collections.v 40.4 KB
Newer Older
Robbert Krebbers's avatar
Robbert Krebbers committed
1
(* Copyright (c) 2012-2015, Robbert Krebbers. *)
2
3
4
5
(* This file is distributed under the terms of the BSD license. *)
(** This file collects definitions and theorems on collections. Most
importantly, it implements some tactics to automatically solve goals involving
collections. *)
6
From stdpp Require Export orders list.
7

8
9
Instance collection_equiv `{ElemOf A C} : Equiv C := λ X Y,
   x, x  X  x  Y.
10
11
Instance collection_subseteq `{ElemOf A C} : SubsetEq C := λ X Y,
   x, x  X  x  Y.
12
13
14
Instance collection_disjoint `{ElemOf A C} : Disjoint C := λ X Y,
   x, x  X  x  Y  False.
Typeclasses Opaque collection_equiv collection_subseteq collection_disjoint.
15

16
17
(** * Setoids *)
Section setoids_simple.
18
  Context `{SimpleCollection A C}.
Robbert Krebbers's avatar
Robbert Krebbers committed
19

20
  Global Instance collection_equivalence: @Equivalence C ().
21
  Proof.
22
23
24
25
    split.
    - done.
    - intros X Y ? x. by symmetry.
    - intros X Y Z ?? x; by trans (x  Y).
26
  Qed.
27
28
29
30
31
32
  Global Instance singleton_proper : Proper ((=) ==> ()) (singleton (B:=C)).
  Proof. apply _. Qed.
  Global Instance elem_of_proper :
    Proper ((=) ==> () ==> iff) (@elem_of A C _) | 5.
  Proof. by intros x ? <- X Y. Qed.
  Global Instance disjoint_proper: Proper (() ==> () ==> iff) (@disjoint C _).
33
  Proof.
34
    intros X1 X2 HX Y1 Y2 HY; apply forall_proper; intros x. by rewrite HX, HY.
35
  Qed.
36
37
38
39
40
41
42
43
44
45
46
47
  Global Instance union_proper : Proper (() ==> () ==> ()) (@union C _).
  Proof. intros X1 X2 HX Y1 Y2 HY x. rewrite !elem_of_union. f_equiv; auto. Qed.
  Global Instance union_list_proper: Proper (() ==> ()) (union_list (A:=C)).
  Proof. by induction 1; simpl; try apply union_proper. Qed.
  Global Instance subseteq_proper : Proper (() ==> () ==> iff) (() : relation C).
  Proof.
    intros X1 X2 HX Y1 Y2 HY. apply forall_proper; intros x. by rewrite HX, HY.
  Qed.
End setoids_simple.

Section setoids.
  Context `{Collection A C}.
48

49
50
51
  (** * Setoids *)
  Global Instance intersection_proper :
    Proper (() ==> () ==> ()) (@intersection C _).
52
  Proof.
53
    intros X1 X2 HX Y1 Y2 HY x. by rewrite !elem_of_intersection, HX, HY.
54
  Qed.
55
56
  Global Instance difference_proper :
     Proper (() ==> () ==> ()) (@difference C _).
57
  Proof.
58
    intros X1 X2 HX Y1 Y2 HY x. by rewrite !elem_of_difference, HX, HY.
59
  Qed.
60
End setoids.
Robbert Krebbers's avatar
Robbert Krebbers committed
61

62
63
64
65
66
Section setoids_monad.
  Context `{CollectionMonad M}.

  Global Instance collection_fmap_proper {A B} :
    Proper (pointwise_relation _ (=) ==> () ==> ()) (@fmap M _ A B).
67
  Proof.
68
69
    intros f1 f2 Hf X1 X2 HX x. rewrite !elem_of_fmap. f_equiv; intros z.
    by rewrite HX, Hf.
70
  Qed.
71
72
73
74
75
76
77
78
79
80
81
82
  Global Instance collection_bind_proper {A B} :
    Proper (((=) ==> ()) ==> () ==> ()) (@mbind M _ A B).
  Proof.
    intros f1 f2 Hf X1 X2 HX x. rewrite !elem_of_bind. f_equiv; intros z.
    by rewrite HX, (Hf z z).
  Qed.
  Global Instance collection_join_proper {A} :
    Proper (() ==> ()) (@mjoin M _ A).
  Proof.
    intros X1 X2 HX x. rewrite !elem_of_join. f_equiv; intros z. by rewrite HX.
  Qed.
End setoids_monad.
83

84
85
86
87
88
(** * Tactics *)
(** The tactic [set_unfold] transforms all occurrences of [(∪)], [(∩)], [(∖)],
[(<$>)], [∅], [{[_]}], [(≡)], and [(⊆)] into logically equivalent propositions
involving just [∈]. For example, [A → x ∈ X ∪ ∅] becomes [A → x ∈ X ∨ False].

89
90
91
This transformation is implemented using type classes instead of setoid
rewriting to ensure that we traverse each term at most once and to be able to
deal with occurences of the set operations under binders. *)
92
93
94
95
96
97
98
Class SetUnfold (P Q : Prop) := { set_unfold : P  Q }.
Arguments set_unfold _ _ {_}.
Hint Mode SetUnfold + - : typeclass_instances.

Class SetUnfoldSimpl (P Q : Prop) := { set_unfold_simpl : SetUnfold P Q }.
Hint Extern 0 (SetUnfoldSimpl _ _) => csimpl; constructor : typeclass_instances.

99
Instance set_unfold_default P : SetUnfold P P | 1000. done. Qed.
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
Definition set_unfold_1 `{SetUnfold P Q} : P  Q := proj1 (set_unfold P Q).
Definition set_unfold_2 `{SetUnfold P Q} : Q  P := proj2 (set_unfold P Q).

Lemma set_unfold_impl P Q P' Q' :
  SetUnfold P P'  SetUnfold Q Q'  SetUnfold (P  Q) (P'  Q').
Proof. constructor. by rewrite (set_unfold P P'), (set_unfold Q Q'). Qed.
Lemma set_unfold_and P Q P' Q' :
  SetUnfold P P'  SetUnfold Q Q'  SetUnfold (P  Q) (P'  Q').
Proof. constructor. by rewrite (set_unfold P P'), (set_unfold Q Q'). Qed.
Lemma set_unfold_or P Q P' Q' :
  SetUnfold P P'  SetUnfold Q Q'  SetUnfold (P  Q) (P'  Q').
Proof. constructor. by rewrite (set_unfold P P'), (set_unfold Q Q'). Qed.
Lemma set_unfold_iff P Q P' Q' :
  SetUnfold P P'  SetUnfold Q Q'  SetUnfold (P  Q) (P'  Q').
Proof. constructor. by rewrite (set_unfold P P'), (set_unfold Q Q'). Qed.
Lemma set_unfold_not P P' : SetUnfold P P'  SetUnfold (¬P) (¬P').
Proof. constructor. by rewrite (set_unfold P P'). Qed.
Lemma set_unfold_forall {A} (P P' : A  Prop) :
  ( x, SetUnfold (P x) (P' x))  SetUnfold ( x, P x) ( x, P' x).
Proof. constructor. naive_solver. Qed.
Lemma set_unfold_exist {A} (P P' : A  Prop) :
  ( x, SetUnfold (P x) (P' x))  SetUnfold ( x, P x) ( x, P' x).
Proof. constructor. naive_solver. Qed.

(* Avoid too eager application of the above instances (and thus too eager
unfolding of type class transparent definitions). *)
Hint Extern 0 (SetUnfold (_  _) _) =>
  class_apply set_unfold_impl : typeclass_instances.
Hint Extern 0 (SetUnfold (_  _) _) =>
  class_apply set_unfold_and : typeclass_instances.
Hint Extern 0 (SetUnfold (_  _) _) =>
  class_apply set_unfold_or : typeclass_instances.
Hint Extern 0 (SetUnfold (_  _) _) =>
  class_apply set_unfold_iff : typeclass_instances.
Hint Extern 0 (SetUnfold (¬ _) _) =>
  class_apply set_unfold_not : typeclass_instances.
Hint Extern 1 (SetUnfold ( _, _) _) =>
  class_apply set_unfold_forall : typeclass_instances.
Hint Extern 0 (SetUnfold ( _, _) _) =>
  class_apply set_unfold_exist : typeclass_instances.

Section set_unfold_simple.
  Context `{SimpleCollection A C}.
  Implicit Types x y : A.
  Implicit Types X Y : C.

  Global Instance set_unfold_empty x : SetUnfold (x  ) False.
147
  Proof. constructor. split. apply not_elem_of_empty. done. Qed.
148
149
150
151
152
153
154
155
156
157
158
159
160
  Global Instance set_unfold_singleton x y : SetUnfold (x  {[ y ]}) (x = y).
  Proof. constructor; apply elem_of_singleton. Qed.
  Global Instance set_unfold_union x X Y P Q :
    SetUnfold (x  X) P  SetUnfold (x  Y) Q  SetUnfold (x  X  Y) (P  Q).
  Proof.
    intros ??; constructor.
    by rewrite elem_of_union, (set_unfold (x  X) P), (set_unfold (x  Y) Q).
  Qed.
  Global Instance set_unfold_equiv_same X : SetUnfold (X  X) True | 1.
  Proof. done. Qed.
  Global Instance set_unfold_equiv_empty_l X (P : A  Prop) :
    ( x, SetUnfold (x  X) (P x))  SetUnfold (  X) ( x, ¬P x) | 5.
  Proof.
161
162
    intros ?; constructor. unfold equiv, collection_equiv.
    pose proof not_elem_of_empty; naive_solver.
163
164
165
  Qed.
  Global Instance set_unfold_equiv_empty_r (P : A  Prop) :
    ( x, SetUnfold (x  X) (P x))  SetUnfold (X  ) ( x, ¬P x) | 5.
166
167
168
169
  Proof.
    intros ?; constructor. unfold equiv, collection_equiv.
    pose proof not_elem_of_empty; naive_solver.
  Qed.
170
171
172
  Global Instance set_unfold_equiv (P Q : A  Prop) :
    ( x, SetUnfold (x  X) (P x))  ( x, SetUnfold (x  Y) (Q x)) 
    SetUnfold (X  Y) ( x, P x  Q x) | 10.
173
  Proof. constructor. apply forall_proper; naive_solver. Qed.
174
175
176
  Global Instance set_unfold_subseteq (P Q : A  Prop) :
    ( x, SetUnfold (x  X) (P x))  ( x, SetUnfold (x  Y) (Q x)) 
    SetUnfold (X  Y) ( x, P x  Q x).
177
  Proof. constructor. apply forall_proper; naive_solver. Qed.
178
179
  Global Instance set_unfold_subset (P Q : A  Prop) :
    ( x, SetUnfold (x  X) (P x))  ( x, SetUnfold (x  Y) (Q x)) 
180
    SetUnfold (X  Y) (( x, P x  Q x)  ¬∀ x, Q x  P x).
181
  Proof.
182
183
    constructor. unfold strict.
    repeat f_equiv; apply forall_proper; naive_solver.
184
  Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
185
186
187
  Global Instance set_unfold_disjoint (P Q : A  Prop) :
    ( x, SetUnfold (x  X) (P x))  ( x, SetUnfold (x  Y) (Q x)) 
    SetUnfold (X  Y) ( x, P x  Q x  False).
188
  Proof. constructor. unfold disjoint, collection_disjoint. naive_solver. Qed.
189
190
191
192
193
194

  Context `{!LeibnizEquiv C}.
  Global Instance set_unfold_equiv_same_L X : SetUnfold (X = X) True | 1.
  Proof. done. Qed.
  Global Instance set_unfold_equiv_empty_l_L X (P : A  Prop) :
    ( x, SetUnfold (x  X) (P x))  SetUnfold ( = X) ( x, ¬P x) | 5.
195
  Proof. constructor. unfold_leibniz. by apply set_unfold_equiv_empty_l. Qed.
196
197
  Global Instance set_unfold_equiv_empty_r_L (P : A  Prop) :
    ( x, SetUnfold (x  X) (P x))  SetUnfold (X = ) ( x, ¬P x) | 5.
198
  Proof. constructor. unfold_leibniz. by apply set_unfold_equiv_empty_r. Qed.
199
200
201
  Global Instance set_unfold_equiv_L (P Q : A  Prop) :
    ( x, SetUnfold (x  X) (P x))  ( x, SetUnfold (x  Y) (Q x)) 
    SetUnfold (X = Y) ( x, P x  Q x) | 10.
202
  Proof. constructor. unfold_leibniz. by apply set_unfold_equiv. Qed.
203
204
205
206
207
208
209
210
211
212
End set_unfold_simple.

Section set_unfold.
  Context `{Collection A C}.
  Implicit Types x y : A.
  Implicit Types X Y : C.

  Global Instance set_unfold_intersection x X Y P Q :
    SetUnfold (x  X) P  SetUnfold (x  Y) Q  SetUnfold (x  X  Y) (P  Q).
  Proof.
213
214
    intros ??; constructor. rewrite elem_of_intersection.
    by rewrite (set_unfold (x  X) P), (set_unfold (x  Y) Q).
215
216
217
218
  Qed.
  Global Instance set_unfold_difference x X Y P Q :
    SetUnfold (x  X) P  SetUnfold (x  Y) Q  SetUnfold (x  X  Y) (P  ¬Q).
  Proof.
219
220
    intros ??; constructor. rewrite elem_of_difference.
    by rewrite (set_unfold (x  X) P), (set_unfold (x  Y) Q).
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
  Qed.
End set_unfold.

Section set_unfold_monad.
  Context `{CollectionMonad M} {A : Type}.
  Implicit Types x y : A.

  Global Instance set_unfold_ret x y : SetUnfold (x  mret y) (x = y).
  Proof. constructor; apply elem_of_ret. Qed.
  Global Instance set_unfold_bind {B} (f : A  M B) X (P Q : A  Prop) :
    ( y, SetUnfold (y  X) (P y))  ( y, SetUnfold (x  f y) (Q y)) 
    SetUnfold (x  X = f) ( y, Q y  P y).
  Proof. constructor. rewrite elem_of_bind; naive_solver. Qed.
  Global Instance set_unfold_fmap {B} (f : A  B) X (P : A  Prop) :
    ( y, SetUnfold (y  X) (P y)) 
    SetUnfold (x  f <$> X) ( y, x = f y  P y).
  Proof. constructor. rewrite elem_of_fmap; naive_solver. Qed.
  Global Instance set_unfold_join (X : M (M A)) (P : M A  Prop) :
    ( Y, SetUnfold (Y  X) (P Y))  SetUnfold (x  mjoin X) ( Y, x  Y  P Y).
  Proof. constructor. rewrite elem_of_join; naive_solver. Qed.
End set_unfold_monad.

Ltac set_unfold :=
  let rec unfold_hyps :=
    try match goal with
    | H : _ |- _ =>
       apply set_unfold_1 in H; revert H;
       first [unfold_hyps; intros H | intros H; fail 1]
    end in
  apply set_unfold_2; unfold_hyps; csimpl in *.

252
253
(** Since [firstorder] already fails or loops on very small goals generated by
[set_solver], we use the [naive_solver] tactic as a substitute. *)
254
Tactic Notation "set_solver" "by" tactic3(tac) :=
255
  try fast_done;
256
257
258
259
260
261
262
263
264
265
266
267
268
  intros; setoid_subst;
  set_unfold;
  intros; setoid_subst;
  try match goal with |- _  _ => apply dec_stable end;
  naive_solver tac.
Tactic Notation "set_solver" "-" hyp_list(Hs) "by" tactic3(tac) :=
  clear Hs; set_solver by tac.
Tactic Notation "set_solver" "+" hyp_list(Hs) "by" tactic3(tac) :=
  clear -Hs; set_solver by tac.
Tactic Notation "set_solver" := set_solver by idtac.
Tactic Notation "set_solver" "-" hyp_list(Hs) := clear Hs; set_solver.
Tactic Notation "set_solver" "+" hyp_list(Hs) := clear -Hs; set_solver.

269
270
271
272
Hint Extern 1000 (_  _) => set_solver : set_solver.
Hint Extern 1000 (_  _) => set_solver : set_solver.
Hint Extern 1000 (_  _) => set_solver : set_solver.

273

274
275
(** * Collections with [∪], [∅] and [{[_]}] *)
Section simple_collection.
276
  Context `{SimpleCollection A C}.
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
  Implicit Types x y : A.
  Implicit Types X Y : C.
  Implicit Types Xs Ys : list C.

  (** Equality *)
  Lemma elem_of_equiv X Y : X  Y   x, x  X  x  Y.
  Proof. set_solver. Qed.
  Lemma collection_equiv_spec X Y : X  Y  X  Y  Y  X.
  Proof. set_solver. Qed.

  (** Subset relation *)
  Global Instance collection_subseteq_antisymm: AntiSymm () (() : relation C).
  Proof. intros ??. set_solver. Qed.

  Global Instance collection_subseteq_preorder: PreOrder (() : relation C).
  Proof. split. by intros ??. intros ???; set_solver. Qed.

  Lemma subseteq_union X Y : X  Y  X  Y  Y.
  Proof. set_solver. Qed.
  Lemma subseteq_union_1 X Y : X  Y  X  Y  Y.
  Proof. by rewrite subseteq_union. Qed.
  Lemma subseteq_union_2 X Y : X  Y  Y  X  Y.
  Proof. by rewrite subseteq_union. Qed.

  Lemma union_subseteq_l X Y : X  X  Y.
  Proof. set_solver. Qed.
  Lemma union_subseteq_r X Y : Y  X  Y.
  Proof. set_solver. Qed.
  Lemma union_least X Y Z : X  Z  Y  Z  X  Y  Z.
  Proof. set_solver. Qed.

  Lemma elem_of_subseteq X Y : X  Y   x, x  X  x  Y.
  Proof. done. Qed.
  Lemma elem_of_subset X Y : X  Y  ( x, x  X  x  Y)  ¬( x, x  Y  x  X).
  Proof. set_solver. Qed.

  (** Union *)
  Lemma not_elem_of_union x X Y : x  X  Y  x  X  x  Y.
  Proof. set_solver. Qed.
  Lemma elem_of_union_l x X Y : x  X  x  X  Y.
  Proof. set_solver. Qed.
  Lemma elem_of_union_r x X Y : x  Y  x  X  Y.
  Proof. set_solver. Qed.

  Lemma union_preserving_l X Y1 Y2 : Y1  Y2  X  Y1  X  Y2.
  Proof. set_solver. Qed.
  Lemma union_preserving_r X1 X2 Y : X1  X2  X1  Y  X2  Y.
  Proof. set_solver. Qed.
  Lemma union_preserving X1 X2 Y1 Y2 : X1  X2  Y1  Y2  X1  Y1  X2  Y2.
  Proof. set_solver. Qed.

  Global Instance union_idemp : IdemP (() : relation C) ().
  Proof. intros X. set_solver. Qed.
  Global Instance union_empty_l : LeftId (() : relation C)  ().
  Proof. intros X. set_solver. Qed.
  Global Instance union_empty_r : RightId (() : relation C)  ().
  Proof. intros X. set_solver. Qed.
  Global Instance union_comm : Comm (() : relation C) ().
  Proof. intros X Y. set_solver. Qed.
  Global Instance union_assoc : Assoc (() : relation C) ().
  Proof. intros X Y Z. set_solver. Qed.

  Lemma empty_union X Y : X  Y    X    Y  .
  Proof. set_solver. Qed.

  (** Empty *)
  Lemma elem_of_equiv_empty X : X     x, x  X.
  Proof. set_solver. Qed.
  Lemma elem_of_empty x : x    False.
  Proof. set_solver. Qed.
  Lemma equiv_empty X : X    X  .
  Proof. set_solver. Qed.
  Lemma union_positive_l X Y : X  Y    X  .
  Proof. set_solver. Qed.
  Lemma union_positive_l_alt X Y : X    X  Y  .
  Proof. set_solver. Qed.
  Lemma non_empty_inhabited x X : x  X  X  .
  Proof. set_solver. Qed.

  (** Singleton *)
  Lemma elem_of_singleton_1 x y : x  {[y]}  x = y.
  Proof. by rewrite elem_of_singleton. Qed.
  Lemma elem_of_singleton_2 x y : x = y  x  {[y]}.
  Proof. by rewrite elem_of_singleton. Qed.
  Lemma elem_of_subseteq_singleton x X : x  X  {[ x ]}  X.
  Proof. set_solver. Qed.
  Lemma non_empty_singleton x : ({[ x ]} : C)  .
  Proof. set_solver. Qed.
  Lemma not_elem_of_singleton x y : x  {[ y ]}  x  y.
  Proof. by rewrite elem_of_singleton. Qed.

  (** Disjointness *)
  Lemma elem_of_disjoint X Y : X  Y   x, x  X  x  Y  False.
  Proof. done. Qed.

  Global Instance disjoint_sym : Symmetric (@disjoint C _).
  Proof. intros X Y. set_solver. Qed.
  Lemma disjoint_empty_l Y :   Y.
  Proof. set_solver. Qed.
  Lemma disjoint_empty_r X : X  .
  Proof. set_solver. Qed.
  Lemma disjoint_singleton_l x Y : {[ x ]}  Y  x  Y.
  Proof. set_solver. Qed.
  Lemma disjoint_singleton_r y X : X  {[ y ]}  y  X.
  Proof. set_solver. Qed.
  Lemma disjoint_union_l X1 X2 Y : X1  X2  Y  X1  Y  X2  Y.
  Proof. set_solver. Qed.
  Lemma disjoint_union_r X Y1 Y2 : X  Y1  Y2  X  Y1  X  Y2.
  Proof. set_solver. Qed.

  (** Big unions *)
  Lemma elem_of_union_list Xs x : x   Xs   X, X  Xs  x  X.
389
390
  Proof.
    split.
391
392
393
394
    - induction Xs; simpl; intros HXs; [by apply elem_of_empty in HXs|].
      setoid_rewrite elem_of_cons. apply elem_of_union in HXs. naive_solver.
    - intros [X []]. induction 1; simpl; [by apply elem_of_union_l |].
      intros. apply elem_of_union_r; auto.
395
  Qed.
396

397
398
399
400
401
402
403
  Lemma union_list_nil :  @nil C = .
  Proof. done. Qed.
  Lemma union_list_cons X Xs :  (X :: Xs) = X   Xs.
  Proof. done. Qed.
  Lemma union_list_singleton X :  [X]  X.
  Proof. simpl. by rewrite (right_id  _). Qed.
  Lemma union_list_app Xs1 Xs2 :  (Xs1 ++ Xs2)   Xs1   Xs2.
404
  Proof.
405
406
    induction Xs1 as [|X Xs1 IH]; simpl; [by rewrite (left_id  _)|].
    by rewrite IH, (assoc _).
407
  Qed.
408
  Lemma union_list_reverse Xs :  (reverse Xs)   Xs.
409
  Proof.
410
411
412
    induction Xs as [|X Xs IH]; simpl; [done |].
    by rewrite reverse_cons, union_list_app,
      union_list_singleton, (comm _), IH.
413
  Qed.
414
415
416
  Lemma union_list_preserving Xs Ys : Xs * Ys   Xs   Ys.
  Proof. induction 1; simpl; auto using union_preserving. Qed.
  Lemma empty_union_list Xs :  Xs    Forall ( ) Xs.
417
  Proof.
418
419
420
    split.
    - induction Xs; simpl; rewrite ?empty_union; intuition.
    - induction 1 as [|?? E1 ? E2]; simpl. done. by apply empty_union.
421
  Qed.
422

423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
  Section leibniz.
    Context `{!LeibnizEquiv C}.

    Lemma elem_of_equiv_L X Y : X = Y   x, x  X  x  Y.
    Proof. unfold_leibniz. apply elem_of_equiv. Qed.
    Lemma collection_equiv_spec_L X Y : X = Y  X  Y  Y  X.
    Proof. unfold_leibniz. apply collection_equiv_spec. Qed.

    (** Subset relation *)
    Global Instance collection_subseteq_partialorder :
      PartialOrder (() : relation C).
    Proof. split. apply _. intros ??. unfold_leibniz. apply (anti_symm _). Qed.

    Lemma subseteq_union_L X Y : X  Y  X  Y = Y.
    Proof. unfold_leibniz. apply subseteq_union. Qed.
    Lemma subseteq_union_1_L X Y : X  Y  X  Y = Y.
    Proof. unfold_leibniz. apply subseteq_union_1. Qed.
    Lemma subseteq_union_2_L X Y : X  Y = Y  X  Y.
    Proof. unfold_leibniz. apply subseteq_union_2. Qed.

    (** Union *)
    Global Instance union_idemp_L : IdemP (@eq C) ().
    Proof. intros ?. unfold_leibniz. apply (idemp _). Qed.
    Global Instance union_empty_l_L : LeftId (@eq C)  ().
    Proof. intros ?. unfold_leibniz. apply (left_id _ _). Qed.
    Global Instance union_empty_r_L : RightId (@eq C)  ().
    Proof. intros ?. unfold_leibniz. apply (right_id _ _). Qed.
    Global Instance union_comm_L : Comm (@eq C) ().
    Proof. intros ??. unfold_leibniz. apply (comm _). Qed.
    Global Instance union_assoc_L : Assoc (@eq C) ().
    Proof. intros ???. unfold_leibniz. apply (assoc _). Qed.

    Lemma empty_union_L X Y : X  Y =   X =   Y = .
    Proof. unfold_leibniz. apply empty_union. Qed.

    (** Empty *)
    Lemma elem_of_equiv_empty_L X : X =    x, x  X.
    Proof. unfold_leibniz. apply elem_of_equiv_empty. Qed.
    Lemma equiv_empty_L X : X    X = .
    Proof. unfold_leibniz. apply equiv_empty. Qed.
    Lemma union_positive_l_L X Y : X  Y =   X = .
    Proof. unfold_leibniz. apply union_positive_l. Qed.
    Lemma union_positive_l_alt_L X Y : X    X  Y  .
    Proof. unfold_leibniz. apply union_positive_l_alt. Qed.
    Lemma non_empty_inhabited_L x X : x  X  X  .
    Proof. unfold_leibniz. apply non_empty_inhabited. Qed.

    (** Singleton *)
    Lemma non_empty_singleton_L x : {[ x ]}  .
    Proof. unfold_leibniz. apply non_empty_singleton. Qed.

    (** Big unions *)
    Lemma union_list_singleton_L X :  [X] = X.
    Proof. unfold_leibniz. apply union_list_singleton. Qed.
    Lemma union_list_app_L Xs1 Xs2 :  (Xs1 ++ Xs2) =  Xs1   Xs2.
    Proof. unfold_leibniz. apply union_list_app. Qed.
    Lemma union_list_reverse_L Xs :  (reverse Xs) =  Xs.
    Proof. unfold_leibniz. apply union_list_reverse. Qed.
    Lemma empty_union_list_L Xs :  Xs =   Forall (= ) Xs.
    Proof. unfold_leibniz. by rewrite empty_union_list. Qed. 
  End leibniz.

  Section dec.
    Context `{ (X Y : C), Decision (X  Y)}.
    Lemma collection_subseteq_inv X Y : X  Y  X  Y  X  Y.
    Proof. destruct (decide (X  Y)); [by right|left;set_solver]. Qed.
    Lemma collection_not_subset_inv X Y : X  Y  X  Y  X  Y.
    Proof. destruct (decide (X  Y)); [by right|left;set_solver]. Qed.

    Lemma non_empty_union X Y : X  Y    X    Y  .
    Proof. rewrite empty_union. destruct (decide (X  )); intuition. Qed.
    Lemma non_empty_union_list Xs :  Xs    Exists ( ) Xs.
    Proof. rewrite empty_union_list. apply (not_Forall_Exists _). Qed.

    Context `{!LeibnizEquiv C}.
    Lemma collection_subseteq_inv_L X Y : X  Y  X  Y  X = Y.
    Proof. unfold_leibniz. apply collection_subseteq_inv. Qed.
    Lemma collection_not_subset_inv_L X Y : X  Y  X  Y  X = Y.
    Proof. unfold_leibniz. apply collection_not_subset_inv. Qed.
    Lemma non_empty_union_L X Y : X  Y    X    Y  .
    Proof. unfold_leibniz. apply non_empty_union. Qed.
    Lemma non_empty_union_list_L Xs :  Xs    Exists ( ) Xs.
    Proof. unfold_leibniz. apply non_empty_union_list. Qed.
  End dec.
End simple_collection.


(** * Collections with [∪], [∩], [∖], [∅] and [{[_]}] *)
Robbert Krebbers's avatar
Robbert Krebbers committed
511
512
Section collection.
  Context `{Collection A C}.
513
  Implicit Types X Y : C.
Robbert Krebbers's avatar
Robbert Krebbers committed
514

515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
  (** Intersection *)
  Lemma subseteq_intersection X Y : X  Y  X  Y  X.
  Proof. set_solver. Qed. 
  Lemma subseteq_intersection_1 X Y : X  Y  X  Y  X.
  Proof. apply subseteq_intersection. Qed.
  Lemma subseteq_intersection_2 X Y : X  Y  X  X  Y.
  Proof. apply subseteq_intersection. Qed.

  Lemma intersection_subseteq_l X Y : X  Y  X.
  Proof. set_solver. Qed.
  Lemma intersection_subseteq_r X Y : X  Y  Y.
  Proof. set_solver. Qed.
  Lemma intersection_greatest X Y Z : Z  X  Z  Y  Z  X  Y.
  Proof. set_solver. Qed.

  Lemma intersection_preserving_l X Y1 Y2 : Y1  Y2  X  Y1  X  Y2.
  Proof. set_solver. Qed.
  Lemma intersection_preserving_r X1 X2 Y : X1  X2  X1  Y  X2  Y.
  Proof. set_solver. Qed.
  Lemma intersection_preserving X1 X2 Y1 Y2 :
    X1  X2  Y1  Y2  X1  Y1  X2  Y2.
536
  Proof. set_solver. Qed.
537
538
539
540
541
542
543
544
545
546
547
548

  Global Instance intersection_idemp : IdemP (() : relation C) ().
  Proof. intros X; set_solver. Qed.
  Global Instance intersection_comm : Comm (() : relation C) ().
  Proof. intros X Y; set_solver. Qed.
  Global Instance intersection_assoc : Assoc (() : relation C) ().
  Proof. intros X Y Z; set_solver. Qed.
  Global Instance intersection_empty_l : LeftAbsorb (() : relation C)  ().
  Proof. intros X; set_solver. Qed.
  Global Instance intersection_empty_r: RightAbsorb (() : relation C)  ().
  Proof. intros X; set_solver. Qed.

549
  Lemma intersection_singletons x : ({[x]} : C)  {[x]}  {[x]}.
550
  Proof. set_solver. Qed.
551
552
553
554
555
556
557
558
559
560
561

  Lemma union_intersection_l X Y Z : X  (Y  Z)  (X  Y)  (X  Z).
  Proof. set_solver. Qed.
  Lemma union_intersection_r X Y Z : (X  Y)  Z  (X  Z)  (Y  Z).
  Proof. set_solver. Qed.
  Lemma intersection_union_l X Y Z : X  (Y  Z)  (X  Y)  (X  Z).
  Proof. set_solver. Qed.
  Lemma intersection_union_r X Y Z : (X  Y)  Z  (X  Z)  (Y  Z).
  Proof. set_solver. Qed.

  (** Difference *)
Robbert Krebbers's avatar
Robbert Krebbers committed
562
  Lemma difference_twice X Y : (X  Y)  Y  X  Y.
563
  Proof. set_solver. Qed.
564
  Lemma subseteq_empty_difference X Y : X  Y  X  Y  .
565
  Proof. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
566
  Lemma difference_diag X : X  X  .
567
  Proof. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
568
  Lemma difference_union_distr_l X Y Z : (X  Y)  Z  X  Z  Y  Z.
569
  Proof. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
570
  Lemma difference_union_distr_r X Y Z : Z  (X  Y)  (Z  X)  (Z  Y).
571
  Proof. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
572
  Lemma difference_intersection_distr_l X Y Z : (X  Y)  Z  X  Z  Y  Z.
573
  Proof. set_solver. Qed.
574
  Lemma difference_disjoint X Y : X  Y  X  Y  X.
575
  Proof. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
576

577
578
579
580
  (** Disjointness *)
  Lemma disjoint_intersection X Y : X  Y  X  Y  .
  Proof. set_solver. Qed.

581
582
  Section leibniz.
    Context `{!LeibnizEquiv C}.
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602

    (** Intersection *)
    Lemma subseteq_intersection_L X Y : X  Y  X  Y = X.
    Proof. unfold_leibniz. apply subseteq_intersection. Qed.
    Lemma subseteq_intersection_1_L X Y : X  Y  X  Y = X.
    Proof. unfold_leibniz. apply subseteq_intersection_1. Qed.
    Lemma subseteq_intersection_2_L X Y : X  Y = X  X  Y.
    Proof. unfold_leibniz. apply subseteq_intersection_2. Qed.

    Global Instance intersection_idemp_L : IdemP ((=) : relation C) ().
    Proof. intros ?. unfold_leibniz. apply (idemp _). Qed.
    Global Instance intersection_comm_L : Comm ((=) : relation C) ().
    Proof. intros ??. unfold_leibniz. apply (comm _). Qed.
    Global Instance intersection_assoc_L : Assoc ((=) : relation C) ().
    Proof. intros ???. unfold_leibniz. apply (assoc _). Qed.
    Global Instance intersection_empty_l_L: LeftAbsorb ((=) : relation C)  ().
    Proof. intros ?. unfold_leibniz. apply (left_absorb _ _). Qed.
    Global Instance intersection_empty_r_L: RightAbsorb ((=) : relation C)  ().
    Proof. intros ?. unfold_leibniz. apply (right_absorb _ _). Qed.

603
604
    Lemma intersection_singletons_L x : {[x]}  {[x]} = {[x]}.
    Proof. unfold_leibniz. apply intersection_singletons. Qed.
605
606
607
608
609
610
611
612
613
614
615

    Lemma union_intersection_l_L X Y Z : X  (Y  Z) = (X  Y)  (X  Z).
    Proof. unfold_leibniz; apply union_intersection_l. Qed.
    Lemma union_intersection_r_L X Y Z : (X  Y)  Z = (X  Z)  (Y  Z).
    Proof. unfold_leibniz; apply union_intersection_r. Qed.
    Lemma intersection_union_l_L X Y Z : X  (Y  Z)  (X  Y)  (X  Z).
    Proof. unfold_leibniz; apply intersection_union_l. Qed.
    Lemma intersection_union_r_L X Y Z : (X  Y)  Z  (X  Z)  (Y  Z).
    Proof. unfold_leibniz; apply intersection_union_r. Qed.

    (** Difference *)
616
617
    Lemma difference_twice_L X Y : (X  Y)  Y = X  Y.
    Proof. unfold_leibniz. apply difference_twice. Qed.
618
619
    Lemma subseteq_empty_difference_L X Y : X  Y  X  Y = .
    Proof. unfold_leibniz. apply subseteq_empty_difference. Qed.
620
621
622
623
    Lemma difference_diag_L X : X  X = .
    Proof. unfold_leibniz. apply difference_diag. Qed.
    Lemma difference_union_distr_l_L X Y Z : (X  Y)  Z = X  Z  Y  Z.
    Proof. unfold_leibniz. apply difference_union_distr_l. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
624
625
    Lemma difference_union_distr_r_L X Y Z : Z  (X  Y) = (Z  X)  (Z  Y).
    Proof. unfold_leibniz. apply difference_union_distr_r. Qed.
626
627
628
    Lemma difference_intersection_distr_l_L X Y Z :
      (X  Y)  Z = X  Z  Y  Z.
    Proof. unfold_leibniz. apply difference_intersection_distr_l. Qed.
629
630
    Lemma difference_disjoint_L X Y : X  Y  X  Y = X.
    Proof. unfold_leibniz. apply difference_disjoint. Qed.
631
632
633
634

    (** Disjointness *)
    Lemma disjoint_intersection_L X Y : X  Y  X  Y = .
    Proof. unfold_leibniz. apply disjoint_intersection. Qed.
635
636
637
  End leibniz.

  Section dec.
Robbert Krebbers's avatar
Robbert Krebbers committed
638
    Context `{ (x : A) (X : C), Decision (x  X)}.
639
    Lemma not_elem_of_intersection x X Y : x  X  Y  x  X  x  Y.
640
    Proof. rewrite elem_of_intersection. destruct (decide (x  X)); tauto. Qed.
641
    Lemma not_elem_of_difference x X Y : x  X  Y  x  X  x  Y.
642
    Proof. rewrite elem_of_difference. destruct (decide (x  Y)); tauto. Qed.
643
644
    Lemma union_difference X Y : X  Y  Y  X  Y  X.
    Proof.
645
      intros ? x; split; rewrite !elem_of_union, elem_of_difference; [|intuition].
646
      destruct (decide (x  X)); intuition.
647
648
    Qed.
    Lemma non_empty_difference X Y : X  Y  Y  X  .
649
    Proof. intros [HXY1 HXY2] Hdiff. destruct HXY2. set_solver. Qed.
650
    Lemma empty_difference_subseteq X Y : X  Y    X  Y.
651
    Proof. set_solver. Qed.
652

653
654
655
656
657
    Context `{!LeibnizEquiv C}.
    Lemma union_difference_L X Y : X  Y  Y = X  Y  X.
    Proof. unfold_leibniz. apply union_difference. Qed.
    Lemma non_empty_difference_L X Y : X  Y  Y  X  .
    Proof. unfold_leibniz. apply non_empty_difference. Qed.
658
659
    Lemma empty_difference_subseteq_L X Y : X  Y =   X  Y.
    Proof. unfold_leibniz. apply empty_difference_subseteq. Qed.
660
661
662
  End dec.
End collection.

663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740

(** * Conversion of option and list *)
Definition of_option `{Singleton A C, Empty C} (mx : option A) : C :=
  match mx with None =>  | Some x => {[ x ]} end.
Fixpoint of_list `{Singleton A C, Empty C, Union C} (l : list A) : C :=
  match l with [] =>  | x :: l => {[ x ]}  of_list l end.

Section of_option_list.
  Context `{SimpleCollection A C}.
  Lemma elem_of_of_option (x : A) mx: x  of_option mx  mx = Some x.
  Proof. destruct mx; set_solver. Qed.
  Lemma elem_of_of_list (x : A) l : x  of_list l  x  l.
  Proof.
    split.
    - induction l; simpl; [by rewrite elem_of_empty|].
      rewrite elem_of_union,elem_of_singleton; intros [->|?]; constructor; auto.
    - induction 1; simpl; rewrite elem_of_union, elem_of_singleton; auto.
  Qed.
  Global Instance set_unfold_of_option (mx : option A) x :
    SetUnfold (x  of_option mx) (mx = Some x).
  Proof. constructor; apply elem_of_of_option. Qed.
  Global Instance set_unfold_of_list (l : list A) x P :
    SetUnfold (x  l) P  SetUnfold (x  of_list l) P.
  Proof. constructor. by rewrite elem_of_of_list, (set_unfold (x  l) P). Qed.
End of_option_list.

Section list_unfold.
  Context {A : Type}.
  Implicit Types x : A.
  Implicit Types l : list A.

  Global Instance set_unfold_nil x : SetUnfold (x  []) False.
  Proof. constructor; apply elem_of_nil. Qed.
  Global Instance set_unfold_cons x y l P :
    SetUnfold (x  l) P  SetUnfold (x  y :: l) (x = y  P).
  Proof. constructor. by rewrite elem_of_cons, (set_unfold (x  l) P). Qed.
  Global Instance set_unfold_app x l k P Q :
    SetUnfold (x  l) P  SetUnfold (x  k) Q  SetUnfold (x  l ++ k) (P  Q).
  Proof.
    intros ??; constructor.
    by rewrite elem_of_app, (set_unfold (x  l) P), (set_unfold (x  k) Q).
  Qed.
  Global Instance set_unfold_included l k (P Q : A  Prop) :
    ( x, SetUnfold (x  l) (P x))  ( x, SetUnfold (x  k) (Q x)) 
    SetUnfold (l `included` k) ( x, P x  Q x).
  Proof. by constructor; unfold included; set_unfold. Qed.
End list_unfold.


(** * Guard *)
Global Instance collection_guard `{CollectionMonad M} : MGuard M :=
  λ P dec A x, match dec with left H => x H | _ =>  end.

Section collection_monad_base.
  Context `{CollectionMonad M}.
  Lemma elem_of_guard `{Decision P} {A} (x : A) (X : M A) :
    x  guard P; X  P  x  X.
  Proof.
    unfold mguard, collection_guard; simpl; case_match;
      rewrite ?elem_of_empty; naive_solver.
  Qed.
  Lemma elem_of_guard_2 `{Decision P} {A} (x : A) (X : M A) :
    P  x  X  x  guard P; X.
  Proof. by rewrite elem_of_guard. Qed.
  Lemma guard_empty `{Decision P} {A} (X : M A) : guard P; X    ¬P  X  .
  Proof.
    rewrite !elem_of_equiv_empty; setoid_rewrite elem_of_guard.
    destruct (decide P); naive_solver.
  Qed.
  Global Instance set_unfold_guard `{Decision P} {A} (x : A) X Q :
    SetUnfold (x  X) Q  SetUnfold (x  guard P; X) (P  Q).
  Proof. constructor. by rewrite elem_of_guard, (set_unfold (x  X) Q). Qed.
  Lemma bind_empty {A B} (f : A  M B) X :
    X = f    X     x, x  X  f x  .
  Proof. set_solver. Qed.
End collection_monad_base.


741
(** * Quantifiers *)
Robbert Krebbers's avatar
Robbert Krebbers committed
742
Section quantifiers.
743
  Context `{SimpleCollection A B} (P : A  Prop).
Robbert Krebbers's avatar
Robbert Krebbers committed
744

745
746
747
748
  Definition set_Forall X :=  x, x  X  P x.
  Definition set_Exists X :=  x, x  X  P x.

  Lemma set_Forall_empty : set_Forall .
749
  Proof. unfold set_Forall. set_solver. Qed.
750
  Lemma set_Forall_singleton x : set_Forall {[ x ]}  P x.
751
  Proof. unfold set_Forall. set_solver. Qed.
752
  Lemma set_Forall_union X Y : set_Forall X  set_Forall Y  set_Forall (X  Y).
753
  Proof. unfold set_Forall. set_solver. Qed.
754
  Lemma set_Forall_union_inv_1 X Y : set_Forall (X  Y)  set_Forall X.
755
  Proof. unfold set_Forall. set_solver. Qed.
756
  Lemma set_Forall_union_inv_2 X Y : set_Forall (X  Y)  set_Forall Y.
757
  Proof. unfold set_Forall. set_solver. Qed.
758
759

  Lemma set_Exists_empty : ¬set_Exists .
760
  Proof. unfold set_Exists. set_solver. Qed.
761
  Lemma set_Exists_singleton x : set_Exists {[ x ]}  P x.
762
  Proof. unfold set_Exists. set_solver. Qed.
763
  Lemma set_Exists_union_1 X Y : set_Exists X  set_Exists (X  Y).
764
  Proof. unfold set_Exists. set_solver. Qed.
765
  Lemma set_Exists_union_2 X Y : set_Exists Y  set_Exists (X  Y).
766
  Proof. unfold set_Exists. set_solver. Qed.
767
768
  Lemma set_Exists_union_inv X Y :
    set_Exists (X  Y)  set_Exists X  set_Exists Y.
769
  Proof. unfold set_Exists. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
770
771
End quantifiers.

772
Section more_quantifiers.
773
  Context `{SimpleCollection A B}.
774

775
776
777
778
779
780
  Lemma set_Forall_weaken (P Q : A  Prop) (Hweaken :  x, P x  Q x) X :
    set_Forall P X  set_Forall Q X.
  Proof. unfold set_Forall. naive_solver. Qed.
  Lemma set_Exists_weaken (P Q : A  Prop) (Hweaken :  x, P x  Q x) X :
    set_Exists P X  set_Exists Q X.
  Proof. unfold set_Exists. naive_solver. Qed.
781
782
End more_quantifiers.

783
784
785
(** * Fresh elements *)
(** We collect some properties on the [fresh] operation. In particular we
generalize [fresh] to generate lists of fresh elements. *)
786
787
788
789
790
791
792
793
794
795
Fixpoint fresh_list `{Fresh A C, Union C, Singleton A C}
    (n : nat) (X : C) : list A :=
  match n with
  | 0 => []
  | S n => let x := fresh X in x :: fresh_list n ({[ x ]}  X)
  end.
Inductive Forall_fresh `{ElemOf A C} (X : C) : list A  Prop :=
  | Forall_fresh_nil : Forall_fresh X []
  | Forall_fresh_cons x xs :
     x  xs  x  X  Forall_fresh X xs  Forall_fresh X (x :: xs).
796

797
798
Section fresh.
  Context `{FreshSpec A C}.
799
  Implicit Types X Y : C.
800

801
  Global Instance fresh_proper: Proper (() ==> (=)) (fresh (C:=C)).
802
  Proof. intros ???. by apply fresh_proper_alt, elem_of_equiv. Qed.
803
804
  Global Instance fresh_list_proper:
    Proper ((=) ==> () ==> (=)) (fresh_list (C:=C)).
805
  Proof.
806
    intros ? n ->. induction n as [|n IH]; intros ?? E; f_equal/=; [by rewrite E|].
807
    apply IH. by rewrite E.
808
  Qed.
809
810
811
812
813

  Lemma Forall_fresh_NoDup X xs : Forall_fresh X xs  NoDup xs.
  Proof. induction 1; by constructor. Qed.
  Lemma Forall_fresh_elem_of X xs x : Forall_fresh X xs  x  xs  x  X.
  Proof.
814
    intros HX; revert x; rewrite <-Forall_forall. by induction HX; constructor.
815
816
817
818
819
820
821
822
  Qed.
  Lemma Forall_fresh_alt X xs :
    Forall_fresh X xs  NoDup xs   x, x  xs  x  X.
  Proof.
    split; eauto using Forall_fresh_NoDup, Forall_fresh_elem_of.
    rewrite <-Forall_forall.
    intros [Hxs Hxs']. induction Hxs; decompose_Forall_hyps; constructor; auto.
  Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
823
824
  Lemma Forall_fresh_subseteq X Y xs :
    Forall_fresh X xs  Y  X  Forall_fresh Y xs.
825
  Proof. rewrite !Forall_fresh_alt; set_solver. Qed.
826

827
828
  Lemma fresh_list_length n X : length (fresh_list n X) = n.
  Proof. revert X. induction n; simpl; auto. Qed.
829
  Lemma fresh_list_is_fresh n X x : x  fresh_list n X  x  X.
830
  Proof.
831
    revert X. induction n as [|n IH]; intros X; simpl;[by rewrite elem_of_nil|].
832
    rewrite elem_of_cons; intros [->| Hin]; [apply is_fresh|].
833
    apply IH in Hin; set_solver.
834
  Qed.
835
  Lemma NoDup_fresh_list n X : NoDup (fresh_list n X).
836
  Proof.
837
    revert X. induction n; simpl; constructor; auto.
838
    intros Hin; apply fresh_list_is_fresh in Hin; set_solver.
839
840
841
842
  Qed.
  Lemma Forall_fresh_list X n : Forall_fresh X (fresh_list n X).
  Proof.
    rewrite Forall_fresh_alt; eauto using NoDup_fresh_list, fresh_list_is_fresh.
843
844
  Qed.
End fresh.
845

846
(** * Properties of implementations of collections that form a monad *)
847
848
849
Section collection_monad.
  Context `{CollectionMonad M}.

850
851
  Global Instance collection_fmap_mono {A B} :
    Proper (pointwise_relation _ (=) ==> () ==> ()) (@fmap M _ A B).
852
  Proof. intros f g ? X Y ?; set_solver by eauto. Qed.
853
854
  Global Instance collection_bind_mono {A B} :
    Proper (((=) ==> ()) ==> () ==> ()) (@mbind M _ A B).
855
  Proof. unfold respectful; intros f g Hfg X Y ?; set_solver. Qed.
856
857
  Global Instance collection_join_mono {A} :
    Proper (() ==> ()) (@mjoin M _ A).
858
  Proof. intros X Y ?; set_solver. Qed.
859

860
  Lemma collection_bind_singleton {A B} (f : A  M B) x : {[ x ]} = f  f x.
861
  Proof. set_solver. Qed.
862
  Lemma collection_guard_True {A} `{Decision P} (X : M A) : P  guard P; X  X.
863
  Proof. set_solver. Qed.
864
  Lemma collection_fmap_compose {A B C} (f : A  B) (g : B  C) (X : M A) :
865
    g  f <$> X  g <$> (f <$> X).
866
  Proof. set_solver. Qed.
867
868
  Lemma elem_of_fmap_1 {A B} (f : A  B) (X : M A) (y : B) :
    y  f <$> X   x, y = f x  x  X.
869
  Proof. set_solver. Qed.
870
871
  Lemma elem_of_fmap_2 {A B} (f : A  B) (X : M A) (x : A) :
    x  X  f x  f <$> X.
872
  Proof. set_solver. Qed.
873
874
  Lemma elem_of_fmap_2_alt {A B} (f : A  B) (X : M A) (x : A) (y : B) :
    x  X  y = f x  y  f <$> X.
875
  Proof. set_solver. Qed.
876
877
878
879
880

  Lemma elem_of_mapM {A B} (f : A  M B) l k :
    l  mapM f k  Forall2 (λ x y, x  f y) l k.
  Proof.
    split.
881
    - revert l. induction k; set_solver by eauto.
882
    - induction 1; set_solver.
883
  Qed.
884
  Lemma collection_mapM_length {A B} (f : A  M B) l k :
885
    l  mapM f k  length l = length k.
886
  Proof. revert l; induction k; set_solver by eauto. Qed.
887
  Lemma elem_of_mapM_fmap {A B} (f : A  B) (g : B  M A) l k :
888
    Forall (λ x,  y, y  g x  f y = x) l  k  mapM g l  fmap f k = l.
889
  Proof. intros Hl. revert k. induction Hl; set_solver. Qed.
890
  Lemma elem_of_mapM_Forall {A B} (f : A  M B) (P : B  Prop) l k :
891
    l  mapM f k  Forall (λ x,  y, y  f x  P y) k  Forall P l.
Robbert Krebbers's avatar
Robbert Krebbers committed
892
  Proof. rewrite elem_of_mapM. apply Forall2_Forall_l. Qed.
893
894
  Lemma elem_of_mapM_Forall2_l {A B C} (f : A  M B) (P: B  C  Prop) l1 l2 k :
    l1  mapM f k  Forall2 (λ x y,  z, z  f x  P z y) k l2 
Robbert Krebbers's avatar
Robbert Krebbers committed
895
896
897
898
899
    Forall2 P l1 l2.
  Proof.
    rewrite elem_of_mapM. intros Hl1. revert l2.
    induction Hl1; inversion_clear 1; constructor; auto.
  Qed.
900
End collection_monad.
901
902
903
904
905
906

(** Finite collections *)
Definition set_finite `{ElemOf A B} (X : B) :=  l : list A,  x, x  X  x  l.

Section finite.
  Context `{SimpleCollection A B}.
907
908
  Global Instance set_finite_subseteq :
     Proper (flip () ==> impl) (@set_finite A B _).
909
  Proof. intros X Y HX [l Hl]; exists l; set_solver. Qed.
910
  Global Instance set_finite_proper : Proper (() ==> iff) (@set_finite A B _).
911
  Proof. intros X Y HX; apply exist_proper. by setoid_rewrite HX. Qed.
912
913
914
  Lemma empty_finite : set_finite .
  Proof. by exists []; intros ?; rewrite elem_of_empty. Qed.
  Lemma singleton_finite (x : A) : set_finite {[ x ]}.
Ralf Jung's avatar
Ralf Jung committed
915
  Proof. exists [x]; intros y ->%elem_of_singleton; left. Qed.
916
917
918
919
920
921
  Lemma union_finite X Y : set_finite X  set_finite Y  set_finite (X  Y).
  Proof.
    intros [lX ?] [lY ?]; exists (lX ++ lY); intros x.
    rewrite elem_of_union, elem_of_app; naive_solver.
  Qed.
  Lemma union_finite_inv_l X Y : set_finite (X  Y)  set_finite X.
922
  Proof. intros [l ?]; exists l; set_solver. Qed.
923
  Lemma union_finite_inv_r X Y : set_finite (X  Y)  set_finite Y.
924
  Proof. intros [l ?]; exists l; set_solver. Qed.
925
926
927
928
929
End finite.

Section more_finite.
  Context `{Collection A B}.
  Lemma intersection_finite_l X Y : set_finite X  set_finite (X  Y).
Ralf Jung's avatar
Ralf Jung committed
930
  Proof. intros [l ?]; exists l; intros x [??]%elem_of_intersection; auto. Qed.
931
  Lemma intersection_finite_r X Y : set_finite Y  set_finite (X  Y).
Ralf Jung's avatar
Ralf Jung committed
932
  Proof. intros [l ?]; exists l; intros x [??]%elem_of_intersection; auto. Qed.
933
  Lemma difference_finite X Y : set_finite X  set_finite (X  Y).