H 0).
  - discriminate (H 0).
418
  - f_equal; [by injection (H 0)|]. apply (IH _ $ λ i, H (S i)).
419
Qed.
420
421
Global Instance list_eq_dec {dec : EqDecision A} : EqDecision (list A) :=
  list_eq_dec dec.
422
423
424
Global Instance list_eq_nil_dec l : Decision (l = []).
Proof. by refine match l with [] => left _ | _ => right _ end. Defined.
Lemma list_singleton_reflect l :
425
  option_reflect (λ x, l = [x]) (length l  1) (maybe (λ x, [x]) l).
426
427
428
429
Proof. by destruct l as [|? []]; constructor. Defined.

Definition nil_length : length (@nil A) = 0 := eq_refl.
Definition cons_length x l : length (x :: l) = S (length l) := eq_refl.
430
Lemma nil_or_length_pos l : l = []  length l  0.
431
Proof. destruct l; simpl; auto with lia. Qed.
432
Lemma nil_length_inv l : length l = 0  l = [].
433
434
Proof. by destruct l. Qed.
Lemma lookup_nil i : @nil A !! i = None.
435
Proof. by destruct i. Qed.
436
Lemma lookup_tail l i : tail l !! i = l !! S i.
437
Proof. by destruct l. Qed.
438
Lemma lookup_lt_Some l i x : l !! i = Some x  i < length l.
439
Proof. revert i. induction l; intros [|?] ?; naive_solver auto with arith. Qed.
440
441
442
Lemma lookup_lt_is_Some_1 l i : is_Some (l !! i)  i < length l.
Proof. intros [??]; eauto using lookup_lt_Some. Qed.
Lemma lookup_lt_is_Some_2 l i : i < length l  is_Some (l !! i).
443
Proof. revert i. induction l; intros [|?] ?; naive_solver eauto with lia. Qed.
444
445
446
447
448
449
450
451
Lemma lookup_lt_is_Some l i : is_Some (l !! i)  i < length l.
Proof. split; auto using lookup_lt_is_Some_1, lookup_lt_is_Some_2. Qed.
Lemma lookup_ge_None l i : l !! i = None  length l  i.
Proof. rewrite eq_None_not_Some, lookup_lt_is_Some. lia. Qed.
Lemma lookup_ge_None_1 l i : l !! i = None  length l  i.
Proof. by rewrite lookup_ge_None. Qed.
Lemma lookup_ge_None_2 l i : length l  i  l !! i = None.
Proof. by rewrite lookup_ge_None. Qed.
452
453
454
Lemma list_eq_same_length l1 l2 n :
  length l2 = n  length l1 = n 
  ( i x y, i < n  l1 !! i = Some x  l2 !! i = Some y  x = y)  l1 = l2.
Robbert Krebbers's avatar
Robbert Krebbers committed
455
Proof.
456
  intros <- Hlen Hl; apply list_eq; intros i. destruct (l2 !! i) as [x|] eqn:Hx.
457
  - destruct (lookup_lt_is_Some_2 l1 i) as [y Hy].
458
459
    { rewrite Hlen; eauto using lookup_lt_Some. }
    rewrite Hy; f_equal; apply (Hl i); eauto using lookup_lt_Some.
460
  - by rewrite lookup_ge_None, Hlen, <-lookup_ge_None.
Robbert Krebbers's avatar
Robbert Krebbers committed
461
Qed.
462
Lemma lookup_app_l l1 l2 i : i < length l1  (l1 ++ l2) !! i = l1 !! i.
463
Proof. revert i. induction l1; intros [|?]; naive_solver auto with lia. Qed.
464
465
Lemma lookup_app_l_Some l1 l2 i x : l1 !! i = Some x  (l1 ++ l2) !! i = Some x.
Proof. intros. rewrite lookup_app_l; eauto using lookup_lt_Some. Qed.
466
Lemma lookup_app_r l1 l2 i :
467
  length l1  i  (l1 ++ l2) !! i = l2 !! (i - length l1).
468
469
470
471
472
473
Proof. revert i. induction l1; intros [|?]; simpl; auto with lia. Qed.
Lemma lookup_app_Some l1 l2 i x :
  (l1 ++ l2) !! i = Some x 
    l1 !! i = Some x  length l1  i  l2 !! (i - length l1) = Some x.
Proof.
  split.
474
  - revert i. induction l1 as [|y l1 IH]; intros [|i] ?;
475
      simplify_eq/=; auto with lia.
476
    destruct (IH i) as [?|[??]]; auto with lia.
477
  - intros [?|[??]]; auto using lookup_app_l_Some. by rewrite lookup_app_r.
478
Qed.
479
480
481
Lemma list_lookup_middle l1 l2 x n :
  n = length l1  (l1 ++ x :: l2) !! n = Some x.
Proof. intros ->. by induction l1. Qed.
482

483
484
485
486
487
Lemma nth_lookup l i d : nth i l d = from_option id d (l !! i).
Proof. revert i. induction l as [|x l IH]; intros [|i]; simpl; auto. Qed.
Lemma nth_lookup_Some l i d x : l !! i = Some x  nth i l d = x.
Proof. rewrite nth_lookup. by intros ->. Qed.
Lemma nth_lookup_or_length l i d : {l !! i = Some (nth i l d)} + {length l  i}.
Ralf Jung's avatar
Ralf Jung committed
488
Proof.
489
  rewrite nth_lookup. destruct (l !! i) eqn:?; eauto using lookup_ge_None_1.
Ralf Jung's avatar
Ralf Jung committed
490
491
Qed.

492
Lemma list_insert_alter l i x : <[i:=x]>l = alter (λ _, x) i l.
493
Proof. by revert i; induction l; intros []; intros; f_equal/=. Qed.
494
Lemma alter_length f l i : length (alter f i l) = length l.
495
Proof. revert i. by induction l; intros [|?]; f_equal/=. Qed.
496
Lemma insert_length l i x : length (<[i:=x]>l) = length l.
497
Proof. revert i. by induction l; intros [|?]; f_equal/=. Qed.
498
Lemma list_lookup_alter f l i : alter f i l !! i = f <$> l !! i.
499
Proof. revert i. induction l. done. intros [|i]. done. apply (IHl i). Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
500
Lemma list_lookup_alter_ne f l i j : i  j  alter f i l !! j = l !! j.
501
Proof. revert i j. induction l; [done|]. intros [] []; naive_solver. Qed.
502
Lemma list_lookup_insert l i x : i < length l  <[i:=x]>l !! i = Some x.
503
Proof. revert i. induction l; intros [|?] ?; f_equal/=; auto with lia. Qed.
504
Lemma list_lookup_insert_ne l i j x : i  j  <[i:=x]>l !! j = l !! j.
505
Proof. revert i j. induction l; [done|]. intros [] []; naive_solver. Qed.
506
507
508
509
510
511
Lemma list_lookup_insert_Some l i x j y :
  <[i:=x]>l !! j = Some y 
    i = j  x = y  j < length l  i  j  l !! j = Some y.
Proof.
  destruct (decide (i = j)) as [->|];
    [split|rewrite list_lookup_insert_ne by done; tauto].
512
  - intros Hy. assert (j < length l).
513
514
    { rewrite <-(insert_length l j x); eauto using lookup_lt_Some. }
    rewrite list_lookup_insert in Hy by done; naive_solver.
515
  - intros [(?&?&?)|[??]]; rewrite ?list_lookup_insert; naive_solver.
516
517
518
Qed.
Lemma list_insert_commute l i j x y :
  i  j  <[i:=x]>(<[j:=y]>l) = <[j:=y]>(<[i:=x]>l).
519
Proof. revert i j. by induction l; intros [|?] [|?] ?; f_equal/=; auto. Qed.
520
521
Lemma list_lookup_other l i x :
  length l  1  l !! i = Some x   j y, j  i  l !! j = Some y.
Robbert Krebbers's avatar
Robbert Krebbers committed
522
Proof.
523
  intros. destruct i, l as [|x0 [|x1 l]]; simplify_eq/=.
524
525
  - by exists 1, x1.
  - by exists 0, x0.
Robbert Krebbers's avatar
Robbert Krebbers committed
526
Qed.
527
528
Lemma alter_app_l f l1 l2 i :
  i < length l1  alter f i (l1 ++ l2) = alter f i l1 ++ l2.
529
Proof. revert i. induction l1; intros [|?] ?; f_equal/=; auto with lia. Qed.
530
Lemma alter_app_r f l1 l2 i :
531
  alter f (length l1 + i) (l1 ++ l2) = l1 ++ alter f i l2.
532
Proof. revert i. induction l1; intros [|?]; f_equal/=; auto. Qed.
533
534
Lemma alter_app_r_alt f l1 l2 i :
  length l1  i  alter f i (l1 ++ l2) = l1 ++ alter f (i - length l1) l2.
535
536
537
538
Proof.
  intros. assert (i = length l1 + (i - length l1)) as Hi by lia.
  rewrite Hi at 1. by apply alter_app_r.
Qed.
539
Lemma list_alter_id f l i : ( x, f x = x)  alter f i l = l.
540
Proof. intros ?. revert i. induction l; intros [|?]; f_equal/=; auto. Qed.
541
542
Lemma list_alter_ext f g l k i :
  ( x, l !! i = Some x  f x = g x)  l = k  alter f i l = alter g i k.
543
Proof. intros H ->. revert i H. induction k; intros [|?] ?; f_equal/=; auto. Qed.
544
545
Lemma list_alter_compose f g l i :
  alter (f  g) i l = alter f i (alter g i l).
546
Proof. revert i. induction l; intros [|?]; f_equal/=; auto. Qed.
547
548
Lemma list_alter_commute f g l i j :
  i  j  alter f i (alter g j l) = alter g j (alter f i l).
549
Proof. revert i j. induction l; intros [|?][|?] ?; f_equal/=; auto with lia. Qed.
550
551
Lemma insert_app_l l1 l2 i x :
  i < length l1  <[i:=x]>(l1 ++ l2) = <[i:=x]>l1 ++ l2.
552
Proof. revert i. induction l1; intros [|?] ?; f_equal/=; auto with lia. Qed.
553
Lemma insert_app_r l1 l2 i x : <[length l1+i:=x]>(l1 ++ l2) = l1 ++ <[i:=x]>l2.
554
Proof. revert i. induction l1; intros [|?]; f_equal/=; auto. Qed.
555
556
Lemma insert_app_r_alt l1 l2 i x :
  length l1  i  <[i:=x]>(l1 ++ l2) = l1 ++ <[i - length l1:=x]>l2.
557
558
559
560
Proof.
  intros. assert (i = length l1 + (i - length l1)) as Hi by lia.
  rewrite Hi at 1. by apply insert_app_r.
Qed.
561
Lemma delete_middle l1 l2 x : delete (length l1) (l1 ++ x :: l2) = l1 ++ l2.
562
Proof. induction l1; f_equal/=; auto. Qed.
563

564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
Lemma inserts_length l i k : length (list_inserts i k l) = length l.
Proof.
  revert i. induction k; intros ?; csimpl; rewrite ?insert_length; auto.
Qed.
Lemma list_lookup_inserts l i k j :
  i  j < i + length k  j < length l 
  list_inserts i k l !! j = k !! (j - i).
Proof.
  revert i j. induction k as [|y k IH]; csimpl; intros i j ??; [lia|].
  destruct (decide (i = j)) as [->|].
  { by rewrite list_lookup_insert, Nat.sub_diag
      by (rewrite inserts_length; lia). }
  rewrite list_lookup_insert_ne, IH by lia.
  by replace (j - i) with (S (j - S i)) by lia.
Qed.
Lemma list_lookup_inserts_lt l i k j :
  j < i  list_inserts i k l !! j = l !! j.
Proof.
  revert i j. induction k; intros i j ?; csimpl;
    rewrite ?list_lookup_insert_ne by lia; auto with lia.
Qed.
Lemma list_lookup_inserts_ge l i k j :
  i + length k  j  list_inserts i k l !! j = l !! j.
Proof.
  revert i j. induction k; csimpl; intros i j ?;
    rewrite ?list_lookup_insert_ne by lia; auto with lia.
Qed.
Lemma list_lookup_inserts_Some l i k j y :
  list_inserts i k l !! j = Some y 
    (j < i  i + length k  j)  l !! j = Some y 
    i  j < i + length k  j < length l  k !! (j - i) = Some y.
Proof.
  destruct (decide (j < i)).
  { rewrite list_lookup_inserts_lt by done; intuition lia. }
  destruct (decide (i + length k  j)).
  { rewrite list_lookup_inserts_ge by done; intuition lia. }
  split.
601
  - intros Hy. assert (j < length l).
602
603
    { rewrite <-(inserts_length l i k); eauto using lookup_lt_Some. }
    rewrite list_lookup_inserts in Hy by lia. intuition lia.
604
  - intuition. by rewrite list_lookup_inserts by lia.
605
606
607
608
609
610
611
612
Qed.
Lemma list_insert_inserts_lt l i j x k :
  i < j  <[i:=x]>(list_inserts j k l) = list_inserts j k (<[i:=x]>l).
Proof.
  revert i j. induction k; intros i j ?; simpl;
    rewrite 1?list_insert_commute by lia; auto with f_equal.
Qed.

613
(** ** Properties of the [elem_of] predicate *)
614
Lemma not_elem_of_nil x : x  [].
615
Proof. by inversion 1. Qed.
616
Lemma elem_of_nil x : x  []  False.
617
Proof. intuition. by destruct (not_elem_of_nil x). Qed.
618
Lemma elem_of_nil_inv l : ( x, x  l)  l = [].
619
Proof. destruct l. done. by edestruct 1; constructor. Qed.
620
621
Lemma elem_of_not_nil x l : x  l  l  [].
Proof. intros ? ->. by apply (elem_of_nil x). Qed.
622
Lemma elem_of_cons l x y : x  y :: l  x = y  x  l.
Robbert Krebbers's avatar
Robbert Krebbers committed
623
Proof. by split; [inversion 1; subst|intros [->|?]]; constructor. Qed.
624
Lemma not_elem_of_cons l x y : x  y :: l  x  y  x  l.
Robbert Krebbers's avatar
Robbert Krebbers committed
625
Proof. rewrite elem_of_cons. tauto. Qed.
626
Lemma elem_of_app l1 l2 x : x  l1 ++ l2  x  l1  x  l2.
627
Proof.
628
  induction l1.
629
630
  - split; [by right|]. intros [Hx|]; [|done]. by destruct (elem_of_nil x).
  - simpl. rewrite !elem_of_cons, IHl1. tauto.
631
Qed.
632
Lemma not_elem_of_app l1 l2 x : x  l1 ++ l2  x  l1  x  l2.
Robbert Krebbers's avatar
Robbert Krebbers committed
633
Proof. rewrite elem_of_app. tauto. Qed.
634
Lemma elem_of_list_singleton x y : x  [y]  x = y.
635
Proof. rewrite elem_of_cons, elem_of_nil. tauto. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
636
Global Instance elem_of_list_permutation_proper x : Proper (() ==> iff) (x ).
637
Proof. induction 1; rewrite ?elem_of_nil, ?elem_of_cons; intuition. Qed.
638
Lemma elem_of_list_split l x : x  l   l1 l2, l = l1 ++ x :: l2.
639
Proof.
640
  induction 1 as [x l|x y l ? [l1 [l2 ->]]]; [by eexists [], l|].
641
  by exists (y :: l1), l2.
642
Qed.
643
Lemma elem_of_list_lookup_1 l x : x  l   i, l !! i = Some x.
644
Proof.
645
646
  induction 1 as [|???? IH]; [by exists 0 |].
  destruct IH as [i ?]; auto. by exists (S i).
647
Qed.
648
Lemma elem_of_list_lookup_2 l i x : l !! i = Some x  x  l.
649
Proof.
650
  revert i. induction l; intros [|i] ?; simplify_eq/=; constructor; eauto.
651
Qed.
652
653
Lemma elem_of_list_lookup l x : x  l   i, l !! i = Some x.
Proof. firstorder eauto using elem_of_list_lookup_1, elem_of_list_lookup_2. Qed.
654
655
656
657
Lemma elem_of_list_omap {B} (f : A  option B) l (y : B) :
  y  omap f l   x, x  l  f x = Some y.
Proof.
  split.
658
  - induction l as [|x l]; csimpl; repeat case_match; inversion 1; subst;
659
      setoid_rewrite elem_of_cons; naive_solver.
660
  - intros (x&Hx&?). by induction Hx; csimpl; repeat case_match;
661
      simplify_eq; try constructor; auto.
662
Qed.
663

664
(** ** Properties of the [NoDup] predicate *)
665
666
Lemma NoDup_nil : NoDup (@nil A)  True.
Proof. split; constructor. Qed.
667
Lemma NoDup_cons x l : NoDup (x :: l)  x  l  NoDup l.
668
Proof. split. by inversion 1. intros [??]. by constructor. Qed.
669
Lemma NoDup_cons_11 x l : NoDup (x :: l)  x  l.
670
Proof. rewrite NoDup_cons. by intros [??]. Qed.
671
Lemma NoDup_cons_12 x l : NoDup (x :: l)  NoDup l.
672
Proof. rewrite NoDup_cons. by intros [??]. Qed.
673
Lemma NoDup_singleton x : NoDup [x].
674
Proof. constructor. apply not_elem_of_nil. constructor. Qed.
675
Lemma NoDup_app l k : NoDup (l ++ k)  NoDup l  ( x, x  l  x  k)  NoDup k.
Robbert Krebbers's avatar
Robbert Krebbers committed
676
Proof.
677
  induction l; simpl.
678
679
  - rewrite NoDup_nil. setoid_rewrite elem_of_nil. naive_solver.
  - rewrite !NoDup_cons.
Robbert Krebbers's avatar
Robbert Krebbers committed
680
    setoid_rewrite elem_of_cons. setoid_rewrite elem_of_app. naive_solver.
Robbert Krebbers's avatar
Robbert Krebbers committed
681
Qed.
682
Global Instance NoDup_proper: Proper (() ==> iff) (@NoDup A).
683
684
Proof.
  induction 1 as [|x l k Hlk IH | |].
685
686
687
688
  -