relations.v 9.25 KB
Newer Older
1
(* Copyright (c) 2012-2017, Coq-std++ developers. *)
2 3 4 5 6
(* This file is distributed under the terms of the BSD license. *)
(** This file collects definitions and theorems on abstract rewriting systems.
These are particularly useful as we define the operational semantics as a
small step semantics. This file defines a hint database [ars] containing
some theorems on abstract rewriting systems. *)
7 8
From Coq Require Import Wf_nat.
From stdpp Require Export tactics base.
9
Set Default Proof Using "Type".
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

(** * Definitions *)
Section definitions.
  Context `(R : relation A).

  (** An element is reducible if a step is possible. *)
  Definition red (x : A) :=  y, R x y.

  (** An element is in normal form if no further steps are possible. *)
  Definition nf (x : A) := ¬red x.

  (** The reflexive transitive closure. *)
  Inductive rtc : relation A :=
    | rtc_refl x : rtc x x
    | rtc_l x y z : R x y  rtc y z  rtc x z.

Robbert Krebbers's avatar
Robbert Krebbers committed
26 27 28 29 30
  (** The reflexive transitive closure for setoids. *)
  Inductive rtcS `{Equiv A} : relation A :=
    | rtcS_refl x y : x  y  rtcS x y
    | rtcS_l x y z : R x y  rtcS y z  rtcS x z.

31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
  (** Reductions of exactly [n] steps. *)
  Inductive nsteps : nat  relation A :=
    | nsteps_O x : nsteps 0 x x
    | nsteps_l n x y z : R x y  nsteps n y z  nsteps (S n) x z.

  (** Reduction of at most [n] steps. *)
  Inductive bsteps : nat  relation A :=
    | bsteps_refl n x : bsteps n x x
    | bsteps_l n x y z : R x y  bsteps n y z  bsteps (S n) x z.

  (** The transitive closure. *)
  Inductive tc : relation A :=
    | tc_once x y : R x y  tc x y
    | tc_l x y z : R x y  tc y z  tc x z.

Robbert Krebbers's avatar
Robbert Krebbers committed
46 47 48 49 50 51 52 53 54
  (** An element [x] is universally looping if all paths starting at [x]
  are infinite. *)
  CoInductive all_loop : A  Prop :=
    | all_loop_do_step x : red x  ( y, R x y  all_loop y)  all_loop x.

  (** An element [x] is existentally looping if some path starting at [x]
  is infinite. *)
  CoInductive ex_loop : A  Prop :=
    | ex_loop_do_step x y : R x y  ex_loop y  ex_loop x.
55 56
End definitions.

57 58
Hint Unfold nf red.

59 60 61 62
(** * General theorems *)
Section rtc.
  Context `{R : relation A}.

Robbert Krebbers's avatar
Robbert Krebbers committed
63 64
  Hint Constructors rtc nsteps bsteps tc.

65
  Global Instance rtc_reflexive: Reflexive (rtc R).
Robbert Krebbers's avatar
Robbert Krebbers committed
66 67 68 69 70
  Proof. exact (@rtc_refl A R). Qed.
  Lemma rtc_transitive x y z : rtc R x y  rtc R y z  rtc R x z.
  Proof. induction 1; eauto. Qed.
  Global Instance: Transitive (rtc R).
  Proof. exact rtc_transitive. Qed.
71
  Lemma rtc_once x y : R x y  rtc R x y.
Robbert Krebbers's avatar
Robbert Krebbers committed
72
  Proof. eauto. Qed.
73
  Lemma rtc_r x y z : rtc R x y  R y z  rtc R x z.
74
  Proof. intros. etrans; eauto. Qed.
75 76
  Lemma rtc_inv x z : rtc R x z  x = z   y, R x y  rtc R y z.
  Proof. inversion_clear 1; eauto. Qed.
77 78 79 80
  Lemma rtc_ind_l (P : A  Prop) (z : A)
    (Prefl : P z) (Pstep :  x y, R x y  rtc R y z  P y  P x) :
     x, rtc R x z  P x.
  Proof. induction 1; eauto. Qed.
81 82
  Lemma rtc_ind_r_weak (P : A  A  Prop)
    (Prefl :  x, P x x) (Pstep :  x y z, rtc R x y  R y z  P x y  P x z) :
83
     x z, rtc R x z  P x z.
84 85 86 87 88
  Proof.
    cut ( y z, rtc R y z   x, rtc R x y  P x y  P x z).
    { eauto using rtc_refl. }
    induction 1; eauto using rtc_r.
  Qed.
89 90 91 92 93 94
  Lemma rtc_ind_r (P : A  Prop) (x : A)
    (Prefl : P x) (Pstep :  y z, rtc R x y  R y z  P y  P z) :
     z, rtc R x z  P z.
  Proof.
    intros z p. revert x z p Prefl Pstep. refine (rtc_ind_r_weak _ _ _); eauto.
  Qed.
95
  Lemma rtc_inv_r x z : rtc R x z  x = z   y, rtc R x y  R y z.
96
  Proof. revert z. apply rtc_ind_r; eauto. Qed.
97 98

  Lemma nsteps_once x y : R x y  nsteps R 1 x y.
Robbert Krebbers's avatar
Robbert Krebbers committed
99
  Proof. eauto. Qed.
100 101
  Lemma nsteps_trans n m x y z :
    nsteps R n x y  nsteps R m y z  nsteps R (n + m) x z.
Robbert Krebbers's avatar
Robbert Krebbers committed
102
  Proof. induction 1; simpl; eauto. Qed.
103
  Lemma nsteps_r n x y z : nsteps R n x y  R y z  nsteps R (S n) x z.
Robbert Krebbers's avatar
Robbert Krebbers committed
104
  Proof. induction 1; eauto. Qed.
105
  Lemma nsteps_rtc n x y : nsteps R n x y  rtc R x y.
Robbert Krebbers's avatar
Robbert Krebbers committed
106
  Proof. induction 1; eauto. Qed.
107
  Lemma rtc_nsteps x y : rtc R x y   n, nsteps R n x y.
Robbert Krebbers's avatar
Robbert Krebbers committed
108
  Proof. induction 1; firstorder eauto. Qed.
109 110

  Lemma bsteps_once n x y : R x y  bsteps R (S n) x y.
Robbert Krebbers's avatar
Robbert Krebbers committed
111
  Proof. eauto. Qed.
112 113
  Lemma bsteps_plus_r n m x y :
    bsteps R n x y  bsteps R (n + m) x y.
Robbert Krebbers's avatar
Robbert Krebbers committed
114
  Proof. induction 1; simpl; eauto. Qed.
115 116 117 118 119 120 121 122 123
  Lemma bsteps_weaken n m x y :
    n  m  bsteps R n x y  bsteps R m x y.
  Proof.
    intros. rewrite (Minus.le_plus_minus n m); auto using bsteps_plus_r.
  Qed.
  Lemma bsteps_plus_l n m x y :
    bsteps R n x y  bsteps R (m + n) x y.
  Proof. apply bsteps_weaken. auto with arith. Qed.
  Lemma bsteps_S n x y :  bsteps R n x y  bsteps R (S n) x y.
124
  Proof. apply bsteps_weaken. lia. Qed.
125 126
  Lemma bsteps_trans n m x y z :
    bsteps R n x y  bsteps R m y z  bsteps R (n + m) x z.
Robbert Krebbers's avatar
Robbert Krebbers committed
127
  Proof. induction 1; simpl; eauto using bsteps_plus_l. Qed.
128
  Lemma bsteps_r n x y z : bsteps R n x y  R y z  bsteps R (S n) x z.
Robbert Krebbers's avatar
Robbert Krebbers committed
129
  Proof. induction 1; eauto. Qed.
130
  Lemma bsteps_rtc n x y : bsteps R n x y  rtc R x y.
Robbert Krebbers's avatar
Robbert Krebbers committed
131
  Proof. induction 1; eauto. Qed.
132
  Lemma rtc_bsteps x y : rtc R x y   n, bsteps R n x y.
Robbert Krebbers's avatar
Robbert Krebbers committed
133
  Proof. induction 1; [exists 0; constructor|]. naive_solver eauto. Qed.
134 135 136 137 138 139
  Lemma bsteps_ind_r (P : nat  A  Prop) (x : A)
    (Prefl :  n, P n x)
    (Pstep :  n y z, bsteps R n x y  R y z  P n y  P (S n) z) :
     n z, bsteps R n x z  P n z.
  Proof.
    cut ( m y z, bsteps R m y z   n,
Robbert Krebbers's avatar
Robbert Krebbers committed
140 141
      bsteps R n x y  ( m', n  m'  m'  n + m  P m' y)  P (n + m) z).
    { intros help ?. change n with (0 + n). eauto. }
142 143 144
    induction 1 as [|m x' y z p2 p3 IH]; [by eauto with arith|].
    intros n p1 H. rewrite <-plus_n_Sm.
    apply (IH (S n)); [by eauto using bsteps_r |].
Robbert Krebbers's avatar
Robbert Krebbers committed
145
    intros [|m'] [??]; [lia |]. apply Pstep with x'.
146 147 148
    - apply bsteps_weaken with n; intuition lia.
    - done.
    - apply H; intuition lia.
149
  Qed.
150

Robbert Krebbers's avatar
Robbert Krebbers committed
151 152 153 154
  Lemma tc_transitive x y z : tc R x y  tc R y z  tc R x z.
  Proof. induction 1; eauto. Qed.
  Global Instance: Transitive (tc R).
  Proof. exact tc_transitive. Qed.
155
  Lemma tc_r x y z : tc R x y  R y z  tc R x z.
156
  Proof. intros. etrans; eauto. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
157 158 159 160
  Lemma tc_rtc_l x y z : rtc R x y  tc R y z  tc R x z.
  Proof. induction 1; eauto. Qed.
  Lemma tc_rtc_r x y z : tc R x y  rtc R y z  tc R x z.
  Proof. intros Hxy Hyz. revert x Hxy. induction Hyz; eauto using tc_r. Qed.
161
  Lemma tc_rtc x y : tc R x y  rtc R x y.
Robbert Krebbers's avatar
Robbert Krebbers committed
162
  Proof. induction 1; eauto. Qed.
163

Robbert Krebbers's avatar
Robbert Krebbers committed
164
  Lemma all_loop_red x : all_loop R x  red R x.
165
  Proof. destruct 1; auto. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
166
  Lemma all_loop_step x y : all_loop R x  R x y  all_loop R y.
167
  Proof. destruct 1; auto. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
168 169 170 171
  Lemma all_loop_rtc x y : all_loop R x  rtc R x y  all_loop R y.
  Proof. induction 2; eauto using all_loop_step. Qed.
  Lemma all_loop_alt x :
    all_loop R x   y, rtc R x y  red R y.
172
  Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
173 174 175
    split; [eauto using all_loop_red, all_loop_rtc|].
    intros H. cut ( z, rtc R x z  all_loop R z); [eauto|].
    cofix FIX. constructor; eauto using rtc_r.
176 177 178
  Qed.
End rtc.

Robbert Krebbers's avatar
Robbert Krebbers committed
179 180 181
Hint Constructors rtc nsteps bsteps tc : ars.
Hint Resolve rtc_once rtc_r tc_r rtc_transitive tc_rtc_l tc_rtc_r
  tc_rtc bsteps_once bsteps_r bsteps_refl bsteps_trans : ars.
182 183 184

(** * Theorems on sub relations *)
Section subrel.
185 186 187 188 189 190
  Context {A} (R1 R2 : relation A).
  Notation subrel := ( x y, R1 x y  R2 x y).
  Lemma red_subrel x : subrel  red R1 x  red R2 x.
  Proof. intros ? [y ?]; eauto. Qed.
  Lemma nf_subrel x : subrel  nf R2 x  nf R1 x.
  Proof. intros ? H1 H2; destruct H1; by apply red_subrel. Qed.
Ralf Jung's avatar
Ralf Jung committed
191 192
  Lemma rtc_subrel x y : subrel  rtc R1 x y  rtc R2 x y.
  Proof. induction 2; [by apply rtc_refl|]. eapply rtc_l; eauto. Qed.
193
End subrel.
194

195
(** * Theorems on well founded relations *)
196 197 198 199 200
Notation wf := well_founded.

Section wf.
  Context `{R : relation A}.

Robbert Krebbers's avatar
Robbert Krebbers committed
201 202 203
  Lemma Acc_def x : Acc R x  ( y : A, R y x  Acc R y).
  Proof. split. by destruct 1. by constructor. Qed.

204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
  (** A trick by Thomas Braibant to compute with well-founded recursions:
  it lazily adds [2^n] [Acc_intro] constructors in front of a well foundedness
  proof, so that the actual proof is never reached in practise. *)
  Fixpoint wf_guard (n : nat) (wfR : wf R) : wf R :=
    match n with
    | 0 => wfR
    | S n => λ x, Acc_intro x (λ y _, wf_guard n (wf_guard n wfR) y)
    end.

  Lemma wf_projected `(R2 : relation B) (f : A  B) :
    ( x y, R x y  R2 (f x) (f y)) 
    wf R2  wf R.
  Proof.
    intros Hf Hwf.
    cut ( y, Acc R2 y   x, y = f x  Acc R x).
    { intros aux x. apply (aux (f x)); auto. }
    induction 1 as [y _ IH]. intros x ?. subst.
    constructor. intros. apply (IH (f y)); auto.
  Qed.
End wf.

(* Generally we do not want [wf_guard] to be expanded (neither by tactics,
nor by conversion tests in the kernel), but in some cases we do need it for
computation (that is, we cannot make it opaque). We use the [Strategy]
command to make its expanding behavior less eager. *)
Strategy 100 [wf_guard].
230

Robbert Krebbers's avatar
Robbert Krebbers committed
231
Lemma Fix_F_proper `{R : relation A} (B : A  Type) (E :  x, relation (B x))
232 233 234 235 236 237
    (F :  x, ( y, R y x  B y)  B x)
    (HF :  (x : A) (f g :  y, R y x  B y),
      ( y Hy Hy', E _ (f y Hy) (g y Hy'))  E _ (F x f) (F x g))
    (x : A) (acc1 acc2 : Acc R x) :
  E _ (Fix_F B F acc1) (Fix_F B F acc2).
Proof. revert x acc1 acc2. fix 2. intros x [acc1] [acc2]; simpl; auto. Qed.