finite.v 13.8 KB
Newer Older
Robbert Krebbers's avatar
Robbert Krebbers committed
1
(* Copyright (c) 2012-2015, Robbert Krebbers. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
2
(* This file is distributed under the terms of the BSD license. *)
3
From stdpp Require Export countable vector.
4
Set Default Proof Using "Type".
5

6
Class Finite A `{EqDecision A} := {
7
  enum : list A;
8
  NoDup_enum : NoDup enum;
9 10
  elem_of_enum x : x  enum
}.
Ralf Jung's avatar
Ralf Jung committed
11 12 13 14
Arguments enum _ _ _ : clear implicits.
Arguments enum _ {_ _}.
Arguments NoDup_enum _ _ _ : clear implicits.
Arguments NoDup_enum _ {_ _}.
15 16
Definition card A `{Finite A} := length (enum A).
Program Instance finite_countable `{Finite A} : Countable A := {|
17
  encode := λ x,
18
    Pos.of_nat $ S $ from_option id 0 $ fst <$> list_find (x =) (enum A);
19 20 21 22 23
  decode := λ p, enum A !! pred (Pos.to_nat p)
|}.
Arguments Pos.of_nat _ : simpl never.
Next Obligation.
  intros ?? [xs Hxs HA] x; unfold encode, decode; simpl.
24 25 26
  destruct (list_find_elem_of (x =) xs x) as [[i y] Hi]; auto.
  rewrite Nat2Pos.id by done; simpl; rewrite Hi; simpl.
  destruct (list_find_Some (x =) xs i y); naive_solver.
27 28
Qed.
Definition find `{Finite A} P `{ x, Decision (P x)} : option A :=
29
  list_find P (enum A) = decode_nat  fst.
30 31 32 33

Lemma encode_lt_card `{finA: Finite A} x : encode_nat x < card A.
Proof.
  destruct finA as [xs Hxs HA]; unfold encode_nat, encode, card; simpl.
34 35
  rewrite Nat2Pos.id by done; simpl.
  destruct (list_find _ xs) as [[i y]|] eqn:?; simpl.
36 37
  - destruct (list_find_Some (x =) xs i y); eauto using lookup_lt_Some.
  - destruct xs; simpl. exfalso; eapply not_elem_of_nil, (HA x). lia.
38 39 40 41 42 43 44 45
Qed.
Lemma encode_decode A `{finA: Finite A} i :
  i < card A   x, decode_nat i = Some x  encode_nat x = i.
Proof.
  destruct finA as [xs Hxs HA].
  unfold encode_nat, decode_nat, encode, decode, card; simpl.
  intros Hi. apply lookup_lt_is_Some in Hi. destruct Hi as [x Hx].
  exists x. rewrite !Nat2Pos.id by done; simpl.
46 47 48
  destruct (list_find_elem_of (x =) xs x) as [[j y] Hj]; auto.
  destruct (list_find_Some (x =) xs j y) as [? ->]; auto.
  rewrite Hj; csimpl; eauto using NoDup_lookup.
49 50 51 52 53
Qed.
Lemma find_Some `{finA: Finite A} P `{ x, Decision (P x)} x :
  find P = Some x  P x.
Proof.
  destruct finA as [xs Hxs HA]; unfold find, decode_nat, decode; simpl.
54
  intros Hx. destruct (list_find _ _) as [[i y]|] eqn:Hi; simplify_eq/=.
55
  rewrite !Nat2Pos.id in Hx by done.
56
  destruct (list_find_Some P xs i y); naive_solver.
57 58 59 60 61
Qed.
Lemma find_is_Some `{finA: Finite A} P `{ x, Decision (P x)} x :
  P x   y, find P = Some y  P y.
Proof.
  destruct finA as [xs Hxs HA]; unfold find, decode; simpl.
62
  intros Hx. destruct (list_find_elem_of P xs x) as [[i y] Hi]; auto.
63
  rewrite Hi. destruct (list_find_Some P xs i y); simplify_eq/=; auto.
64
  exists y. by rewrite !Nat2Pos.id by done.
65 66
Qed.

67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
Definition encode_fin `{Finite A} (x : A) : fin (card A) :=
  Fin.of_nat_lt (encode_lt_card x).
Program Definition decode_fin `{Finite A} (i : fin (card A)) : A :=
  match Some_dec (decode_nat i) return _ with
  | inleft (exist x _) => x | inright _ => _
  end.
Next Obligation.
  intros A ?? i ?; exfalso.
  destruct (encode_decode A i); naive_solver auto using fin_to_nat_lt.
Qed.
Lemma decode_encode_fin `{Finite A} (x : A) : decode_fin (encode_fin x) = x.
Proof.
  unfold decode_fin, encode_fin. destruct (Some_dec _) as [[x' Hx]|Hx].
  { by rewrite fin_to_of_nat, decode_encode_nat in Hx; simplify_eq. }
  exfalso; by rewrite ->fin_to_of_nat, decode_encode_nat in Hx.
Qed.

Lemma fin_choice {n} {B : fin n  Type} (P :  i, B i  Prop) :
  ( i,  y, P i y)   f,  i, P i (f i).
Proof.
  induction n as [|n IH]; intros Hex.
  { exists (fin_0_inv _); intros i; inv_fin i. }
  destruct (IH _ _ (λ i, Hex (FS i))) as [f Hf], (Hex 0%fin) as [y Hy].
  exists (fin_S_inv _ y f); intros i; by inv_fin i.
Qed.
Lemma finite_choice `{Finite A} {B : A  Type} (P :  x, B x  Prop) :
  ( x,  y, P x y)   f,  x, P x (f x).
Proof.
  intros Hex. destruct (fin_choice _ (λ i, Hex (decode_fin i))) as [f ?].
  exists (λ x, eq_rect _ _ (f(encode_fin x)) _ (decode_encode_fin x)); intros x.
  destruct (decode_encode_fin x); simpl; auto.
Qed.

100 101
Lemma card_0_inv P `{finA: Finite A} : card A = 0  A  P.
Proof.
102
  intros ? x. destruct finA as [[|??] ??]; simplify_eq.
103 104 105 106
  by destruct (not_elem_of_nil x).
Qed.
Lemma finite_inhabited A `{finA: Finite A} : 0 < card A  Inhabited A.
Proof.
107
  unfold card; intros. destruct finA as [[|x ?] ??]; simpl in *; [exfalso;lia|].
108 109
  constructor; exact x.
Qed.
110 111
Lemma finite_inj_contains `{finA: Finite A} `{finB: Finite B} (f: A  B)
  `{!Inj (=) (=) f} : f <$> enum A `contains` enum B.
112
Proof.
113
  intros. destruct finA, finB. apply NoDup_contains; auto using NoDup_fmap_2.
114
Qed.
115 116
Lemma finite_inj_Permutation `{Finite A} `{Finite B} (f : A  B)
  `{!Inj (=) (=) f} : card A = card B  f <$> enum A  enum B.
117
Proof.
118
  intros. apply contains_Permutation_length_eq.
119 120
  - by rewrite fmap_length.
  - by apply finite_inj_contains.
121
Qed.
122 123
Lemma finite_inj_surj `{Finite A} `{Finite B} (f : A  B)
  `{!Inj (=) (=) f} : card A = card B  Surj (=) f.
124 125
Proof.
  intros HAB y. destruct (elem_of_list_fmap_2 f (enum A) y) as (x&?&?); eauto.
126
  rewrite finite_inj_Permutation; auto using elem_of_enum.
127 128
Qed.

129 130
Lemma finite_surj A `{Finite A} B `{Finite B} :
  0 < card A  card B   g : B  A, Surj (=) g.
131 132
Proof.
  intros [??]. destruct (finite_inhabited A) as [x']; auto with lia.
133
  exists (λ y : B, from_option id x' (decode_nat (encode_nat y))).
134 135 136 137
  intros x. destruct (encode_decode B (encode_nat x)) as (y&Hy1&Hy2).
  { pose proof (encode_lt_card x); lia. }
  exists y. by rewrite Hy2, decode_encode_nat.
Qed.
138 139
Lemma finite_inj A `{Finite A} B `{Finite B} :
  card A  card B   f : A  B, Inj (=) (=) f.
140 141
Proof.
  split.
142
  - intros. destruct (decide (card A = 0)) as [HA|?].
143
    { exists (card_0_inv B HA). intros y. apply (card_0_inv _ HA y). }
144 145
    destruct (finite_surj A B) as (g&?); auto with lia.
    destruct (surj_cancel g) as (f&?). exists f. apply cancel_inj.
146
  - intros [f ?]. unfold card. rewrite <-(fmap_length f).
147
    by apply contains_length, (finite_inj_contains f).
148 149
Qed.
Lemma finite_bijective A `{Finite A} B `{Finite B} :
150
  card A = card B   f : A  B, Inj (=) (=) f  Surj (=) f.
151 152
Proof.
  split.
153
  - intros; destruct (proj1 (finite_inj A B)) as [f ?]; auto with lia.
154
    exists f; auto using (finite_inj_surj f).
155
  - intros (f&?&?). apply (anti_symm ()); apply finite_inj.
156
    + by exists f.
157
    + destruct (surj_cancel f) as (g&?); eauto using cancel_inj.
158
Qed.
159 160 161 162 163
Lemma inj_card `{Finite A} `{Finite B} (f : A  B)
  `{!Inj (=) (=) f} : card A  card B.
Proof. apply finite_inj. eauto. Qed.
Lemma surj_card `{Finite A} `{Finite B} (f : A  B)
  `{!Surj (=) f} : card B  card A.
164
Proof.
165 166
  destruct (surj_cancel f) as (g&?).
  apply inj_card with g, cancel_inj.
167 168
Qed.
Lemma bijective_card `{Finite A} `{Finite B} (f : A  B)
169
  `{!Inj (=) (=) f} `{!Surj (=) f} : card A = card B.
170 171
Proof. apply finite_bijective. eauto. Qed.

172 173
(** Decidability of quantification over finite types *)
Section forall_exists.
174
  Context `{Finite A} (P : A  Prop).
175 176 177 178 179 180

  Lemma Forall_finite : Forall P (enum A)  ( x, P x).
  Proof. rewrite Forall_forall. intuition auto using elem_of_enum. Qed.
  Lemma Exists_finite : Exists P (enum A)  ( x, P x).
  Proof. rewrite Exists_exists. naive_solver eauto using elem_of_enum. Qed.

181 182
  Context `{ x, Decision (P x)}.

183
  Global Instance forall_dec: Decision ( x, P x).
184
  Proof using Type*.
185 186 187 188
   refine (cast_if (decide (Forall P (enum A))));
    abstract by rewrite <-Forall_finite.
  Defined.
  Global Instance exists_dec: Decision ( x, P x).
189
  Proof using Type*.
190 191 192 193 194
   refine (cast_if (decide (Exists P (enum A))));
    abstract by rewrite <-Exists_finite.
  Defined.
End forall_exists.

195 196
(** Instances *)
Section enc_finite.
197
  Context `{EqDecision A}.
198 199 200 201 202 203 204 205 206
  Context (to_nat : A  nat) (of_nat : nat  A) (c : nat).
  Context (of_to_nat :  x, of_nat (to_nat x) = x).
  Context (to_nat_c :  x, to_nat x < c).
  Context (to_of_nat :  i, i < c  to_nat (of_nat i) = i).

  Program Instance enc_finite : Finite A := {| enum := of_nat <$> seq 0 c |}.
  Next Obligation.
    apply NoDup_alt. intros i j x. rewrite !list_lookup_fmap. intros Hi Hj.
    destruct (seq _ _ !! i) as [i'|] eqn:Hi',
207
      (seq _ _ !! j) as [j'|] eqn:Hj'; simplify_eq/=.
208 209 210 211 212 213 214 215 216 217 218 219
    destruct (lookup_seq_inv _ _ _ _ Hi'), (lookup_seq_inv _ _ _ _ Hj'); subst.
    rewrite <-(to_of_nat i), <-(to_of_nat j) by done. by f_equal.
  Qed.
  Next Obligation.
    intros x. rewrite elem_of_list_fmap. exists (to_nat x).
    split; auto. by apply elem_of_list_lookup_2 with (to_nat x), lookup_seq.
  Qed.
  Lemma enc_finite_card : card A = c.
  Proof. unfold card. simpl. by rewrite fmap_length, seq_length. Qed.
End enc_finite.

Section bijective_finite.
220
  Context `{Finite A, EqDecision B} (f : A  B) (g : B  A).
221
  Context `{!Inj (=) (=) f, !Cancel (=) f g}.
222 223

  Program Instance bijective_finite: Finite B := {| enum := f <$> enum A |}.
224
  Next Obligation. apply (NoDup_fmap_2 _), NoDup_enum. Qed.
225 226 227 228 229 230 231 232 233
  Next Obligation.
    intros y. rewrite elem_of_list_fmap. eauto using elem_of_enum.
  Qed.
End bijective_finite.

Program Instance option_finite `{Finite A} : Finite (option A) :=
  {| enum := None :: Some <$> enum A |}.
Next Obligation.
  constructor.
234 235
  - rewrite elem_of_list_fmap. by intros (?&?&?).
  - apply (NoDup_fmap_2 _); auto using NoDup_enum.
236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
Qed.
Next Obligation.
  intros ??? [x|]; [right|left]; auto.
  apply elem_of_list_fmap. eauto using elem_of_enum.
Qed.
Lemma option_cardinality `{Finite A} : card (option A) = S (card A).
Proof. unfold card. simpl. by rewrite fmap_length. Qed.

Program Instance unit_finite : Finite () := {| enum := [tt] |}.
Next Obligation. apply NoDup_singleton. Qed.
Next Obligation. intros []. by apply elem_of_list_singleton. Qed.
Lemma unit_card : card unit = 1.
Proof. done. Qed.

Program Instance bool_finite : Finite bool := {| enum := [true; false] |}.
Next Obligation.
  constructor. by rewrite elem_of_list_singleton. apply NoDup_singleton.
Qed.
Next Obligation. intros [|]. left. right; left. Qed.
Lemma bool_card : card bool = 2.
Proof. done. Qed.

258
Program Instance sum_finite `{Finite A, Finite B} : Finite (A + B)%type :=
259 260
  {| enum := (inl <$> enum A) ++ (inr <$> enum B) |}.
Next Obligation.
261
  intros. apply NoDup_app; split_and?.
262 263 264
  - apply (NoDup_fmap_2 _). by apply NoDup_enum.
  - intro. rewrite !elem_of_list_fmap. intros (?&?&?) (?&?&?); congruence.
  - apply (NoDup_fmap_2 _). by apply NoDup_enum.
265 266 267 268 269
Qed.
Next Obligation.
  intros ?????? [x|y]; rewrite elem_of_app, !elem_of_list_fmap;
    eauto using @elem_of_enum.
Qed.
270
Lemma sum_card `{Finite A, Finite B} : card (A + B) = card A + card B.
271 272
Proof. unfold card. simpl. by rewrite app_length, !fmap_length. Qed.

273
Program Instance prod_finite `{Finite A, Finite B} : Finite (A * B)%type :=
274 275
  {| enum := foldr (λ x, (pair x <$> enum B ++)) [] (enum A) |}.
Next Obligation.
276
  intros ??????. induction (NoDup_enum A) as [|x xs Hx Hxs IH]; simpl.
277
  { constructor. }
278
  apply NoDup_app; split_and?.
279
  - by apply (NoDup_fmap_2 _), NoDup_enum.
280
  - intros [? y]. rewrite elem_of_list_fmap. intros (?&?&?); simplify_eq.
281 282 283
    clear IH. induction Hxs as [|x' xs ?? IH]; simpl.
    { rewrite elem_of_nil. tauto. }
    rewrite elem_of_app, elem_of_list_fmap.
284
    intros [(?&?&?)|?]; simplify_eq.
285 286
    + destruct Hx. by left.
    + destruct IH. by intro; destruct Hx; right. auto.
287
  - done.
288 289 290
Qed.
Next Obligation.
  intros ?????? [x y]. induction (elem_of_enum x); simpl.
291 292
  - rewrite elem_of_app, !elem_of_list_fmap. eauto using @elem_of_enum.
  - rewrite elem_of_app; eauto.
293 294 295 296 297 298 299
Qed.
Lemma prod_card `{Finite A} `{Finite B} : card (A * B) = card A * card B.
Proof.
  unfold card; simpl. induction (enum A); simpl; auto.
  rewrite app_length, fmap_length. auto.
Qed.

Ralf Jung's avatar
Ralf Jung committed
300
Definition list_enum {A} (l : list A) :  n, list { l : list A | length l = n } :=
301 302 303 304 305
  fix go n :=
  match n with
  | 0 => [[]eq_refl]
  | S n => foldr (λ x, (sig_map (x ::) (λ _ H, f_equal S H) <$> (go n) ++)) [] l
  end.
Ralf Jung's avatar
Ralf Jung committed
306

307 308 309 310 311
Program Instance list_finite `{Finite A} n : Finite { l | length l = n } :=
  {| enum := list_enum (enum A) n |}.
Next Obligation.
  intros ????. induction n as [|n IH]; simpl; [apply NoDup_singleton |].
  revert IH. generalize (list_enum (enum A) n). intros l Hl.
312
  induction (NoDup_enum A) as [|x xs Hx Hxs IH]; simpl; auto; [constructor |].
313
  apply NoDup_app; split_and?.
314 315
  - by apply (NoDup_fmap_2 _).
  - intros [k1 Hk1]. clear Hxs IH. rewrite elem_of_list_fmap.
316
    intros ([k2 Hk2]&?&?) Hxk2; simplify_eq/=. destruct Hx. revert Hxk2.
317 318
    induction xs as [|x' xs IH]; simpl in *; [by rewrite elem_of_nil |].
    rewrite elem_of_app, elem_of_list_fmap, elem_of_cons.
319
    intros [([??]&?&?)|?]; simplify_eq/=; auto.
320
  - apply IH.
321 322 323
Qed.
Next Obligation.
  intros ???? [l Hl]. revert l Hl.
324
  induction n as [|n IH]; intros [|x l] ?; simpl; simplify_eq.
325 326 327
  { apply elem_of_list_singleton. by apply (sig_eq_pi _). }
  revert IH. generalize (list_enum (enum A) n). intros k Hk.
  induction (elem_of_enum x) as [x xs|x xs]; simpl in *.
328
  - rewrite elem_of_app, elem_of_list_fmap. left. injection Hl. intros Hl'.
329
    eexists (lHl'). split. by apply (sig_eq_pi _). done.
330
  - rewrite elem_of_app. eauto.
331
Qed.
Ralf Jung's avatar
Ralf Jung committed
332

333 334 335 336 337 338 339
Lemma list_card `{Finite A} n : card { l | length l = n } = card A ^ n.
Proof.
  unfold card; simpl. induction n as [|n IH]; simpl; auto.
  rewrite <-IH. clear IH. generalize (list_enum (enum A) n).
  induction (enum A) as [|x xs IH]; intros l; simpl; auto.
  by rewrite app_length, fmap_length, IH.
Qed.
340 341 342 343 344 345 346 347 348 349 350 351 352 353 354

Fixpoint fin_enum (n : nat) : list (fin n) :=
  match n with 0 => [] | S n => 0%fin :: FS <$> fin_enum n end.
Program Instance fin_finite n : Finite (fin n) := {| enum := fin_enum n |}.
Next Obligation.
  intros n. induction n; simpl; constructor.
  - rewrite elem_of_list_fmap. by intros (?&?&?).
  - by apply (NoDup_fmap _).
Qed.
Next Obligation.
  intros n i. induction i as [|n i IH]; simpl;
    rewrite elem_of_cons, ?elem_of_list_fmap; eauto.
Qed.
Lemma fin_card n : card (fin n) = n.
Proof. unfold card; simpl. induction n; simpl; rewrite ?fmap_length; auto. Qed.