base.v 40.1 KB
Newer Older
Robbert Krebbers's avatar
Robbert Krebbers committed
1
(* Copyright (c) 2012-2015, Robbert Krebbers. *)
2 3 4 5 6
(* This file is distributed under the terms of the BSD license. *)
(** This file collects type class interfaces, notations, and general theorems
that are used throughout the whole development. Most importantly it contains
abstract interfaces for ordered structures, collections, and various other data
structures. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
7 8
Global Generalizable All Variables.
Global Set Automatic Coercions Import.
Robbert Krebbers's avatar
Robbert Krebbers committed
9
Global Set Asymmetric Patterns.
10
From Coq Require Export Morphisms RelationClasses List Bool Utf8 Program Setoid.
11
Obligation Tactic := idtac.
Robbert Krebbers's avatar
Robbert Krebbers committed
12

13
(** * General *)
14 15 16 17 18
(** Zipping lists. *)
Definition zip_with {A B C} (f : A  B  C) : list A  list B  list C :=
  fix go l1 l2 :=
  match l1, l2 with x1 :: l1, x2 :: l2 => f x1 x2 :: go l1 l2 | _ , _ => [] end.
Notation zip := (zip_with pair).
19

20 21
(** Ensure that [simpl] unfolds [id], [compose], and [flip] when fully
applied. *)
22
Arguments id _ _ /.
23
Arguments compose _ _ _ _ _ _ /.
24
Arguments flip _ _ _ _ _ _ /.
25 26
Arguments const _ _ _ _ /.
Typeclasses Transparent id compose flip const.
Robbert Krebbers's avatar
Robbert Krebbers committed
27
Instance: Params (@pair) 2.
28

29 30 31 32
(** Change [True] and [False] into notations in order to enable overloading.
We will use this in the file [assertions] to give [True] and [False] a
different interpretation in [assert_scope] used for assertions of our axiomatic
semantics. *)
33 34
Notation "'True'" := True : type_scope.
Notation "'False'" := False : type_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
35

36 37
Notation curry := prod_curry.
Notation uncurry := prod_uncurry.
38 39 40 41
Definition curry3 {A B C D} (f : A  B  C  D) (p : A * B * C) : D :=
  let '(a,b,c) := p in f a b c.
Definition curry4 {A B C D E} (f : A  B  C  D  E) (p : A * B * C * D) : E :=
  let '(a,b,c,d) := p in f a b c d.
42

43 44
(** Throughout this development we use [C_scope] for all general purpose
notations that do not belong to a more specific scope. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
45 46 47
Delimit Scope C_scope with C.
Global Open Scope C_scope.

48
(** Introduce some Haskell style like notations. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
49 50 51 52 53 54 55
Notation "(=)" := eq (only parsing) : C_scope.
Notation "( x =)" := (eq x) (only parsing) : C_scope.
Notation "(= x )" := (λ y, eq y x) (only parsing) : C_scope.
Notation "(≠)" := (λ x y, x  y) (only parsing) : C_scope.
Notation "( x ≠)" := (λ y, x  y) (only parsing) : C_scope.
Notation "(≠ x )" := (λ y, y  x) (only parsing) : C_scope.

56
Hint Extern 0 (_ = _) => reflexivity.
57
Hint Extern 100 (_  _) => discriminate.
Robbert Krebbers's avatar
Robbert Krebbers committed
58

59 60 61 62
Notation "(→)" := (λ A B, A  B) (only parsing) : C_scope.
Notation "( A →)" := (λ B, A  B) (only parsing) : C_scope.
Notation "(→ B )" := (λ A, A  B) (only parsing) : C_scope.

63
Notation "t $ r" := (t r)
64
  (at level 65, right associativity, only parsing) : C_scope.
65 66 67
Notation "($)" := (λ f x, f x) (only parsing) : C_scope.
Notation "($ x )" := (λ f, f x) (only parsing) : C_scope.

Robbert Krebbers's avatar
Robbert Krebbers committed
68 69 70 71
Infix "∘" := compose : C_scope.
Notation "(∘)" := compose (only parsing) : C_scope.
Notation "( f ∘)" := (compose f) (only parsing) : C_scope.
Notation "(∘ f )" := (λ g, compose g f) (only parsing) : C_scope.
72

73 74 75 76 77 78 79 80 81 82 83 84
Notation "(∧)" := and (only parsing) : C_scope.
Notation "( A ∧)" := (and A) (only parsing) : C_scope.
Notation "(∧ B )" := (λ A, A  B) (only parsing) : C_scope.

Notation "(∨)" := or (only parsing) : C_scope.
Notation "( A ∨)" := (or A) (only parsing) : C_scope.
Notation "(∨ B )" := (λ A, A  B) (only parsing) : C_scope.

Notation "(↔)" := iff (only parsing) : C_scope.
Notation "( A ↔)" := (iff A) (only parsing) : C_scope.
Notation "(↔ B )" := (λ A, A  B) (only parsing) : C_scope.

85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
Hint Extern 0 (_  _) => reflexivity.
Hint Extern 0 (_  _) => symmetry; assumption.

Notation "( x ,)" := (pair x) (only parsing) : C_scope.
Notation "(, y )" := (λ x, (x,y)) (only parsing) : C_scope.

Notation "p .1" := (fst p) (at level 10, format "p .1").
Notation "p .2" := (snd p) (at level 10, format "p .2").

Definition prod_map {A A' B B'} (f : A  A') (g : B  B')
  (p : A * B) : A' * B' := (f (p.1), g (p.2)).
Arguments prod_map {_ _ _ _} _ _ !_ /.
Definition prod_zip {A A' A'' B B' B''} (f : A  A'  A'') (g : B  B'  B'')
    (p : A * B) (q : A' * B') : A'' * B'' := (f (p.1) (q.1), g (p.2) (q.2)).
Arguments prod_zip {_ _ _ _ _ _} _ _ !_ !_ /.

101 102
(** Set convenient implicit arguments for [existT] and introduce notations. *)
Arguments existT {_ _} _ _.
103
Arguments proj1_sig {_ _} _.
Robbert Krebbers's avatar
Robbert Krebbers committed
104
Notation "x ↾ p" := (exist _ x p) (at level 20) : C_scope.
105
Notation "` x" := (proj1_sig x) (at level 10, format "` x") : C_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
106

107 108 109 110
(** * Type classes *)
(** ** Provable propositions *)
(** This type class collects provable propositions. It is useful to constraint
type classes by arbitrary propositions. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
111 112
Class PropHolds (P : Prop) := prop_holds: P.

113 114
Hint Extern 0 (PropHolds _) => assumption : typeclass_instances.
Instance: Proper (iff ==> iff) PropHolds.
115
Proof. repeat intro; trivial. Qed.
116 117 118

Ltac solve_propholds :=
  match goal with
119 120
  | |- PropHolds (?P) => apply _
  | |- ?P => change (PropHolds P); apply _
121 122 123 124 125 126 127
  end.

(** ** Decidable propositions *)
(** This type class by (Spitters/van der Weegen, 2011) collects decidable
propositions. For example to declare a parameter expressing decidable equality
on a type [A] we write [`{∀ x y : A, Decision (x = y)}] and use it by writing
[decide (x = y)]. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
128 129 130
Class Decision (P : Prop) := decide : {P} + {¬P}.
Arguments decide _ {_}.

131 132
(** ** Inhabited types *)
(** This type class collects types that are inhabited. *)
133
Class Inhabited (A : Type) : Type := populate { inhabitant : A }.
134 135 136 137 138 139
Arguments populate {_} _.

Instance unit_inhabited: Inhabited unit := populate ().
Instance list_inhabited {A} : Inhabited (list A) := populate [].
Instance prod_inhabited {A B} (iA : Inhabited A)
    (iB : Inhabited B) : Inhabited (A * B) :=
140
  match iA, iB with populate x, populate y => populate (x,y) end.
141
Instance sum_inhabited_l {A B} (iA : Inhabited A) : Inhabited (A + B) :=
142
  match iA with populate x => populate (inl x) end.
143
Instance sum_inhabited_r {A B} (iB : Inhabited A) : Inhabited (A + B) :=
144
  match iB with populate y => populate (inl y) end.
145 146
Instance option_inhabited {A} : Inhabited (option A) := populate None.

147 148 149 150 151 152
(** ** Proof irrelevant types *)
(** This type class collects types that are proof irrelevant. That means, all
elements of the type are equal. We use this notion only used for propositions,
but by universe polymorphism we can generalize it. *)
Class ProofIrrel (A : Type) : Prop := proof_irrel (x y : A) : x = y.

153 154 155
(** ** Setoid equality *)
(** We define an operational type class for setoid equality. This is based on
(Spitters/van der Weegen, 2011). *)
Robbert Krebbers's avatar
Robbert Krebbers committed
156 157 158
Class Equiv A := equiv: relation A.
Infix "≡" := equiv (at level 70, no associativity) : C_scope.
Notation "(≡)" := equiv (only parsing) : C_scope.
159 160 161 162 163 164
Notation "( X ≡)" := (equiv X) (only parsing) : C_scope.
Notation "(≡ X )" := (λ Y, Y  X) (only parsing) : C_scope.
Notation "(≢)" := (λ X Y, ¬X  Y) (only parsing) : C_scope.
Notation "X ≢ Y":= (¬X  Y) (at level 70, no associativity) : C_scope.
Notation "( X ≢)" := (λ Y, X  Y) (only parsing) : C_scope.
Notation "(≢ X )" := (λ Y, Y  X) (only parsing) : C_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
165

166 167 168 169
(** The type class [LeibnizEquiv] collects setoid equalities that coincide
with Leibniz equality. We provide the tactic [fold_leibniz] to transform such
setoid equalities into Leibniz equalities, and [unfold_leibniz] for the
reverse. *)
170 171 172 173 174
Class LeibnizEquiv A `{Equiv A} := leibniz_equiv x y : x  y  x = y.
Lemma leibniz_equiv_iff `{LeibnizEquiv A, !Reflexive (@equiv A _)} (x y : A) :
  x  y  x = y.
Proof. split. apply leibniz_equiv. intros ->; reflexivity. Qed.
 
175 176 177
Ltac fold_leibniz := repeat
  match goal with
  | H : context [ @equiv ?A _ _ _ ] |- _ =>
178
    setoid_rewrite (leibniz_equiv_iff (A:=A)) in H
179
  | |- context [ @equiv ?A _ _ _ ] =>
180
    setoid_rewrite (leibniz_equiv_iff (A:=A))
181 182 183 184
  end.
Ltac unfold_leibniz := repeat
  match goal with
  | H : context [ @eq ?A _ _ ] |- _ =>
185
    setoid_rewrite <-(leibniz_equiv_iff (A:=A)) in H
186
  | |- context [ @eq ?A _ _ ] =>
187
    setoid_rewrite <-(leibniz_equiv_iff (A:=A))
188 189
  end.

190 191
Definition equivL {A} : Equiv A := (=).

192 193 194 195 196 197 198 199
(** A [Params f n] instance forces the setoid rewriting mechanism not to
rewrite in the first [n] arguments of the function [f]. We will declare such
instances for all operational type classes in this development. *)
Instance: Params (@equiv) 2.

(** The following instance forces [setoid_replace] to use setoid equality
(for types that have an [Equiv] instance) rather than the standard Leibniz
equality. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
200
Instance equiv_default_relation `{Equiv A} : DefaultRelation () | 3.
201
Hint Extern 0 (_  _) => reflexivity.
202
Hint Extern 0 (_  _) => symmetry; assumption.
Robbert Krebbers's avatar
Robbert Krebbers committed
203

204
(** ** Operations on collections *)
205
(** We define operational type classes for the traditional operations and
206
relations on collections: the empty collection [∅], the union [(∪)],
207 208
intersection [(∩)], and difference [(∖)], the singleton [{[_]}], the subset
[(⊆)] and element of [(∈)] relation, and disjointess [(⊥)]. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
209 210 211 212
Class Empty A := empty: A.
Notation "∅" := empty : C_scope.

Class Union A := union: A  A  A.
213
Instance: Params (@union) 2.
Robbert Krebbers's avatar
Robbert Krebbers committed
214 215 216 217
Infix "∪" := union (at level 50, left associativity) : C_scope.
Notation "(∪)" := union (only parsing) : C_scope.
Notation "( x ∪)" := (union x) (only parsing) : C_scope.
Notation "(∪ x )" := (λ y, union y x) (only parsing) : C_scope.
218 219 220 221 222 223
Infix "∪*" := (zip_with ()) (at level 50, left associativity) : C_scope.
Notation "(∪*)" := (zip_with ()) (only parsing) : C_scope.
Infix "∪**" := (zip_with (zip_with ()))
  (at level 50, left associativity) : C_scope.
Infix "∪*∪**" := (zip_with (prod_zip () (*)))
  (at level 50, left associativity) : C_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
224

225
Definition union_list `{Empty A} `{Union A} : list A  A := fold_right () .
226 227 228
Arguments union_list _ _ _ !_ /.
Notation "⋃ l" := (union_list l) (at level 20, format "⋃  l") : C_scope.

Robbert Krebbers's avatar
Robbert Krebbers committed
229
Class Intersection A := intersection: A  A  A.
230
Instance: Params (@intersection) 2.
Robbert Krebbers's avatar
Robbert Krebbers committed
231 232 233 234 235 236
Infix "∩" := intersection (at level 40) : C_scope.
Notation "(∩)" := intersection (only parsing) : C_scope.
Notation "( x ∩)" := (intersection x) (only parsing) : C_scope.
Notation "(∩ x )" := (λ y, intersection y x) (only parsing) : C_scope.

Class Difference A := difference: A  A  A.
237
Instance: Params (@difference) 2.
Robbert Krebbers's avatar
Robbert Krebbers committed
238 239 240 241
Infix "∖" := difference (at level 40) : C_scope.
Notation "(∖)" := difference (only parsing) : C_scope.
Notation "( x ∖)" := (difference x) (only parsing) : C_scope.
Notation "(∖ x )" := (λ y, difference y x) (only parsing) : C_scope.
242 243 244 245 246 247
Infix "∖*" := (zip_with ()) (at level 40, left associativity) : C_scope.
Notation "(∖*)" := (zip_with ()) (only parsing) : C_scope.
Infix "∖**" := (zip_with (zip_with ()))
  (at level 40, left associativity) : C_scope.
Infix "∖*∖**" := (zip_with (prod_zip () (*)))
  (at level 50, left associativity) : C_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
248

249 250
Class Singleton A B := singleton: A  B.
Instance: Params (@singleton) 3.
251
Notation "{[ x ]}" := (singleton x) (at level 1) : C_scope.
252
Notation "{[ x ; y ; .. ; z ]}" :=
253 254 255 256 257 258
  (union .. (union (singleton x) (singleton y)) .. (singleton z))
  (at level 1) : C_scope.
Notation "{[ x , y ]}" := (singleton (x,y))
  (at level 1, y at next level) : C_scope.
Notation "{[ x , y , z ]}" := (singleton (x,y,z))
  (at level 1, y at next level, z at next level) : C_scope.
259

260
Class SubsetEq A := subseteq: relation A.
261
Instance: Params (@subseteq) 2.
Robbert Krebbers's avatar
Robbert Krebbers committed
262 263 264
Infix "⊆" := subseteq (at level 70) : C_scope.
Notation "(⊆)" := subseteq (only parsing) : C_scope.
Notation "( X ⊆ )" := (subseteq X) (only parsing) : C_scope.
265
Notation "( ⊆ X )" := (λ Y, Y  X) (only parsing) : C_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
266 267 268 269
Notation "X ⊈ Y" := (¬X  Y) (at level 70) : C_scope.
Notation "(⊈)" := (λ X Y, X  Y) (only parsing) : C_scope.
Notation "( X ⊈ )" := (λ Y, X  Y) (only parsing) : C_scope.
Notation "( ⊈ X )" := (λ Y, Y  X) (only parsing) : C_scope.
270 271 272 273 274 275 276
Infix "⊆*" := (Forall2 ()) (at level 70) : C_scope.
Notation "(⊆*)" := (Forall2 ()) (only parsing) : C_scope.
Infix "⊆**" := (Forall2 (*)) (at level 70) : C_scope.
Infix "⊆1*" := (Forall2 (λ p q, p.1  q.1)) (at level 70) : C_scope.
Infix "⊆2*" := (Forall2 (λ p q, p.2  q.2)) (at level 70) : C_scope.
Infix "⊆1**" := (Forall2 (λ p q, p.1 * q.1)) (at level 70) : C_scope.
Infix "⊆2**" := (Forall2 (λ p q, p.2 * q.2)) (at level 70) : C_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
277

278
Hint Extern 0 (_  _) => reflexivity.
279 280 281
Hint Extern 0 (_ * _) => reflexivity.
Hint Extern 0 (_ ** _) => reflexivity.

282 283
Definition strict {A} (R : relation A) : relation A := λ X Y, R X Y  ¬R Y X.
Instance: Params (@strict) 2.
284 285 286 287
Infix "⊂" := (strict ()) (at level 70) : C_scope.
Notation "(⊂)" := (strict ()) (only parsing) : C_scope.
Notation "( X ⊂ )" := (strict () X) (only parsing) : C_scope.
Notation "( ⊂ X )" := (λ Y, Y  X) (only parsing) : C_scope.
288 289 290 291
Notation "X ⊄  Y" := (¬X  Y) (at level 70) : C_scope.
Notation "(⊄)" := (λ X Y, X  Y) (only parsing) : C_scope.
Notation "( X ⊄ )" := (λ Y, X  Y) (only parsing) : C_scope.
Notation "( ⊄ X )" := (λ Y, Y  X) (only parsing) : C_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
292

293 294 295 296 297
(** The class [Lexico A] is used for the lexicographic order on [A]. This order
is used to create finite maps, finite sets, etc, and is typically different from
the order [(⊆)]. *)
Class Lexico A := lexico: relation A.

Robbert Krebbers's avatar
Robbert Krebbers committed
298
Class ElemOf A B := elem_of: A  B  Prop.
299
Instance: Params (@elem_of) 3.
Robbert Krebbers's avatar
Robbert Krebbers committed
300 301 302 303 304 305 306 307 308
Infix "∈" := elem_of (at level 70) : C_scope.
Notation "(∈)" := elem_of (only parsing) : C_scope.
Notation "( x ∈)" := (elem_of x) (only parsing) : C_scope.
Notation "(∈ X )" := (λ x, elem_of x X) (only parsing) : C_scope.
Notation "x ∉ X" := (¬x  X) (at level 80) : C_scope.
Notation "(∉)" := (λ x X, x  X) (only parsing) : C_scope.
Notation "( x ∉)" := (λ X, x  X) (only parsing) : C_scope.
Notation "(∉ X )" := (λ x, x  X) (only parsing) : C_scope.

Robbert Krebbers's avatar
Robbert Krebbers committed
309 310 311 312
Class Disjoint A := disjoint : A  A  Prop.
Instance: Params (@disjoint) 2.
Infix "⊥" := disjoint (at level 70) : C_scope.
Notation "(⊥)" := disjoint (only parsing) : C_scope.
313
Notation "( X ⊥.)" := (disjoint X) (only parsing) : C_scope.
314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339
Notation "(.⊥ X )" := (λ Y, Y   X) (only parsing) : C_scope.
Infix "⊥*" := (Forall2 ()) (at level 70) : C_scope.
Notation "(⊥*)" := (Forall2 ()) (only parsing) : C_scope.
Infix "⊥**" := (Forall2 (*)) (at level 70) : C_scope.
Infix "⊥1*" := (Forall2 (λ p q, p.1  q.1)) (at level 70) : C_scope.
Infix "⊥2*" := (Forall2 (λ p q, p.2  q.2)) (at level 70) : C_scope.
Infix "⊥1**" := (Forall2 (λ p q, p.1 * q.1)) (at level 70) : C_scope.
Infix "⊥2**" := (Forall2 (λ p q, p.2 * q.2)) (at level 70) : C_scope.
Hint Extern 0 (_  _) => symmetry; eassumption.
Hint Extern 0 (_ * _) => symmetry; eassumption.

Class DisjointE E A := disjointE : E  A  A  Prop.
Instance: Params (@disjointE) 4.
Notation "X ⊥{ Γ } Y" := (disjointE Γ X Y)
  (at level 70, format "X  ⊥{ Γ }  Y") : C_scope.
Notation "(⊥{ Γ } )" := (disjointE Γ) (only parsing, Γ at level 1) : C_scope.
Notation "Xs ⊥{ Γ }* Ys" := (Forall2 ({Γ}) Xs Ys)
  (at level 70, format "Xs  ⊥{ Γ }*  Ys") : C_scope.
Notation "(⊥{ Γ }* )" := (Forall2 ({Γ}))
  (only parsing, Γ at level 1) : C_scope.
Notation "X ⊥{ Γ1 , Γ2 , .. , Γ3 } Y" := (disjoint (pair .. (Γ1, Γ2) .. Γ3) X Y)
  (at level 70, format "X  ⊥{ Γ1 , Γ2 , .. , Γ3 }  Y") : C_scope.
Notation "Xs ⊥{ Γ1 , Γ2 , .. , Γ3 }* Ys" :=
  (Forall2 (disjoint (pair .. (Γ1, Γ2) .. Γ3)) Xs Ys)
  (at level 70, format "Xs  ⊥{ Γ1 ,  Γ2 , .. , Γ3 }*  Ys") : C_scope.
Hint Extern 0 (_ {_} _) => symmetry; eassumption.
340 341 342

Class DisjointList A := disjoint_list : list A  Prop.
Instance: Params (@disjoint_list) 2.
343
Notation "⊥ Xs" := (disjoint_list Xs) (at level 20, format "⊥  Xs") : C_scope.
344

345 346 347 348 349 350
Section disjoint_list.
  Context `{Disjoint A, Union A, Empty A}.
  Inductive disjoint_list_default : DisjointList A :=
    | disjoint_nil_2 :  (@nil A)
    | disjoint_cons_2 (X : A) (Xs : list A) : X   Xs   Xs   (X :: Xs).
  Global Existing Instance disjoint_list_default.
351

352
  Lemma disjoint_list_nil  :  @nil A  True.
353 354 355
  Proof. split; constructor. Qed.
  Lemma disjoint_list_cons X Xs :  (X :: Xs)  X   Xs   Xs.
  Proof. split. inversion_clear 1; auto. intros [??]. constructor; auto. Qed.
356
End disjoint_list.
357 358

Class Filter A B := filter:  (P : A  Prop) `{ x, Decision (P x)}, B  B.
359 360 361

(** ** Monadic operations *)
(** We define operational type classes for the monadic operations bind, join 
362 363 364
and fmap. We use these type classes merely for convenient overloading of
notations and do not formalize any theory on monads (we do not even define a
class with the monad laws). *)
365 366
Class MRet (M : Type  Type) := mret:  {A}, A  M A.
Arguments mret {_ _ _} _.
367
Instance: Params (@mret) 3.
368 369
Class MBind (M : Type  Type) := mbind :  {A B}, (A  M B)  M A  M B.
Arguments mbind {_ _ _ _} _ !_ /.
370
Instance: Params (@mbind) 4.
371
Class MJoin (M : Type  Type) := mjoin:  {A}, M (M A)  M A.
372
Arguments mjoin {_ _ _} !_ /.
373
Instance: Params (@mjoin) 3.
374 375
Class FMap (M : Type  Type) := fmap :  {A B}, (A  B)  M A  M B.
Arguments fmap {_ _ _ _} _ !_ /.
376
Instance: Params (@fmap) 4.
377 378
Class OMap (M : Type  Type) := omap:  {A B}, (A  option B)  M A  M B.
Arguments omap {_ _ _ _} _ !_ /.
379
Instance: Params (@omap) 4.
380

381 382 383 384 385 386
Notation "m ≫= f" := (mbind f m) (at level 60, right associativity) : C_scope.
Notation "( m ≫=)" := (λ f, mbind f m) (only parsing) : C_scope.
Notation "(≫= f )" := (mbind f) (only parsing) : C_scope.
Notation "(≫=)" := (λ m f, mbind f m) (only parsing) : C_scope.

Notation "x ← y ; z" := (y = (λ x : _, z))
Robbert Krebbers's avatar
Robbert Krebbers committed
387
  (at level 65, only parsing, right associativity) : C_scope.
388
Infix "<$>" := fmap (at level 60, right associativity) : C_scope.
389
Notation "' ( x1 , x2 ) ← y ; z" :=
390
  (y = (λ x : _, let ' (x1, x2) := x in z))
Robbert Krebbers's avatar
Robbert Krebbers committed
391
  (at level 65, only parsing, right associativity) : C_scope.
392
Notation "' ( x1 , x2 , x3 ) ← y ; z" :=
393
  (y = (λ x : _, let ' (x1,x2,x3) := x in z))
Robbert Krebbers's avatar
Robbert Krebbers committed
394
  (at level 65, only parsing, right associativity) : C_scope.
395
Notation "' ( x1 , x2 , x3  , x4 ) ← y ; z" :=
396
  (y = (λ x : _, let ' (x1,x2,x3,x4) := x in z))
Robbert Krebbers's avatar
Robbert Krebbers committed
397
  (at level 65, only parsing, right associativity) : C_scope.
398 399
Notation "' ( x1 , x2 , x3  , x4 , x5 ) ← y ; z" :=
  (y = (λ x : _, let ' (x1,x2,x3,x4,x5) := x in z))
Robbert Krebbers's avatar
Robbert Krebbers committed
400
  (at level 65, only parsing, right associativity) : C_scope.
401 402
Notation "' ( x1 , x2 , x3  , x4 , x5 , x6 ) ← y ; z" :=
  (y = (λ x : _, let ' (x1,x2,x3,x4,x5,x6) := x in z))
Robbert Krebbers's avatar
Robbert Krebbers committed
403
  (at level 65, only parsing, right associativity) : C_scope.
404

405 406 407 408 409
Notation "ps .*1" := (fmap (M:=list) fst ps)
  (at level 10, format "ps .*1").
Notation "ps .*2" := (fmap (M:=list) snd ps)
  (at level 10, format "ps .*2").

410
Class MGuard (M : Type  Type) :=
411 412 413
  mguard:  P {dec : Decision P} {A}, (P  M A)  M A.
Arguments mguard _ _ _ !_ _ _ /.
Notation "'guard' P ; o" := (mguard P (λ _, o))
Robbert Krebbers's avatar
Robbert Krebbers committed
414
  (at level 65, only parsing, right associativity) : C_scope.
415
Notation "'guard' P 'as' H ; o" := (mguard P (λ H, o))
Robbert Krebbers's avatar
Robbert Krebbers committed
416
  (at level 65, only parsing, right associativity) : C_scope.
417

418
(** ** Operations on maps *)
419 420
(** In this section we define operational type classes for the operations
on maps. In the file [fin_maps] we will axiomatize finite maps.
421
The function look up [m !! k] should yield the element at key [k] in [m]. *)
422
Class Lookup (K A M : Type) := lookup: K  M  option A.
423 424 425
Instance: Params (@lookup) 4.
Notation "m !! i" := (lookup i m) (at level 20) : C_scope.
Notation "(!!)" := lookup (only parsing) : C_scope.
426
Notation "( m !!)" := (λ i, m !! i) (only parsing) : C_scope.
427
Notation "(!! i )" := (lookup i) (only parsing) : C_scope.
428
Arguments lookup _ _ _ _ !_ !_ / : simpl nomatch.
429

430 431 432 433 434
(** The singleton map *)
Class SingletonM K A M := singletonM: K  A  M.
Instance: Params (@singletonM) 5.
Notation "{[ x ↦ y ]}" := (singletonM x y) (at level 1) : C_scope.

435 436
(** The function insert [<[k:=a]>m] should update the element at key [k] with
value [a] in [m]. *)
437
Class Insert (K A M : Type) := insert: K  A  M  M.
Robbert Krebbers's avatar
Robbert Krebbers committed
438
Instance: Params (@insert) 5.
439 440
Notation "<[ k := a ]>" := (insert k a)
  (at level 5, right associativity, format "<[ k := a ]>") : C_scope.
441
Arguments insert _ _ _ _ !_ _ !_ / : simpl nomatch.
442

443 444 445
(** The function delete [delete k m] should delete the value at key [k] in
[m]. If the key [k] is not a member of [m], the original map should be
returned. *)
446
Class Delete (K M : Type) := delete: K  M  M.
Robbert Krebbers's avatar
Robbert Krebbers committed
447
Instance: Params (@delete) 4.
448
Arguments delete _ _ _ !_ !_ / : simpl nomatch.
449 450

(** The function [alter f k m] should update the value at key [k] using the
451
function [f], which is called with the original value. *)
452
Class Alter (K A M : Type) := alter: (A  A)  K  M  M.
453
Instance: Params (@alter) 5.
454
Arguments alter {_ _ _ _} _ !_ !_ / : simpl nomatch.
455 456

(** The function [alter f k m] should update the value at key [k] using the
457 458 459
function [f], which is called with the original value at key [k] or [None]
if [k] is not a member of [m]. The value at [k] should be deleted if [f] 
yields [None]. *)
460 461
Class PartialAlter (K A M : Type) :=
  partial_alter: (option A  option A)  K  M  M.
462
Instance: Params (@partial_alter) 4.
463
Arguments partial_alter _ _ _ _ _ !_ !_ / : simpl nomatch.
464 465 466

(** The function [dom C m] should yield the domain of [m]. That is a finite
collection of type [C] that contains the keys that are a member of [m]. *)
467 468 469
Class Dom (M C : Type) := dom: M  C.
Instance: Params (@dom) 3.
Arguments dom {_} _ {_} !_ / : simpl nomatch, clear implicits.
470 471

(** The function [merge f m1 m2] should merge the maps [m1] and [m2] by
472 473 474 475 476
constructing a new map whose value at key [k] is [f (m1 !! k) (m2 !! k)].*)
Class Merge (M : Type  Type) :=
  merge:  {A B C}, (option A  option B  option C)  M A  M B  M C.
Instance: Params (@merge) 4.
Arguments merge _ _ _ _ _ _ !_ !_ / : simpl nomatch.
477

478 479 480 481 482
(** The function [union_with f m1 m2] is supposed to yield the union of [m1]
and [m2] using the function [f] to combine values of members that are in
both [m1] and [m2]. *)
Class UnionWith (A M : Type) :=
  union_with: (A  A  option A)  M  M  M.
483
Instance: Params (@union_with) 3.
484
Arguments union_with {_ _ _} _ !_ !_ / : simpl nomatch.
485

486 487 488
(** Similarly for intersection and difference. *)
Class IntersectionWith (A M : Type) :=
  intersection_with: (A  A  option A)  M  M  M.
489
Instance: Params (@intersection_with) 3.
490 491
Arguments intersection_with {_ _ _} _ !_ !_ / : simpl nomatch.

492 493
Class DifferenceWith (A M : Type) :=
  difference_with: (A  A  option A)  M  M  M.
494
Instance: Params (@difference_with) 3.
495
Arguments difference_with {_ _ _} _ !_ !_ / : simpl nomatch.
Robbert Krebbers's avatar
Robbert Krebbers committed
496

497 498 499 500
Definition intersection_with_list `{IntersectionWith A M}
  (f : A  A  option A) : M  list M  M := fold_right (intersection_with f).
Arguments intersection_with_list _ _ _ _ _ !_ /.

501 502 503 504 505 506 507 508
Class LookupE (E K A M : Type) := lookupE: E  K  M  option A.
Instance: Params (@lookupE) 6.
Notation "m !!{ Γ } i" := (lookupE Γ i m)
  (at level 20, format "m  !!{ Γ }  i") : C_scope.
Notation "(!!{ Γ } )" := (lookupE Γ) (only parsing, Γ at level 1) : C_scope.
Arguments lookupE _ _ _ _ _ _ !_ !_ / : simpl nomatch.

Class InsertE (E K A M : Type) := insertE: E  K  A  M  M.
Robbert Krebbers's avatar
Robbert Krebbers committed
509
Instance: Params (@insertE) 6.
510 511 512 513
Notation "<[ k := a ]{ Γ }>" := (insertE Γ k a)
  (at level 5, right associativity, format "<[ k := a ]{ Γ }>") : C_scope.
Arguments insertE _ _ _ _ _ _ !_ _ !_ / : simpl nomatch.

514 515 516
(** ** Common properties *)
(** These operational type classes allow us to refer to common mathematical
properties in a generic way. For example, for injectivity of [(k ++)] it
517 518 519 520
allows us to write [inj (k ++)] instead of [app_inv_head k]. *)
Class Inj {A B} (R : relation A) (S : relation B) (f : A  B) : Prop :=
  inj x y : S (f x) (f y)  R x y.
Class Inj2 {A B C} (R1 : relation A) (R2 : relation B)
521
    (S : relation C) (f : A  B  C) : Prop :=
522
  inj2 x1 x2 y1 y2 : S (f x1 x2) (f y1 y2)  R1 x1 y1  R2 x2 y2.
523
Class Cancel {A B} (S : relation B) (f : A  B) (g : B  A) : Prop :=
524 525 526 527 528 529 530
  cancel :  x, S (f (g x)) x.
Class Surj {A B} (R : relation B) (f : A  B) :=
  surj y :  x, R (f x) y.
Class IdemP {A} (R : relation A) (f : A  A  A) : Prop :=
  idemp x : R (f x x) x.
Class Comm {A B} (R : relation A) (f : B  B  A) : Prop :=
  comm x y : R (f x y) (f y x).
531
Class LeftId {A} (R : relation A) (i : A) (f : A  A  A) : Prop :=
532
  left_id x : R (f i x) x.
533
Class RightId {A} (R : relation A) (i : A) (f : A  A  A) : Prop :=
534 535 536
  right_id x : R (f x i) x.
Class Assoc {A} (R : relation A) (f : A  A  A) : Prop :=
  assoc x y z : R (f x (f y z)) (f (f x y) z).
537
Class LeftAbsorb {A} (R : relation A) (i : A) (f : A  A  A) : Prop :=
538
  left_absorb x : R (f i x) i.
539
Class RightAbsorb {A} (R : relation A) (i : A) (f : A  A  A) : Prop :=
540 541 542
  right_absorb x : R (f x i) i.
Class AntiSymm {A} (R S : relation A) : Prop :=
  anti_symm x y : S x y  S y x  R x y.
543 544
Class Total {A} (R : relation A) := total x y : R x y  R y x.
Class Trichotomy {A} (R : relation A) :=
545
  trichotomy x y : R x y  x = y  R y x.
546
Class TrichotomyT {A} (R : relation A) :=
547
  trichotomyT x y : {R x y} + {x = y} + {R y x}.
Robbert Krebbers's avatar
Robbert Krebbers committed
548

549
Arguments irreflexivity {_} _ {_} _ _.
550 551
Arguments inj {_ _ _ _} _ {_} _ _ _.
Arguments inj2 {_ _ _ _ _ _} _ {_} _ _ _ _ _.
552
Arguments cancel {_ _ _} _ _ {_} _.
553 554 555
Arguments surj {_ _ _} _ {_} _.
Arguments idemp {_ _} _ {_} _.
Arguments comm {_ _ _} _ {_} _ _.
Robbert Krebbers's avatar
Robbert Krebbers committed
556 557
Arguments left_id {_ _} _ _ {_} _.
Arguments right_id {_ _} _ _ {_} _.
558
Arguments assoc {_ _} _ {_} _ _ _.
559 560
Arguments left_absorb {_ _} _ _ {_} _.
Arguments right_absorb {_ _} _ _ {_} _.
561
Arguments anti_symm {_ _} _ {_} _ _ _ _.
562 563 564
Arguments total {_} _ {_} _ _.
Arguments trichotomy {_} _ {_} _ _.
Arguments trichotomyT {_} _ {_} _ _.
565

566
Instance id_inj {A} : Inj (=) (=) (@id A).
567 568
Proof. intros ??; auto. Qed.

569 570 571
(** The following lemmas are specific versions of the projections of the above
type classes for Leibniz equality. These lemmas allow us to enforce Coq not to
use the setoid rewriting mechanism. *)
572
Lemma idemp_L {A} (f : A  A  A) `{!IdemP (=) f} x : f x x = x.
573
Proof. auto. Qed.
574
Lemma comm_L {A B} (f : B  B  A) `{!Comm (=) f} x y :
575
  f x y = f y x.
576
Proof. auto. Qed.
577
Lemma left_id_L {A} (i : A) (f : A  A  A) `{!LeftId (=) i f} x : f i x = x.
578
Proof. auto. Qed.
579
Lemma right_id_L {A} (i : A) (f : A  A  A) `{!RightId (=) i f} x : f x i = x.
580
Proof. auto. Qed.
581
Lemma assoc_L {A} (f : A  A  A) `{!Assoc (=) f} x y z :
582
  f x (f y z) = f (f x y) z.
583
Proof. auto. Qed.
584
Lemma left_absorb_L {A} (i : A) (f : A  A  A) `{!LeftAbsorb (=) i f} x :
585 586
  f i x = i.
Proof. auto. Qed.
587
Lemma right_absorb_L {A} (i : A) (f : A  A  A) `{!RightAbsorb (=) i f} x :
588 589
  f x i = i.
Proof. auto. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
590

591
(** ** Axiomatization of ordered structures *)
592 593
(** The classes [PreOrder], [PartialOrder], and [TotalOrder] use an arbitrary
relation [R] instead of [⊆] to support multiple orders on the same type. *)
594
Class PartialOrder {A} (R : relation A) : Prop := {
595
  partial_order_pre :> PreOrder R;
596
  partial_order_anti_symm :> AntiSymm (=) R
597 598
}.
Class TotalOrder {A} (R : relation A) : Prop := {
599 600
  total_order_partial :> PartialOrder R;
  total_order_trichotomy :> Trichotomy (strict R)
601 602
}.

603 604 605 606 607 608
(** We do not use a setoid equality in the following interfaces to avoid the
need for proofs that the relations and operations are proper. Instead, we
define setoid equality generically [λ X Y, X ⊆ Y ∧ Y ⊆ X]. *)
Class EmptySpec A `{Empty A, SubsetEq A} : Prop := subseteq_empty X :   X.
Class JoinSemiLattice A `{SubsetEq A, Union A} : Prop := {
  join_semi_lattice_pre :>> PreOrder ();
609 610 611
  union_subseteq_l X Y : X  X  Y;
  union_subseteq_r X Y : Y  X  Y;
  union_least X Y Z : X  Z  Y  Z  X  Y  Z
Robbert Krebbers's avatar
Robbert Krebbers committed
612
}.
613 614
Class MeetSemiLattice A `{SubsetEq A, Intersection A} : Prop := {
  meet_semi_lattice_pre :>> PreOrder ();
615 616 617
  intersection_subseteq_l X Y : X  Y  X;
  intersection_subseteq_r X Y : X  Y  Y;
  intersection_greatest X Y Z : Z  X  Z  Y  Z  X  Y
Robbert Krebbers's avatar
Robbert Krebbers committed
618
}.
619 620 621 622
Class Lattice A `{SubsetEq A, Union A, Intersection A} : Prop := {
  lattice_join :>> JoinSemiLattice A;
  lattice_meet :>> MeetSemiLattice A;
  lattice_distr X Y Z : (X  Y)  (X  Z)  X  (Y  Z)
623
}.
624

625
(** ** Axiomatization of collections *)
626 627
(** The class [SimpleCollection A C] axiomatizes a collection of type [C] with
elements of type [A]. *)
628
Instance: Params (@map) 3.
629 630
Class SimpleCollection A C `{ElemOf A C,
    Empty C, Singleton A C, Union C} : Prop := {
631
  not_elem_of_empty (x : A) : x  ;
632
  elem_of_singleton (x y : A) : x  {[ y ]}  x = y;
633 634
  elem_of_union X Y (x : A) : x  X  Y  x  X  x  Y
}.
635 636
Class Collection A C `{ElemOf A C, Empty C, Singleton A C,
    Union C, Intersection C, Difference C} : Prop := {
637
  collection_simple :>> SimpleCollection A C;
Robbert Krebbers's avatar
Robbert Krebbers committed
638
  elem_of_intersection X Y (x : A) : x  X  Y  x  X  x  Y;
639 640
  elem_of_difference X Y (x : A) : x  X  Y  x  X  x  Y
}.
641 642
Class CollectionOps A C `{ElemOf A C, Empty C, Singleton A C, Union C,
    Intersection C, Difference C, IntersectionWith A C, Filter A C} : Prop := {
643
  collection_ops :>> Collection A C;
644
  elem_of_intersection_with (f : A  A  option A) X Y (x : A) :
645
    x  intersection_with f X Y   x1 x2, x1  X  x2  Y  f x1 x2 = Some x;
646
  elem_of_filter X P `{ x, Decision (P x)} x : x  filter P X  P x  x  X
Robbert Krebbers's avatar
Robbert Krebbers committed
647 648
}.

649 650 651
(** We axiomative a finite collection as a collection whose elements can be
enumerated as a list. These elements, given by the [elements] function, may be
in any order and should not contain duplicates. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
652
Class Elements A C := elements: C  list A.
653
Instance: Params (@elements) 3.
654 655 656 657 658 659 660 661 662 663 664 665 666

(** We redefine the standard library's [In] and [NoDup] using type classes. *)
Inductive elem_of_list {A} : ElemOf A (list A) :=
  | elem_of_list_here (x : A) l : x  x :: l
  | elem_of_list_further (x y : A) l : x  l  x  y :: l.
Existing Instance elem_of_list.

Inductive NoDup {A} : list A  Prop :=
  | NoDup_nil_2 : NoDup []
  | NoDup_cons_2 x l : x  l  NoDup l  NoDup (x :: l).

(** Decidability of equality of the carrier set is admissible, but we add it
anyway so as to avoid cycles in type class search. *)
667 668 669
Class FinCollection A C `{ElemOf A C, Empty C, Singleton A C,
    Union C, Intersection C, Difference C,
    Elements A C,  x y : A, Decision (x = y)} : Prop := {
Robbert Krebbers's avatar
Robbert Krebbers committed
670
  fin_collection :>> Collection A C;
671 672
  elem_of_elements X x : x  elements X  x  X;
  NoDup_elements X : NoDup (elements X)
673 674
}.
Class Size C := size: C  nat.
675
Arguments size {_ _} !_ / : simpl nomatch.
676
Instance: Params (@size) 2.
Robbert Krebbers's avatar
Robbert Krebbers committed
677

678 679 680 681 682 683 684 685
(** The class [Collection M] axiomatizes a type constructor [M] that can be
used to construct a collection [M A] with elements of type [A]. The advantage
of this class, compared to [Collection], is that it also axiomatizes the
the monadic operations. The disadvantage, is that not many inhabits are
possible (we will only provide an inhabitant using unordered lists without
duplicates removed). More interesting implementations typically need
decidability of equality, or a total order on the elements, which do not fit
in a type constructor of type [Type → Type]. *)
686 687 688
Class CollectionMonad M `{ A, ElemOf A (M A),
     A, Empty (M A),  A, Singleton A (M A),  A, Union (M A),
    !MBind M, !MRet M, !FMap M, !MJoin M} : Prop := {
689 690 691
  collection_monad_simple A :> SimpleCollection A (M A);
  elem_of_bind {A B} (f : A  M B) (X : M A) (x : B) :
    x  X = f   y, x  f y  y  X;
692
  elem_of_ret {A} (x y : A) : x  mret y  x = y;
693 694
  elem_of_fmap {A B} (f : A  B) (X : M A) (x : B) :
    x  f <$> X   y, x = f y  y  X;
695
  elem_of_join {A} (X : M (M A)) (x : A) : x  mjoin X   Y, x  Y  Y  X
696 697
}.

698 699 700
(** The function [fresh X] yields an element that is not contained in [X]. We
will later prove that [fresh] is [Proper] with respect to the induced setoid
equality on collections. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
701
Class Fresh A C := fresh: C  A.
702
Instance: Params (@fresh) 3.
703 704
Class FreshSpec A C `{ElemOf A C,
    Empty C, Singleton A C, Union C, Fresh A C} : Prop := {
705
  fresh_collection_simple :>> SimpleCollection A C;
706
  fresh_proper_alt X Y : ( x, x  X  x  Y)  fresh X = fresh Y;
Robbert Krebbers's avatar
Robbert Krebbers committed
707 708 709
  is_fresh (X : C) : fresh X  X
}.

710 711 712
(** * Booleans *)
(** The following coercion allows us to use Booleans as propositions. *)
Coercion Is_true : bool >-> Sortclass.
713
Hint Unfold Is_true.
714
Hint Immediate Is_true_eq_left.
715
Hint Resolve orb_prop_intro andb_prop_intro.
716 717 718 719 720 721 722 723 724 725 726
Notation "(&&)" := andb (only parsing).
Notation "(||)" := orb (only parsing).
Infix "&&*" := (zip_with (&&)) (at level 40).
Infix "||*" := (zip_with (||)) (at level 50).

Definition bool_le (β1 β2 : bool) : Prop := negb β1 || β2.
Infix "=.>" := bool_le (at level 70).
Infix "=.>*" := (Forall2 bool_le) (at level 70).
Instance: PartialOrder bool_le.
Proof. repeat split; repeat intros [|]; compute; tauto. Qed.

727 728 729 730 731 732 733 734 735
Lemma andb_True b1 b2 : b1 && b2  b1  b2.
Proof. destruct b1, b2; simpl; tauto. Qed.
Lemma orb_True b1 b2 : b1 || b2  b1  b2.
Proof. destruct b1, b2; simpl; tauto. Qed.
Lemma negb_True b : negb b  ¬b.
Proof. destruct b; simpl; tauto. Qed.
Lemma Is_true_false (b : bool) : b = false  ¬b.
Proof. now intros -> ?. Qed.

736
(** * Miscellaneous *)
737
Class Half A := half: A  A.
738 739
Notation "½" := half : C_scope.
Notation "½*" := (fmap (M:=list) half) : C_scope.
740

741 742
Lemma proj1_sig_inj {A} (P : A  Prop) x (Px : P x) y (Py : P y) :
  xPx = yPy  x = y.
743
Proof. injection 1; trivial. Qed.
744
Lemma not_symmetry `{R : relation A, !Symmetric R} x y : ¬R x y  ¬R y x.
745
Proof. intuition. Qed.
746
Lemma symmetry_iff `(R : relation A) `{!Symmetric R} x y : R x y  R y x.
747 748
Proof. intuition. Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
749 750 751 752 753
(** ** Unit *)
Instance unit_equiv : Equiv unit := λ _ _, True.
Instance unit_equivalence : Equivalence (@equiv unit _).
Proof. repeat split. Qed.

754
(** ** Products *)
755 756
Instance prod_map_inj {A A' B B'} (f : A  A') (g : B  B') :
  Inj (=) (=) f  Inj (=) (=) g  Inj (=) (=) (prod_map f g).
757 758
Proof.
  intros ?? [??] [??] ?; simpl in *; f_equal;
759
    [apply (inj f)|apply (inj g)]; congruence.
760
Qed.
761

762
Definition prod_relation {A B} (R1 : relation A) (R2 : relation B) :
763
  relation (A * B) := λ x y, R1 (x.1) (y.1)  R2 (x.2) (y.2).
Robbert Krebbers's avatar
Robbert Krebbers committed
764
Section prod_relation.
765
  Context `{R1 : relation A, R2 : relation B}.
766 767
  Global Instance:
    Reflexive R1  Reflexive R2  Reflexive (prod_relation R1 R2).
Robbert Krebbers's avatar
Robbert Krebbers committed
768
  Proof. firstorder eauto. Qed.
769 770
  Global Instance:
    Symmetric R1  Symmetric R2  Symmetric (prod_relation R1 R2).
Robbert Krebbers's avatar
Robbert Krebbers committed
771
  Proof. firstorder eauto. Qed.
772 773
  Global Instance:
    Transitive R1  Transitive R2  Transitive (prod_relation R1 R2).
Robbert Krebbers's avatar
Robbert Krebbers committed
774
  Proof. firstorder eauto. Qed.
775 776
  Global Instance:
    Equivalence R1  Equivalence R2  Equivalence (prod_relation R1 R2).
Robbert Krebbers's avatar
Robbert Krebbers committed
777 778 779 780 781 782 783 784 785
  Proof. split; apply _. Qed.
  Global Instance: Proper (R1 ==> R2 ==> prod_relation R1 R2) pair.
  Proof. firstorder eauto. Qed.
  Global Instance: Proper (prod_relation R1 R2 ==> R1) fst.
  Proof. firstorder eauto. Qed.
  Global Instance: Proper (prod_relation R1 R2 ==> R2) snd.
  Proof. firstorder eauto. Qed.
End prod_relation.

Robbert Krebbers's avatar
Robbert Krebbers committed
786 787 788 789 790 791 792 793 794
Instance prod_equiv `{Equiv A,Equiv B} : Equiv