fin_maps.v 62.6 KB
Newer Older
Robbert Krebbers's avatar
Robbert Krebbers committed
1
(* Copyright (c) 2012-2014, Robbert Krebbers. *)
2 3 4
(* This file is distributed under the terms of the BSD license. *)
(** Finite maps associate data to keys. This file defines an interface for
finite maps and collects some theory on it. Most importantly, it proves useful
5 6
induction principles for finite maps and implements the tactic
[simplify_map_equality] to simplify goals involving finite maps. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
7
Require Import Permutation.
8 9
Require Export ars vector orders.

10 11
(** * Axiomatization of finite maps *)
(** We require Leibniz equality to be extensional on finite maps. This of
12 13 14 15 16
course limits the space of finite map implementations, but since we are mainly
interested in finite maps with numbers as indexes, we do not consider this to
be a serious limitation. The main application of finite maps is to implement
the memory, where extensionality of Leibniz equality is very important for a
convenient use in the assertions of our axiomatic semantics. *)
17

Robbert Krebbers's avatar
Robbert Krebbers committed
18 19
(** Finiteness is axiomatized by requiring that each map can be translated
to an association list. The translation to association lists is used to
20
prove well founded recursion on finite maps. *)
21

22 23 24
(** Finite map implementations are required to implement the [merge] function
which enables us to give a generic implementation of [union_with],
[intersection_with], and [difference_with]. *)
25

26
Class FinMapToList K A M := map_to_list: M  list (K * A).
Robbert Krebbers's avatar
Robbert Krebbers committed
27

28 29 30
Class FinMap K M `{FMap M,  A, Lookup K A (M A),  A, Empty (M A),  A,
    PartialAlter K A (M A), OMap M, Merge M,  A, FinMapToList K A (M A),
     i j : K, Decision (i = j)} := {
31 32
  map_eq {A} (m1 m2 : M A) : ( i, m1 !! i = m2 !! i)  m1 = m2;
  lookup_empty {A} i : ( : M A) !! i = None;
33 34 35 36
  lookup_partial_alter {A} f (m : M A) i :
    partial_alter f i m !! i = f (m !! i);
  lookup_partial_alter_ne {A} f (m : M A) i j :
    i  j  partial_alter f i m !! j = m !! j;
37
  lookup_fmap {A B} (f : A  B) (m : M A) i : (f <$> m) !! i = f <$> m !! i;
38
  NoDup_map_to_list {A} (m : M A) : NoDup (map_to_list m);
39 40
  elem_of_map_to_list {A} (m : M A) i x :
    (i,x)  map_to_list m  m !! i = Some x;
41
  lookup_omap {A B} (f : A  option B) m i : omap f m !! i = m !! i = f;
42 43 44
  lookup_merge {A B C} (f : option A  option B  option C)
      `{!PropHolds (f None None = None)} m1 m2 i :
    merge f m1 m2 !! i = f (m1 !! i) (m2 !! i)
Robbert Krebbers's avatar
Robbert Krebbers committed
45 46
}.

47 48 49
(** * Derived operations *)
(** All of the following functions are defined in a generic way for arbitrary
finite map implementations. These generic implementations do not cause a
50 51
significant performance loss to make including them in the finite map interface
worthwhile. *)
52 53 54 55 56
Instance map_insert `{PartialAlter K A M} : Insert K A M :=
  λ i x, partial_alter (λ _, Some x) i.
Instance map_alter `{PartialAlter K A M} : Alter K A M :=
  λ f, partial_alter (fmap f).
Instance map_delete `{PartialAlter K A M} : Delete K M :=
57
  partial_alter (λ _, None).
58 59
Instance map_singleton `{PartialAlter K A M, Empty M} :
  Singleton (K * A) M := λ p, <[p.1:=p.2]> .
Robbert Krebbers's avatar
Robbert Krebbers committed
60

61
Definition map_of_list `{Insert K A M, Empty M} : list (K * A)  M :=
62
  fold_right (λ p, <[p.1:=p.2]>) .
63 64 65
Definition map_of_collection `{Elements K C, Insert K A M, Empty M}
    (f : K  option A) (X : C) : M :=
  map_of_list (omap (λ i, (i,) <$> f i) (elements X)).
Robbert Krebbers's avatar
Robbert Krebbers committed
66

67 68 69 70 71 72
Instance map_union_with `{Merge M} {A} : UnionWith A (M A) :=
  λ f, merge (union_with f).
Instance map_intersection_with `{Merge M} {A} : IntersectionWith A (M A) :=
  λ f, merge (intersection_with f).
Instance map_difference_with `{Merge M} {A} : DifferenceWith A (M A) :=
  λ f, merge (difference_with f).
Robbert Krebbers's avatar
Robbert Krebbers committed
73

74 75
(** The relation [intersection_forall R] on finite maps describes that the
relation [R] holds for each pair in the intersection. *)
76
Definition map_Forall `{Lookup K A M} (P : K  A  Prop) : M  Prop :=
Robbert Krebbers's avatar
Robbert Krebbers committed
77
  λ m,  i x, m !! i = Some x  P i x.
78 79 80 81 82 83 84 85 86
Definition map_Forall2 `{ A, Lookup K A (M A)} {A B}
    (R : A  B  Prop) (P : A  Prop) (Q : B  Prop)
    (m1 : M A) (m2 : M B) : Prop :=  i,
  match m1 !! i, m2 !! i with
  | Some x, Some y => R x y
  | Some x, None => P x
  | None, Some y => Q y
  | None, None => True
  end.
Robbert Krebbers's avatar
Robbert Krebbers committed
87 88 89 90 91 92 93
Definition map_Forall3 `{ A, Lookup K A (M A)} {A B C}
    (R : A  B  C  Prop) (m1 : M A) (m2 : M B) (m3 : M C): Prop :=  i,
  match m1 !! i, m2 !! i, m3 !! i with
  | Some x, Some y, Some z => R x y z
  | None, None, None => True
  | _, _, _ => False
  end.
94

95 96 97 98
Instance map_disjoint `{ A, Lookup K A (M A)} {A} : Disjoint (M A) :=
  map_Forall2 (λ _ _, False) (λ _, True) (λ _, True).
Instance map_subseteq `{ A, Lookup K A (M A)} {A} : SubsetEq (M A) :=
  map_Forall2 (=) (λ _, False) (λ _, True).
Robbert Krebbers's avatar
Robbert Krebbers committed
99 100 101 102 103

(** The union of two finite maps only has a meaningful definition for maps
that are disjoint. However, as working with partial functions is inconvenient
in Coq, we define the union as a total function. In case both finite maps
have a value at the same index, we take the value of the first map. *)
104
Instance map_union `{Merge M} {A} : Union (M A) := union_with (λ x _, Some x).
105 106 107
Instance map_intersection `{Merge M} {A} : Intersection (M A) :=
  intersection_with (λ x _, Some x).

108 109
(** The difference operation removes all values from the first map whose
index contains a value in the second map as well. *)
110
Instance map_difference `{Merge M} {A} : Difference (M A) :=
111
  difference_with (λ _ _, None).
Robbert Krebbers's avatar
Robbert Krebbers committed
112

113 114 115 116
(** * Theorems *)
Section theorems.
Context `{FinMap K M}.

117 118 119 120 121 122 123 124
Lemma map_eq_iff {A} (m1 m2 : M A) : m1 = m2   i, m1 !! i = m2 !! i.
Proof. split. by intros ->. apply map_eq. Qed.
Lemma map_subseteq_spec {A} (m1 m2 : M A) :
  m1  m2   i x, m1 !! i = Some x  m2 !! i = Some x.
Proof.
  unfold subseteq, map_subseteq, map_Forall2. split; intros Hm i;
    specialize (Hm i); destruct (m1 !! i), (m2 !! i); naive_solver.
Qed.
125
Global Instance: EmptySpec (M A).
126
Proof.
127 128
  intros A m. rewrite !map_subseteq_spec.
  intros i x. by rewrite lookup_empty.
129
Qed.
130
Global Instance: PartialOrder (() : relation (M A)).
131
Proof.
132 133 134 135 136
  repeat split.
  * intros m; rewrite !map_subseteq_spec; naive_solver.
  * intros m1 m2 m3; rewrite !map_subseteq_spec; naive_solver.
  * intros m1 m2; rewrite !map_subseteq_spec.
    intros; apply map_eq; intros i; apply option_eq; naive_solver.
137 138 139
Qed.
Lemma lookup_weaken {A} (m1 m2 : M A) i x :
  m1 !! i = Some x  m1  m2  m2 !! i = Some x.
140
Proof. rewrite !map_subseteq_spec. auto. Qed.
141 142 143 144 145 146
Lemma lookup_weaken_is_Some {A} (m1 m2 : M A) i :
  is_Some (m1 !! i)  m1  m2  is_Some (m2 !! i).
Proof. inversion 1. eauto using lookup_weaken. Qed.
Lemma lookup_weaken_None {A} (m1 m2 : M A) i :
  m2 !! i = None  m1  m2  m1 !! i = None.
Proof.
147 148
  rewrite map_subseteq_spec, !eq_None_not_Some.
  intros Hm2 Hm [??]; destruct Hm2; eauto.
149 150
Qed.
Lemma lookup_weaken_inv {A} (m1 m2 : M A) i x y :
151 152
  m1 !! i = Some x  m1  m2  m2 !! i = Some y  x = y.
Proof. intros Hm1 ? Hm2. eapply lookup_weaken in Hm1; eauto. congruence. Qed.
153 154 155 156 157 158 159 160 161
Lemma lookup_ne {A} (m : M A) i j : m !! i  m !! j  i  j.
Proof. congruence. Qed.
Lemma map_empty {A} (m : M A) : ( i, m !! i = None)  m = .
Proof. intros Hm. apply map_eq. intros. by rewrite Hm, lookup_empty. Qed.
Lemma lookup_empty_is_Some {A} i : ¬is_Some (( : M A) !! i).
Proof. rewrite lookup_empty. by inversion 1. Qed.
Lemma lookup_empty_Some {A} i (x : A) : ¬ !! i = Some x.
Proof. by rewrite lookup_empty. Qed.
Lemma map_subset_empty {A} (m : M A) : m  .
162 163 164
Proof.
  intros [_ []]. rewrite map_subseteq_spec. intros ??. by rewrite lookup_empty.
Qed.
165 166

(** ** Properties of the [partial_alter] operation *)
167 168 169
Lemma partial_alter_ext {A} (f g : option A  option A) (m : M A) i :
  ( x, m !! i = x  f x = g x)  partial_alter f i m = partial_alter g i m.
Proof.
170 171
  intros. apply map_eq; intros j. by destruct (decide (i = j)) as [->|?];
    rewrite ?lookup_partial_alter, ?lookup_partial_alter_ne; auto.
172 173
Qed.
Lemma partial_alter_compose {A} f g (m : M A) i:
174 175
  partial_alter (f  g) i m = partial_alter f i (partial_alter g i m).
Proof.
176 177
  intros. apply map_eq. intros ii. by destruct (decide (i = ii)) as [->|?];
    rewrite ?lookup_partial_alter, ?lookup_partial_alter_ne.
178
Qed.
179
Lemma partial_alter_commute {A} f g (m : M A) i j :
180
  i  j  partial_alter f i (partial_alter g j m) =
181 182
    partial_alter g j (partial_alter f i m).
Proof.
183 184 185 186 187 188 189
  intros. apply map_eq; intros jj. destruct (decide (jj = j)) as [->|?].
  { by rewrite lookup_partial_alter_ne,
      !lookup_partial_alter, lookup_partial_alter_ne. }
  destruct (decide (jj = i)) as [->|?].
  * by rewrite lookup_partial_alter,
     !lookup_partial_alter_ne, lookup_partial_alter by congruence.
  * by rewrite !lookup_partial_alter_ne by congruence.
190 191 192 193
Qed.
Lemma partial_alter_self_alt {A} (m : M A) i x :
  x = m !! i  partial_alter (λ _, x) i m = m.
Proof.
194 195
  intros. apply map_eq. intros ii. by destruct (decide (i = ii)) as [->|];
    rewrite ?lookup_partial_alter, ?lookup_partial_alter_ne.
196
Qed.
197
Lemma partial_alter_self {A} (m : M A) i : partial_alter (λ _, m !! i) i m = m.
198
Proof. by apply partial_alter_self_alt. Qed.
199
Lemma partial_alter_subseteq {A} f (m : M A) i :
200
  m !! i = None  m  partial_alter f i m.
201 202 203 204
Proof.
  rewrite map_subseteq_spec. intros Hi j x Hj.
  rewrite lookup_partial_alter_ne; congruence.
Qed.
205
Lemma partial_alter_subset {A} f (m : M A) i :
206
  m !! i = None  is_Some (f (m !! i))  m  partial_alter f i m.
207
Proof.
208 209 210 211
  intros Hi Hfi. split; [by apply partial_alter_subseteq|].
  rewrite !map_subseteq_spec. inversion Hfi as [x Hx]. intros Hm.
  apply (Some_ne_None x). rewrite <-(Hm i x); [done|].
  by rewrite lookup_partial_alter.
212 213 214
Qed.

(** ** Properties of the [alter] operation *)
215 216
Lemma alter_ext {A} (f g : A  A) (m : M A) i :
  ( x, m !! i = Some x  f x = g x)  alter f i m = alter g i m.
217
Proof. intro. apply partial_alter_ext. intros [x|] ?; f_equal'; auto. Qed.
218
Lemma lookup_alter {A} (f : A  A) m i : alter f i m !! i = f <$> m !! i.
219
Proof. unfold alter. apply lookup_partial_alter. Qed.
220
Lemma lookup_alter_ne {A} (f : A  A) m i j : i  j  alter f i m !! j = m !! j.
221
Proof. unfold alter. apply lookup_partial_alter_ne. Qed.
222 223 224 225 226 227 228 229 230
Lemma alter_compose {A} (f g : A  A) (m : M A) i:
  alter (f  g) i m = alter f i (alter g i m).
Proof.
  unfold alter, map_alter. rewrite <-partial_alter_compose.
  apply partial_alter_ext. by intros [?|].
Qed.
Lemma alter_commute {A} (f g : A  A) (m : M A) i j :
  i  j  alter f i (alter g j m) = alter g j (alter f i m).
Proof. apply partial_alter_commute. Qed.
231 232 233 234
Lemma lookup_alter_Some {A} (f : A  A) m i j y :
  alter f i m !! j = Some y 
    (i = j   x, m !! j = Some x  y = f x)  (i  j  m !! j = Some y).
Proof.
235
  destruct (decide (i = j)) as [->|?].
236 237 238 239 240 241
  * rewrite lookup_alter. naive_solver (simplify_option_equality; eauto).
  * rewrite lookup_alter_ne by done. naive_solver.
Qed.
Lemma lookup_alter_None {A} (f : A  A) m i j :
  alter f i m !! j = None  m !! j = None.
Proof.
242 243
  by destruct (decide (i = j)) as [->|?];
    rewrite ?lookup_alter, ?fmap_None, ?lookup_alter_ne.
244
Qed.
245
Lemma alter_None {A} (f : A  A) m i : m !! i = None  alter f i m = m.
246
Proof.
247 248
  intros Hi. apply map_eq. intros j. by destruct (decide (i = j)) as [->|?];
    rewrite ?lookup_alter, ?Hi, ?lookup_alter_ne.
249 250 251 252 253 254 255 256 257 258 259
Qed.

(** ** Properties of the [delete] operation *)
Lemma lookup_delete {A} (m : M A) i : delete i m !! i = None.
Proof. apply lookup_partial_alter. Qed.
Lemma lookup_delete_ne {A} (m : M A) i j : i  j  delete i m !! j = m !! j.
Proof. apply lookup_partial_alter_ne. Qed.
Lemma lookup_delete_Some {A} (m : M A) i j y :
  delete i m !! j = Some y  i  j  m !! j = Some y.
Proof.
  split.
260
  * destruct (decide (i = j)) as [->|?];
261 262 263 264 265 266
      rewrite ?lookup_delete, ?lookup_delete_ne; intuition congruence.
  * intros [??]. by rewrite lookup_delete_ne.
Qed.
Lemma lookup_delete_None {A} (m : M A) i j :
  delete i m !! j = None  i = j  m !! j = None.
Proof.
267 268
  destruct (decide (i = j)) as [->|?];
    rewrite ?lookup_delete, ?lookup_delete_ne; tauto.
269 270 271
Qed.
Lemma delete_empty {A} i : delete i ( : M A) = .
Proof. rewrite <-(partial_alter_self ) at 2. by rewrite lookup_empty. Qed.
272
Lemma delete_singleton {A} i (x : A) : delete i {[i, x]} = .
273 274 275 276 277 278 279
Proof. setoid_rewrite <-partial_alter_compose. apply delete_empty. Qed.
Lemma delete_commute {A} (m : M A) i j :
  delete i (delete j m) = delete j (delete i m).
Proof. destruct (decide (i = j)). by subst. by apply partial_alter_commute. Qed.
Lemma delete_insert_ne {A} (m : M A) i j x :
  i  j  delete i (<[j:=x]>m) = <[j:=x]>(delete i m).
Proof. intro. by apply partial_alter_commute. Qed.
280
Lemma delete_notin {A} (m : M A) i : m !! i = None  delete i m = m.
281
Proof.
282 283
  intros. apply map_eq. intros j. by destruct (decide (i = j)) as [->|?];
    rewrite ?lookup_delete, ?lookup_delete_ne.
284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
Qed.
Lemma delete_partial_alter {A} (m : M A) i f :
  m !! i = None  delete i (partial_alter f i m) = m.
Proof.
  intros. unfold delete, map_delete. rewrite <-partial_alter_compose.
  unfold compose. by apply partial_alter_self_alt.
Qed.
Lemma delete_insert {A} (m : M A) i x :
  m !! i = None  delete i (<[i:=x]>m) = m.
Proof. apply delete_partial_alter. Qed.
Lemma insert_delete {A} (m : M A) i x :
  m !! i = Some x  <[i:=x]>(delete i m) = m.
Proof.
  intros Hmi. unfold delete, map_delete, insert, map_insert.
  rewrite <-partial_alter_compose. unfold compose. rewrite <-Hmi.
  by apply partial_alter_self_alt.
Qed.
301
Lemma delete_subseteq {A} (m : M A) i : delete i m  m.
302 303 304
Proof.
  rewrite !map_subseteq_spec. intros j x. rewrite lookup_delete_Some. tauto.
Qed.
305
Lemma delete_subseteq_compat {A} (m1 m2 : M A) i :
306
  m1  m2  delete i m1  delete i m2.
307 308 309 310
Proof.
  rewrite !map_subseteq_spec. intros ? j x.
  rewrite !lookup_delete_Some. intuition eauto.
Qed.
311
Lemma delete_subset_alt {A} (m : M A) i x : m !! i = Some x  delete i m  m.
312
Proof.
313 314 315
  split; [apply delete_subseteq|].
  rewrite !map_subseteq_spec. intros Hi. apply (None_ne_Some x).
  by rewrite <-(lookup_delete m i), (Hi i x).
316
Qed.
317
Lemma delete_subset {A} (m : M A) i : is_Some (m !! i)  delete i m  m.
318 319 320 321 322
Proof. inversion 1. eauto using delete_subset_alt. Qed.

(** ** Properties of the [insert] operation *)
Lemma lookup_insert {A} (m : M A) i x : <[i:=x]>m !! i = Some x.
Proof. unfold insert. apply lookup_partial_alter. Qed.
323
Lemma lookup_insert_rev {A}  (m : M A) i x y : <[i:=x]>m !! i = Some y  x = y.
324
Proof. rewrite lookup_insert. congruence. Qed.
325
Lemma lookup_insert_ne {A} (m : M A) i j x : i  j  <[i:=x]>m !! j = m !! j.
326 327 328 329 330 331 332 333
Proof. unfold insert. apply lookup_partial_alter_ne. Qed.
Lemma insert_commute {A} (m : M A) i j x y :
  i  j  <[i:=x]>(<[j:=y]>m) = <[j:=y]>(<[i:=x]>m).
Proof. apply partial_alter_commute. Qed.
Lemma lookup_insert_Some {A} (m : M A) i j x y :
  <[i:=x]>m !! j = Some y  (i = j  x = y)  (i  j  m !! j = Some y).
Proof.
  split.
334
  * destruct (decide (i = j)) as [->|?];
335
      rewrite ?lookup_insert, ?lookup_insert_ne; intuition congruence.
336
  * intros [[-> ->]|[??]]; [apply lookup_insert|]. by rewrite lookup_insert_ne.
337 338 339 340
Qed.
Lemma lookup_insert_None {A} (m : M A) i j x :
  <[i:=x]>m !! j = None  m !! j = None  i  j.
Proof.
341 342 343
  split; [|by intros [??]; rewrite lookup_insert_ne].
  destruct (decide (i = j)) as [->|];
    rewrite ?lookup_insert, ?lookup_insert_ne; intuition congruence.
344
Qed.
345
Lemma insert_subseteq {A} (m : M A) i x : m !! i = None  m  <[i:=x]>m.
346
Proof. apply partial_alter_subseteq. Qed.
347
Lemma insert_subset {A} (m : M A) i x : m !! i = None  m  <[i:=x]>m.
348 349
Proof. intro. apply partial_alter_subset; eauto. Qed.
Lemma insert_subseteq_r {A} (m1 m2 : M A) i x :
350
  m1 !! i = None  m1  m2  m1  <[i:=x]>m2.
351
Proof.
352 353 354
  rewrite !map_subseteq_spec. intros ?? j ?.
  destruct (decide (j = i)) as [->|?]; [congruence|].
  rewrite lookup_insert_ne; auto.
355 356
Qed.
Lemma insert_delete_subseteq {A} (m1 m2 : M A) i x :
357
  m1 !! i = None  <[i:=x]> m1  m2  m1  delete i m2.
358
Proof.
359 360 361 362
  rewrite !map_subseteq_spec. intros Hi Hix j y Hj.
  destruct (decide (i = j)) as [->|]; [congruence|].
  rewrite lookup_delete_ne by done.
  apply Hix; by rewrite lookup_insert_ne by done.
363 364
Qed.
Lemma delete_insert_subseteq {A} (m1 m2 : M A) i x :
365
  m1 !! i = Some x  delete i m1  m2  m1  <[i:=x]> m2.
366
Proof.
367 368
  rewrite !map_subseteq_spec.
  intros Hix Hi j y Hj. destruct (decide (i = j)) as [->|?].
369
  * rewrite lookup_insert. congruence.
370
  * rewrite lookup_insert_ne by done. apply Hi. by rewrite lookup_delete_ne.
371 372
Qed.
Lemma insert_delete_subset {A} (m1 m2 : M A) i x :
373
  m1 !! i = None  <[i:=x]> m1  m2  m1  delete i m2.
374
Proof.
375 376 377
  intros ? [Hm12 Hm21]; split; [eauto using insert_delete_subseteq|].
  contradict Hm21. apply delete_insert_subseteq; auto.
  eapply lookup_weaken, Hm12. by rewrite lookup_insert.
378 379
Qed.
Lemma insert_subset_inv {A} (m1 m2 : M A) i x :
380
  m1 !! i = None  <[i:=x]> m1  m2 
381 382 383
   m2', m2 = <[i:=x]>m2'  m1  m2'  m2' !! i = None.
Proof.
  intros Hi Hm1m2. exists (delete i m2). split_ands.
384
  * rewrite insert_delete. done. eapply lookup_weaken, strict_include; eauto.
385 386 387 388
    by rewrite lookup_insert.
  * eauto using insert_delete_subset.
  * by rewrite lookup_delete.
Qed.
389 390 391 392 393 394 395
Lemma fmap_insert {A B} (f : A  B) (m : M A) i x :
  f <$> <[i:=x]>m = <[i:=f x]>(f <$> m).
Proof.
  apply map_eq; intros i'; destruct (decide (i' = i)) as [->|].
  * by rewrite lookup_fmap, !lookup_insert.
  * by rewrite lookup_fmap, !lookup_insert_ne, lookup_fmap by done.
Qed.
396 397
Lemma insert_empty {A} i (x : A) : <[i:=x]> = {[i,x]}.
Proof. done. Qed.
398 399 400

(** ** Properties of the singleton maps *)
Lemma lookup_singleton_Some {A} i j (x y : A) :
401
  {[i, x]} !! j = Some y  i = j  x = y.
402 403
Proof.
  unfold singleton, map_singleton.
404
  rewrite lookup_insert_Some, lookup_empty. simpl. intuition congruence.
405
Qed.
406
Lemma lookup_singleton_None {A} i j (x : A) : {[i, x]} !! j = None  i  j.
407 408 409 410
Proof.
  unfold singleton, map_singleton.
  rewrite lookup_insert_None, lookup_empty. simpl. tauto.
Qed.
411
Lemma lookup_singleton {A} i (x : A) : {[i, x]} !! i = Some x.
412
Proof. by rewrite lookup_singleton_Some. Qed.
413
Lemma lookup_singleton_ne {A} i j (x : A) : i  j  {[i, x]} !! j = None.
414
Proof. by rewrite lookup_singleton_None. Qed.
415
Lemma map_non_empty_singleton {A} i (x : A) : {[i,x]}  .
416 417 418 419
Proof.
  intros Hix. apply (f_equal (!! i)) in Hix.
  by rewrite lookup_empty, lookup_singleton in Hix.
Qed.
420
Lemma insert_singleton {A} i (x y : A) : <[i:=y]>{[i, x]} = {[i, y]}.
421 422 423 424
Proof.
  unfold singleton, map_singleton, insert, map_insert.
  by rewrite <-partial_alter_compose.
Qed.
425
Lemma alter_singleton {A} (f : A  A) i x : alter f i {[i,x]} = {[i, f x]}.
426
Proof.
427
  intros. apply map_eq. intros i'. destruct (decide (i = i')) as [->|?].
428 429 430 431
  * by rewrite lookup_alter, !lookup_singleton.
  * by rewrite lookup_alter_ne, !lookup_singleton_ne.
Qed.
Lemma alter_singleton_ne {A} (f : A  A) i j x :
432
  i  j  alter f i {[j,x]} = {[j,x]}.
433
Proof.
434 435
  intros. apply map_eq; intros i'. by destruct (decide (i = i')) as [->|?];
    rewrite ?lookup_alter, ?lookup_singleton_ne, ?lookup_alter_ne by done.
436 437
Qed.

438 439 440 441 442 443
(** ** Properties of the map operations *)
Lemma fmap_empty {A B} (f : A  B) : f <$>  = .
Proof. apply map_empty; intros i. by rewrite lookup_fmap, lookup_empty. Qed.
Lemma omap_empty {A B} (f : A  option B) : omap f  = .
Proof. apply map_empty; intros i. by rewrite lookup_omap, lookup_empty. Qed.

444 445
(** ** Properties of conversion to lists *)
Lemma map_to_list_unique {A} (m : M A) i x y :
446
  (i,x)  map_to_list m  (i,y)  map_to_list m  x = y.
447
Proof. rewrite !elem_of_map_to_list. congruence. Qed.
448 449
Lemma NoDup_fst_map_to_list {A} (m : M A) : NoDup (fst <$> map_to_list m).
Proof. eauto using NoDup_fmap_fst, map_to_list_unique, NoDup_map_to_list. Qed.
450 451 452 453 454 455 456 457 458 459
Lemma elem_of_map_of_list_1_help {A} (l : list (K * A)) i x :
  (i,x)  l  ( y, (i,y)  l  y = x)  map_of_list l !! i = Some x.
Proof.
  induction l as [|[j y] l IH]; csimpl; [by rewrite elem_of_nil|].
  setoid_rewrite elem_of_cons.
  intros [?|?] Hdup; simplify_equality; [by rewrite lookup_insert|].
  destruct (decide (i = j)) as [->|].
  * rewrite lookup_insert; f_equal; eauto.
  * rewrite lookup_insert_ne by done; eauto.
Qed.
460
Lemma elem_of_map_of_list_1 {A} (l : list (K * A)) i x :
461
  NoDup (fst <$> l)  (i,x)  l  map_of_list l !! i = Some x.
462
Proof.
463 464 465 466
  intros ? Hx; apply elem_of_map_of_list_1_help; eauto using NoDup_fmap_fst.
  intros y; revert Hx. rewrite !elem_of_list_lookup; intros [i' Hi'] [j' Hj'].
  cut (i' = j'); [naive_solver|]. apply NoDup_lookup with (fst <$> l) i;
    by rewrite ?list_lookup_fmap, ?Hi', ?Hj'.
467 468
Qed.
Lemma elem_of_map_of_list_2 {A} (l : list (K * A)) i x :
469
  map_of_list l !! i = Some x  (i,x)  l.
470
Proof.
471 472 473
  induction l as [|[j y] l IH]; simpl; [by rewrite lookup_empty|].
  rewrite elem_of_cons. destruct (decide (i = j)) as [->|];
    rewrite ?lookup_insert, ?lookup_insert_ne; intuition congruence.
474 475
Qed.
Lemma elem_of_map_of_list {A} (l : list (K * A)) i x :
476 477
  NoDup (fst <$> l)  (i,x)  l  map_of_list l !! i = Some x.
Proof. split; auto using elem_of_map_of_list_1, elem_of_map_of_list_2. Qed.
478
Lemma not_elem_of_map_of_list_1 {A} (l : list (K * A)) i :
479
  i  fst <$> l  map_of_list l !! i = None.
480
Proof.
481 482
  rewrite elem_of_list_fmap, eq_None_not_Some. intros Hi [x ?]; destruct Hi.
  exists (i,x); simpl; auto using elem_of_map_of_list_2.
483 484
Qed.
Lemma not_elem_of_map_of_list_2 {A} (l : list (K * A)) i :
485
  map_of_list l !! i = None  i  fst <$> l.
486
Proof.
487
  induction l as [|[j y] l IH]; csimpl; [rewrite elem_of_nil; tauto|].
488 489 490 491 492 493
  rewrite elem_of_cons. destruct (decide (i = j)); simplify_equality.
  * by rewrite lookup_insert.
  * by rewrite lookup_insert_ne; intuition.
Qed.
Lemma not_elem_of_map_of_list {A} (l : list (K * A)) i :
  i  fst <$> l  map_of_list l !! i = None.
494
Proof. red; auto using not_elem_of_map_of_list_1,not_elem_of_map_of_list_2. Qed.
495
Lemma map_of_list_proper {A} (l1 l2 : list (K * A)) :
496
  NoDup (fst <$> l1)  l1  l2  map_of_list l1 = map_of_list l2.
497 498 499 500 501
Proof.
  intros ? Hperm. apply map_eq. intros i. apply option_eq. intros x.
  by rewrite <-!elem_of_map_of_list; rewrite <-?Hperm.
Qed.
Lemma map_of_list_inj {A} (l1 l2 : list (K * A)) :
502 503
  NoDup (fst <$> l1)  NoDup (fst <$> l2) 
  map_of_list l1 = map_of_list l2  l1  l2.
504
Proof.
505
  intros ?? Hl1l2. apply NoDup_Permutation; auto using (NoDup_fmap_1 fst).
506 507
  intros [i x]. by rewrite !elem_of_map_of_list, Hl1l2.
Qed.
508
Lemma map_of_to_list {A} (m : M A) : map_of_list (map_to_list m) = m.
509 510 511
Proof.
  apply map_eq. intros i. apply option_eq. intros x.
  by rewrite <-elem_of_map_of_list, elem_of_map_to_list
512
    by auto using NoDup_fst_map_to_list.
513 514
Qed.
Lemma map_to_of_list {A} (l : list (K * A)) :
515
  NoDup (fst <$> l)  map_to_list (map_of_list l)  l.
516
Proof. auto using map_of_list_inj, NoDup_fst_map_to_list, map_of_to_list. Qed.
517
Lemma map_to_list_inj {A} (m1 m2 : M A) :
518
  map_to_list m1  map_to_list m2  m1 = m2.
519
Proof.
520
  intros. rewrite <-(map_of_to_list m1), <-(map_of_to_list m2).
521
  auto using map_of_list_proper, NoDup_fst_map_to_list.
522
Qed.
523
Lemma map_to_list_empty {A} : map_to_list  = @nil (K * A).
524 525 526 527 528
Proof.
  apply elem_of_nil_inv. intros [i x].
  rewrite elem_of_map_to_list. apply lookup_empty_Some.
Qed.
Lemma map_to_list_insert {A} (m : M A) i x :
529
  m !! i = None  map_to_list (<[i:=x]>m)  (i,x) :: map_to_list m.
530
Proof.
531
  intros. apply map_of_list_inj; csimpl.
532 533
  * apply NoDup_fst_map_to_list.
  * constructor; auto using NoDup_fst_map_to_list.
534
    rewrite elem_of_list_fmap. intros [[??] [? Hlookup]]; subst; simpl in *.
535 536 537
    rewrite elem_of_map_to_list in Hlookup. congruence.
  * by rewrite !map_of_to_list.
Qed.
538
Lemma map_of_list_nil {A} : map_of_list (@nil (K * A)) = .
539 540 541 542
Proof. done. Qed.
Lemma map_of_list_cons {A} (l : list (K * A)) i x :
  map_of_list ((i, x) :: l) = <[i:=x]>(map_of_list l).
Proof. done. Qed.
543
Lemma map_to_list_empty_inv_alt {A}  (m : M A) : map_to_list m  []  m = .
544
Proof. rewrite <-map_to_list_empty. apply map_to_list_inj. Qed.
545
Lemma map_to_list_empty_inv {A} (m : M A) : map_to_list m = []  m = .
546 547
Proof. intros Hm. apply map_to_list_empty_inv_alt. by rewrite Hm. Qed.
Lemma map_to_list_insert_inv {A} (m : M A) l i x :
548
  map_to_list m  (i,x) :: l  m = <[i:=x]>(map_of_list l).
549 550 551
Proof.
  intros Hperm. apply map_to_list_inj.
  assert (NoDup (fst <$> (i, x) :: l)) as Hnodup.
552
  { rewrite <-Hperm. auto using NoDup_fst_map_to_list. }
553
  csimpl in *. rewrite NoDup_cons in Hnodup. destruct Hnodup.
554 555 556
  rewrite Hperm, map_to_list_insert, map_to_of_list;
    auto using not_elem_of_map_of_list_1.
Qed.
557 558 559 560 561 562
Lemma map_choose {A} (m : M A) : m     i x, m !! i = Some x.
Proof.
  intros Hemp. destruct (map_to_list m) as [|[i x] l] eqn:Hm.
  { destruct Hemp; eauto using map_to_list_empty_inv. }
  exists i x. rewrite <-elem_of_map_to_list, Hm. by left.
Qed.
563

564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580
(** ** Properties of conversion from collections *)
Lemma lookup_map_of_collection {A} `{FinCollection K C}
    (f : K  option A) X i x :
  map_of_collection f X !! i = Some x  i  X  f i = Some x.
Proof.
  assert (NoDup (fst <$> omap (λ i, (i,) <$> f i) (elements X))).
  { induction (NoDup_elements X) as [|i' l]; csimpl; [constructor|].
    destruct (f i') as [x'|]; csimpl; auto; constructor; auto.
    rewrite elem_of_list_fmap. setoid_rewrite elem_of_list_omap.
    by intros (?&?&?&?&?); simplify_option_equality. }
  unfold map_of_collection; rewrite <-elem_of_map_of_list by done.
  rewrite elem_of_list_omap. setoid_rewrite elem_of_elements; split.
  * intros (?&?&?); simplify_option_equality; eauto.
  * intros [??]; exists i; simplify_option_equality; eauto.
Qed.

(** ** Induction principles *)
581
Lemma map_ind {A} (P : M A  Prop) :
582
  P   ( i x m, m !! i = None  P m  P (<[i:=x]>m))   m, P m.
583
Proof.
584
  intros ? Hins. cut ( l, NoDup (fst <$> l)   m, map_to_list m  l  P m).
585
  { intros help m.
586
    apply (help (map_to_list m)); auto using NoDup_fst_map_to_list. }
587 588 589
  induction l as [|[i x] l IH]; intros Hnodup m Hml.
  { apply map_to_list_empty_inv_alt in Hml. by subst. }
  inversion_clear Hnodup.
590
  apply map_to_list_insert_inv in Hml; subst m. apply Hins.
591 592 593 594
  * by apply not_elem_of_map_of_list_1.
  * apply IH; auto using map_to_of_list.
Qed.
Lemma map_to_list_length {A} (m1 m2 : M A) :
595
  m1  m2  length (map_to_list m1) < length (map_to_list m2).
596 597 598 599
Proof.
  revert m2. induction m1 as [|i x m ? IH] using map_ind.
  { intros m2 Hm2. rewrite map_to_list_empty. simpl.
    apply neq_0_lt. intros Hlen. symmetry in Hlen.
600
    apply nil_length_inv, map_to_list_empty_inv in Hlen.
601 602 603 604 605
    rewrite Hlen in Hm2. destruct (irreflexivity ()  Hm2). }
  intros m2 Hm2.
  destruct (insert_subset_inv m m2 i x) as (m2'&?&?&?); auto; subst.
  rewrite !map_to_list_insert; simpl; auto with arith.
Qed.
606
Lemma map_wf {A} : wf (strict (@subseteq (M A) _)).
607 608 609 610 611 612
Proof.
  apply (wf_projected (<) (length  map_to_list)).
  * by apply map_to_list_length.
  * by apply lt_wf.
Qed.

613
(** ** Properties of the [map_Forall] predicate *)
614
Section map_Forall.
615 616
Context {A} (P : K  A  Prop).

617
Lemma map_Forall_to_list m : map_Forall P m  Forall (curry P) (map_to_list m).
618 619
Proof.
  rewrite Forall_forall. split.
620 621
  * intros Hforall [i x]. rewrite elem_of_map_to_list. by apply (Hforall i x).
  * intros Hforall i x. rewrite <-elem_of_map_to_list. by apply (Hforall (i,x)).
622 623 624
Qed.

Context `{ i x, Decision (P i x)}.
625
Global Instance map_Forall_dec m : Decision (map_Forall P m).
626 627
Proof.
  refine (cast_if (decide (Forall (curry P) (map_to_list m))));
628
    by rewrite map_Forall_to_list.
629
Defined.
630 631
Lemma map_not_Forall (m : M A) :
  ¬map_Forall P m   i x, m !! i = Some x  ¬P i x.
632 633
Proof.
  split.
634
  * rewrite map_Forall_to_list. intros Hm.
635 636 637 638
    apply (not_Forall_Exists _), Exists_exists in Hm.
    destruct Hm as ([i x]&?&?). exists i x. by rewrite <-elem_of_map_to_list.
  * intros (i&x&?&?) Hm. specialize (Hm i x). tauto.
Qed.
639
End map_Forall.
640 641 642 643

(** ** Properties of the [merge] operation *)
Section merge.
Context {A} (f : option A  option A  option A).
644
Context `{!PropHolds (f None None = None)}.
645 646 647
Global Instance: LeftId (=) None f  LeftId (=)  (merge f).
Proof.
  intros ??. apply map_eq. intros.
648
  by rewrite !(lookup_merge f), lookup_empty, (left_id_L None f).
649 650 651 652
Qed.
Global Instance: RightId (=) None f  RightId (=)  (merge f).
Proof.
  intros ??. apply map_eq. intros.
653
  by rewrite !(lookup_merge f), lookup_empty, (right_id_L None f).
654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669
Qed.
Lemma merge_commutative m1 m2 :
  ( i, f (m1 !! i) (m2 !! i) = f (m2 !! i) (m1 !! i)) 
  merge f m1 m2 = merge f m2 m1.
Proof. intros. apply map_eq. intros. by rewrite !(lookup_merge f). Qed.
Global Instance: Commutative (=) f  Commutative (=) (merge f).
Proof.
  intros ???. apply merge_commutative. intros. by apply (commutative f).
Qed.
Lemma merge_associative m1 m2 m3 :
  ( i, f (m1 !! i) (f (m2 !! i) (m3 !! i)) =
        f (f (m1 !! i) (m2 !! i)) (m3 !! i)) 
  merge f m1 (merge f m2 m3) = merge f (merge f m1 m2) m3.
Proof. intros. apply map_eq. intros. by rewrite !(lookup_merge f). Qed.
Global Instance: Associative (=) f  Associative (=) (merge f).
Proof.
670
  intros ????. apply merge_associative. intros. by apply (associative_L f).
671 672
Qed.
Lemma merge_idempotent m1 :
673
  ( i, f (m1 !! i) (m1 !! i) = m1 !! i)  merge f m1 m1 = m1.
674 675
Proof. intros. apply map_eq. intros. by rewrite !(lookup_merge f). Qed.
Global Instance: Idempotent (=) f  Idempotent (=) (merge f).
676
Proof. intros ??. apply merge_idempotent. intros. by apply (idempotent f). Qed.
677
End merge.
678

679 680 681 682 683 684 685 686 687 688 689 690
Section more_merge.
Context {A B C} (f : option A  option B  option C).
Context `{!PropHolds (f None None = None)}.
Lemma merge_Some m1 m2 m :
  ( i, m !! i = f (m1 !! i) (m2 !! i))  merge f m1 m2 = m.
Proof.
  split; [|intros <-; apply (lookup_merge _) ].
  intros Hlookup. apply map_eq; intros. rewrite Hlookup. apply (lookup_merge _).
Qed.
Lemma merge_empty : merge f   = .
Proof. apply map_eq. intros. by rewrite !(lookup_merge f), !lookup_empty. Qed.
Lemma partial_alter_merge g g1 g2 m1 m2 i :
691 692 693 694 695 696 697 698
  g (f (m1 !! i) (m2 !! i)) = f (g1 (m1 !! i)) (g2 (m2 !! i)) 
  partial_alter g i (merge f m1 m2) =
    merge f (partial_alter g1 i m1) (partial_alter g2 i m2).
Proof.
  intro. apply map_eq. intros j. destruct (decide (i = j)); subst.
  * by rewrite (lookup_merge _), !lookup_partial_alter, !(lookup_merge _).
  * by rewrite (lookup_merge _), !lookup_partial_alter_ne, (lookup_merge _).
Qed.
699
Lemma partial_alter_merge_l g g1 m1 m2 i :
700 701 702 703 704 705 706
  g (f (m1 !! i) (m2 !! i)) = f (g1 (m1 !! i)) (m2 !! i) 
  partial_alter g i (merge f m1 m2) = merge f (partial_alter g1 i m1) m2.
Proof.
  intro. apply map_eq. intros j. destruct (decide (i = j)); subst.
  * by rewrite (lookup_merge _), !lookup_partial_alter, !(lookup_merge _).
  * by rewrite (lookup_merge _), !lookup_partial_alter_ne, (lookup_merge _).
Qed.
707
Lemma partial_alter_merge_r g g2 m1 m2 i :
708 709 710 711 712 713 714
  g (f (m1 !! i) (m2 !! i)) = f (m1 !! i) (g2 (m2 !! i)) 
  partial_alter g i (merge f m1 m2) = merge f m1 (partial_alter g2 i m2).
Proof.
  intro. apply map_eq. intros j. destruct (decide (i = j)); subst.
  * by rewrite (lookup_merge _), !lookup_partial_alter, !(lookup_merge _).
  * by rewrite (lookup_merge _), !lookup_partial_alter_ne, (lookup_merge _).
Qed.
715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733
Lemma insert_merge m1 m2 i x y z :
  f (Some y) (Some z) = Some x 
  <[i:=x]>(merge f m1 m2) = merge f (<[i:=y]>m1) (<[i:=z]>m2).
Proof. by intros; apply partial_alter_merge. Qed.
Lemma merge_singleton i x y z :
  f (Some y) (Some z) = Some x  merge f {[i,y]} {[i,z]} = {[i,x]}.
Proof.
  intros. unfold singleton, map_singleton; simpl.
  by erewrite <-insert_merge, merge_empty by eauto.
Qed.
Lemma insert_merge_l m1 m2 i x y :
  f (Some y) (m2 !! i) = Some x 
  <[i:=x]>(merge f m1 m2) = merge f (<[i:=y]>m1) m2.
Proof. by intros; apply partial_alter_merge_l. Qed.
Lemma insert_merge_r m1 m2 i x z :
  f (m1 !! i) (Some z) = Some x 
  <[i:=x]>(merge f m1 m2) = merge f m1 (<[i:=z]>m2).
Proof. by intros; apply partial_alter_merge_r. Qed.
End more_merge.
734

735 736 737