fin_maps.v 69.1 KB
Newer Older
Robbert Krebbers's avatar
Robbert Krebbers committed
1
(* Copyright (c) 2012-2015, Robbert Krebbers. *)
2
3
4
(* This file is distributed under the terms of the BSD license. *)
(** Finite maps associate data to keys. This file defines an interface for
finite maps and collects some theory on it. Most importantly, it proves useful
5
6
induction principles for finite maps and implements the tactic
[simplify_map_equality] to simplify goals involving finite maps. *)
7
8
From Coq Require Import Permutation.
From stdpp Require Export relations vector orders.
9

10
11
(** * Axiomatization of finite maps *)
(** We require Leibniz equality to be extensional on finite maps. This of
12
13
14
15
16
course limits the space of finite map implementations, but since we are mainly
interested in finite maps with numbers as indexes, we do not consider this to
be a serious limitation. The main application of finite maps is to implement
the memory, where extensionality of Leibniz equality is very important for a
convenient use in the assertions of our axiomatic semantics. *)
17

Robbert Krebbers's avatar
Robbert Krebbers committed
18
19
(** Finiteness is axiomatized by requiring that each map can be translated
to an association list. The translation to association lists is used to
20
prove well founded recursion on finite maps. *)
21

22
23
24
(** Finite map implementations are required to implement the [merge] function
which enables us to give a generic implementation of [union_with],
[intersection_with], and [difference_with]. *)
25

26
Class FinMapToList K A M := map_to_list: M  list (K * A).
Robbert Krebbers's avatar
Robbert Krebbers committed
27

28
29
30
Class FinMap K M `{FMap M,  A, Lookup K A (M A),  A, Empty (M A),  A,
    PartialAlter K A (M A), OMap M, Merge M,  A, FinMapToList K A (M A),
     i j : K, Decision (i = j)} := {
31
32
  map_eq {A} (m1 m2 : M A) : ( i, m1 !! i = m2 !! i)  m1 = m2;
  lookup_empty {A} i : ( : M A) !! i = None;
33
34
35
36
  lookup_partial_alter {A} f (m : M A) i :
    partial_alter f i m !! i = f (m !! i);
  lookup_partial_alter_ne {A} f (m : M A) i j :
    i  j  partial_alter f i m !! j = m !! j;
37
  lookup_fmap {A B} (f : A  B) (m : M A) i : (f <$> m) !! i = f <$> m !! i;
38
  NoDup_map_to_list {A} (m : M A) : NoDup (map_to_list m);
39
40
  elem_of_map_to_list {A} (m : M A) i x :
    (i,x)  map_to_list m  m !! i = Some x;
41
  lookup_omap {A B} (f : A  option B) m i : omap f m !! i = m !! i = f;
42
43
44
  lookup_merge {A B C} (f : option A  option B  option C)
      `{!PropHolds (f None None = None)} m1 m2 i :
    merge f m1 m2 !! i = f (m1 !! i) (m2 !! i)
Robbert Krebbers's avatar
Robbert Krebbers committed
45
46
}.

47
48
49
(** * Derived operations *)
(** All of the following functions are defined in a generic way for arbitrary
finite map implementations. These generic implementations do not cause a
50
51
significant performance loss to make including them in the finite map interface
worthwhile. *)
52
53
54
55
56
Instance map_insert `{PartialAlter K A M} : Insert K A M :=
  λ i x, partial_alter (λ _, Some x) i.
Instance map_alter `{PartialAlter K A M} : Alter K A M :=
  λ f, partial_alter (fmap f).
Instance map_delete `{PartialAlter K A M} : Delete K M :=
57
  partial_alter (λ _, None).
58
Instance map_singleton `{PartialAlter K A M, Empty M} :
59
  SingletonM K A M := λ i x, <[i:=x]> .
Robbert Krebbers's avatar
Robbert Krebbers committed
60

61
Definition map_of_list `{Insert K A M, Empty M} : list (K * A)  M :=
62
  fold_right (λ p, <[p.1:=p.2]>) .
63
64
65
Definition map_of_collection `{Elements K C, Insert K A M, Empty M}
    (f : K  option A) (X : C) : M :=
  map_of_list (omap (λ i, (i,) <$> f i) (elements X)).
Robbert Krebbers's avatar
Robbert Krebbers committed
66

67
68
69
70
71
72
Instance map_union_with `{Merge M} {A} : UnionWith A (M A) :=
  λ f, merge (union_with f).
Instance map_intersection_with `{Merge M} {A} : IntersectionWith A (M A) :=
  λ f, merge (intersection_with f).
Instance map_difference_with `{Merge M} {A} : DifferenceWith A (M A) :=
  λ f, merge (difference_with f).
Robbert Krebbers's avatar
Robbert Krebbers committed
73

74
75
Instance map_equiv `{ A, Lookup K A (M A), Equiv A} : Equiv (M A) | 18 :=
  λ m1 m2,  i, m1 !! i  m2 !! i.
Robbert Krebbers's avatar
Robbert Krebbers committed
76

77
78
(** The relation [intersection_forall R] on finite maps describes that the
relation [R] holds for each pair in the intersection. *)
79
Definition map_Forall `{Lookup K A M} (P : K  A  Prop) : M  Prop :=
Robbert Krebbers's avatar
Robbert Krebbers committed
80
  λ m,  i x, m !! i = Some x  P i x.
Robbert Krebbers's avatar
Robbert Krebbers committed
81
82
83
Definition map_relation `{ A, Lookup K A (M A)} {A B} (R : A  B  Prop)
    (P : A  Prop) (Q : B  Prop) (m1 : M A) (m2 : M B) : Prop :=  i,
  option_relation R P Q (m1 !! i) (m2 !! i).
84
Definition map_included `{ A, Lookup K A (M A)} {A}
Robbert Krebbers's avatar
Robbert Krebbers committed
85
86
87
88
89
90
91
  (R : relation A) : relation (M A) := map_relation R (λ _, False) (λ _, True).
Definition map_disjoint `{ A, Lookup K A (M A)} {A} : relation (M A) :=
  map_relation (λ _ _, False) (λ _, True) (λ _, True).
Infix "⊥ₘ" := map_disjoint (at level 70) : C_scope.
Hint Extern 0 (_  _) => symmetry; eassumption.
Notation "( m ⊥ₘ.)" := (map_disjoint m) (only parsing) : C_scope.
Notation "(.⊥ₘ m )" := (λ m2, m2  m) (only parsing) : C_scope.
92
Instance map_subseteq `{ A, Lookup K A (M A)} {A} : SubsetEq (M A) :=
Robbert Krebbers's avatar
Robbert Krebbers committed
93
  map_included (=).
Robbert Krebbers's avatar
Robbert Krebbers committed
94
95
96
97
98

(** The union of two finite maps only has a meaningful definition for maps
that are disjoint. However, as working with partial functions is inconvenient
in Coq, we define the union as a total function. In case both finite maps
have a value at the same index, we take the value of the first map. *)
99
Instance map_union `{Merge M} {A} : Union (M A) := union_with (λ x _, Some x).
100
101
102
Instance map_intersection `{Merge M} {A} : Intersection (M A) :=
  intersection_with (λ x _, Some x).

103
104
(** The difference operation removes all values from the first map whose
index contains a value in the second map as well. *)
105
Instance map_difference `{Merge M} {A} : Difference (M A) :=
106
  difference_with (λ _ _, None).
Robbert Krebbers's avatar
Robbert Krebbers committed
107

108
109
110
111
112
113
(** A stronger variant of map that allows the mapped function to use the index
of the elements. Implemented by conversion to lists, so not very efficient. *)
Definition map_imap `{ A, Insert K A (M A),  A, Empty (M A),
     A, FinMapToList K A (M A)} {A B} (f : K  A  option B) (m : M A) : M B :=
  map_of_list (omap (λ ix, (fst ix,) <$> curry f ix) (map_to_list m)).

114
115
116
117
(** * Theorems *)
Section theorems.
Context `{FinMap K M}.

Robbert Krebbers's avatar
Robbert Krebbers committed
118
119
(** ** Setoids *)
Section setoid.
120
121
  Context `{Equiv A} `{!Equivalence (() : relation A)}.
  Global Instance map_equivalence : Equivalence (() : relation (M A)).
Robbert Krebbers's avatar
Robbert Krebbers committed
122
123
124
125
126
127
128
129
130
131
  Proof.
    split.
    * by intros m i.
    * by intros m1 m2 ? i.
    * by intros m1 m2 m3 ?? i; transitivity (m2 !! i).
  Qed.
  Global Instance lookup_proper (i : K) :
    Proper (() ==> ()) (lookup (M:=M A) i).
  Proof. by intros m1 m2 Hm. Qed.
  Global Instance partial_alter_proper :
132
    Proper ((() ==> ()) ==> (=) ==> () ==> ()) (partial_alter (M:=M A)).
Robbert Krebbers's avatar
Robbert Krebbers committed
133
134
135
136
137
138
139
140
  Proof.
    by intros f1 f2 Hf i ? <- m1 m2 Hm j; destruct (decide (i = j)) as [->|];
      rewrite ?lookup_partial_alter, ?lookup_partial_alter_ne by done;
      try apply Hf; apply lookup_proper.
  Qed.
  Global Instance insert_proper (i : K) :
    Proper (() ==> () ==> ()) (insert (M:=M A) i).
  Proof. by intros ???; apply partial_alter_proper; [constructor|]. Qed.
141
142
143
  Global Instance singleton_proper k :
    Proper (() ==> ()) (singletonM k : A  M A).
  Proof. by intros ???; apply insert_proper. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
144
145
146
147
148
149
150
151
152
153
154
155
  Global Instance delete_proper (i : K) :
    Proper (() ==> ()) (delete (M:=M A) i).
  Proof. by apply partial_alter_proper; [constructor|]. Qed.
  Global Instance alter_proper :
    Proper ((() ==> ()) ==> (=) ==> () ==> ()) (alter (A:=A) (M:=M A)).
  Proof.
    intros ?? Hf; apply partial_alter_proper.
    by destruct 1; constructor; apply Hf.
  Qed.
  Lemma merge_ext f g
      `{!PropHolds (f None None = None), !PropHolds (g None None = None)} :
    (() ==> () ==> ())%signature f g 
156
    (() ==> () ==> ())%signature (merge (M:=M) f) (merge g).
Robbert Krebbers's avatar
Robbert Krebbers committed
157
158
159
160
  Proof.
    by intros Hf ?? Hm1 ?? Hm2 i; rewrite !lookup_merge by done; apply Hf.
  Qed.
  Global Instance union_with_proper :
161
    Proper ((() ==> () ==> ()) ==> () ==> () ==>()) (union_with (M:=M A)).
Robbert Krebbers's avatar
Robbert Krebbers committed
162
163
164
165
166
167
  Proof.
    intros ?? Hf ?? Hm1 ?? Hm2 i; apply (merge_ext _ _); auto.
    by do 2 destruct 1; first [apply Hf | constructor].
  Qed.    
  Global Instance map_leibniz `{!LeibnizEquiv A} : LeibnizEquiv (M A).
  Proof.
168
169
    intros m1 m2 Hm; apply map_eq; intros i.
    by unfold_leibniz; apply lookup_proper.
Robbert Krebbers's avatar
Robbert Krebbers committed
170
  Qed.
171
172
173
174
175
176
177
178
179
180
  Lemma map_equiv_empty (m : M A) : m    m = .
  Proof.
    split; [intros Hm; apply map_eq; intros i|by intros ->].
    by rewrite lookup_empty, <-equiv_None, Hm, lookup_empty.
  Qed.
  Lemma map_equiv_lookup (m1 m2 : M A) i x :
    m1  m2  m1 !! i = Some x   y, m2 !! i = Some y  x  y.
  Proof.
    intros Hm ?. destruct (equiv_Some (m1 !! i) (m2 !! i) x) as (y&?&?); eauto.
  Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
181
182
183
End setoid.

(** ** General properties *)
184
185
186
187
188
Lemma map_eq_iff {A} (m1 m2 : M A) : m1 = m2   i, m1 !! i = m2 !! i.
Proof. split. by intros ->. apply map_eq. Qed.
Lemma map_subseteq_spec {A} (m1 m2 : M A) :
  m1  m2   i x, m1 !! i = Some x  m2 !! i = Some x.
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
189
  unfold subseteq, map_subseteq, map_relation. split; intros Hm i;
190
191
    specialize (Hm i); destruct (m1 !! i), (m2 !! i); naive_solver.
Qed.
192
Global Instance: EmptySpec (M A).
193
Proof.
194
195
  intros A m. rewrite !map_subseteq_spec.
  intros i x. by rewrite lookup_empty.
196
Qed.
197
198
Global Instance:  {A} (R : relation A), PreOrder R  PreOrder (map_included R).
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
199
  split; [intros m i; by destruct (m !! i); simpl|].
200
  intros m1 m2 m3 Hm12 Hm23 i; specialize (Hm12 i); specialize (Hm23 i).
Robbert Krebbers's avatar
Robbert Krebbers committed
201
202
  destruct (m1 !! i), (m2 !! i), (m3 !! i); simplify_equality';
    done || etransitivity; eauto.
203
Qed.
204
Global Instance: PartialOrder (() : relation (M A)).
205
Proof.
206
207
208
  split; [apply _|].
  intros m1 m2; rewrite !map_subseteq_spec.
  intros; apply map_eq; intros i; apply option_eq; naive_solver.
209
210
211
Qed.
Lemma lookup_weaken {A} (m1 m2 : M A) i x :
  m1 !! i = Some x  m1  m2  m2 !! i = Some x.
212
Proof. rewrite !map_subseteq_spec. auto. Qed.
213
214
215
216
217
218
Lemma lookup_weaken_is_Some {A} (m1 m2 : M A) i :
  is_Some (m1 !! i)  m1  m2  is_Some (m2 !! i).
Proof. inversion 1. eauto using lookup_weaken. Qed.
Lemma lookup_weaken_None {A} (m1 m2 : M A) i :
  m2 !! i = None  m1  m2  m1 !! i = None.
Proof.
219
220
  rewrite map_subseteq_spec, !eq_None_not_Some.
  intros Hm2 Hm [??]; destruct Hm2; eauto.
221
222
Qed.
Lemma lookup_weaken_inv {A} (m1 m2 : M A) i x y :
223
224
  m1 !! i = Some x  m1  m2  m2 !! i = Some y  x = y.
Proof. intros Hm1 ? Hm2. eapply lookup_weaken in Hm1; eauto. congruence. Qed.
225
226
227
228
229
230
231
232
233
Lemma lookup_ne {A} (m : M A) i j : m !! i  m !! j  i  j.
Proof. congruence. Qed.
Lemma map_empty {A} (m : M A) : ( i, m !! i = None)  m = .
Proof. intros Hm. apply map_eq. intros. by rewrite Hm, lookup_empty. Qed.
Lemma lookup_empty_is_Some {A} i : ¬is_Some (( : M A) !! i).
Proof. rewrite lookup_empty. by inversion 1. Qed.
Lemma lookup_empty_Some {A} i (x : A) : ¬ !! i = Some x.
Proof. by rewrite lookup_empty. Qed.
Lemma map_subset_empty {A} (m : M A) : m  .
234
235
236
Proof.
  intros [_ []]. rewrite map_subseteq_spec. intros ??. by rewrite lookup_empty.
Qed.
237
238
Lemma map_fmap_empty {A B} (f : A  B) : f <$> ( : M A) = .
Proof. by apply map_eq; intros i; rewrite lookup_fmap, !lookup_empty. Qed.
239
240

(** ** Properties of the [partial_alter] operation *)
241
242
243
Lemma partial_alter_ext {A} (f g : option A  option A) (m : M A) i :
  ( x, m !! i = x  f x = g x)  partial_alter f i m = partial_alter g i m.
Proof.
244
245
  intros. apply map_eq; intros j. by destruct (decide (i = j)) as [->|?];
    rewrite ?lookup_partial_alter, ?lookup_partial_alter_ne; auto.
246
247
Qed.
Lemma partial_alter_compose {A} f g (m : M A) i:
248
249
  partial_alter (f  g) i m = partial_alter f i (partial_alter g i m).
Proof.
250
251
  intros. apply map_eq. intros ii. by destruct (decide (i = ii)) as [->|?];
    rewrite ?lookup_partial_alter, ?lookup_partial_alter_ne.
252
Qed.
253
Lemma partial_alter_commute {A} f g (m : M A) i j :
254
  i  j  partial_alter f i (partial_alter g j m) =
255
256
    partial_alter g j (partial_alter f i m).
Proof.
257
258
259
260
261
262
263
  intros. apply map_eq; intros jj. destruct (decide (jj = j)) as [->|?].
  { by rewrite lookup_partial_alter_ne,
      !lookup_partial_alter, lookup_partial_alter_ne. }
  destruct (decide (jj = i)) as [->|?].
  * by rewrite lookup_partial_alter,
     !lookup_partial_alter_ne, lookup_partial_alter by congruence.
  * by rewrite !lookup_partial_alter_ne by congruence.
264
265
266
267
Qed.
Lemma partial_alter_self_alt {A} (m : M A) i x :
  x = m !! i  partial_alter (λ _, x) i m = m.
Proof.
268
269
  intros. apply map_eq. intros ii. by destruct (decide (i = ii)) as [->|];
    rewrite ?lookup_partial_alter, ?lookup_partial_alter_ne.
270
Qed.
271
Lemma partial_alter_self {A} (m : M A) i : partial_alter (λ _, m !! i) i m = m.
272
Proof. by apply partial_alter_self_alt. Qed.
273
Lemma partial_alter_subseteq {A} f (m : M A) i :
274
  m !! i = None  m  partial_alter f i m.
275
276
277
278
Proof.
  rewrite map_subseteq_spec. intros Hi j x Hj.
  rewrite lookup_partial_alter_ne; congruence.
Qed.
279
Lemma partial_alter_subset {A} f (m : M A) i :
280
  m !! i = None  is_Some (f (m !! i))  m  partial_alter f i m.
281
Proof.
282
283
284
285
  intros Hi Hfi. split; [by apply partial_alter_subseteq|].
  rewrite !map_subseteq_spec. inversion Hfi as [x Hx]. intros Hm.
  apply (Some_ne_None x). rewrite <-(Hm i x); [done|].
  by rewrite lookup_partial_alter.
286
287
288
Qed.

(** ** Properties of the [alter] operation *)
289
290
Lemma alter_ext {A} (f g : A  A) (m : M A) i :
  ( x, m !! i = Some x  f x = g x)  alter f i m = alter g i m.
291
Proof. intro. apply partial_alter_ext. intros [x|] ?; f_equal'; auto. Qed.
292
Lemma lookup_alter {A} (f : A  A) m i : alter f i m !! i = f <$> m !! i.
293
Proof. unfold alter. apply lookup_partial_alter. Qed.
294
Lemma lookup_alter_ne {A} (f : A  A) m i j : i  j  alter f i m !! j = m !! j.
295
Proof. unfold alter. apply lookup_partial_alter_ne. Qed.
296
297
298
299
300
301
302
303
304
Lemma alter_compose {A} (f g : A  A) (m : M A) i:
  alter (f  g) i m = alter f i (alter g i m).
Proof.
  unfold alter, map_alter. rewrite <-partial_alter_compose.
  apply partial_alter_ext. by intros [?|].
Qed.
Lemma alter_commute {A} (f g : A  A) (m : M A) i j :
  i  j  alter f i (alter g j m) = alter g j (alter f i m).
Proof. apply partial_alter_commute. Qed.
305
306
307
308
Lemma lookup_alter_Some {A} (f : A  A) m i j y :
  alter f i m !! j = Some y 
    (i = j   x, m !! j = Some x  y = f x)  (i  j  m !! j = Some y).
Proof.
309
  destruct (decide (i = j)) as [->|?].
310
311
312
313
314
315
  * rewrite lookup_alter. naive_solver (simplify_option_equality; eauto).
  * rewrite lookup_alter_ne by done. naive_solver.
Qed.
Lemma lookup_alter_None {A} (f : A  A) m i j :
  alter f i m !! j = None  m !! j = None.
Proof.
316
317
  by destruct (decide (i = j)) as [->|?];
    rewrite ?lookup_alter, ?fmap_None, ?lookup_alter_ne.
318
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
319
320
Lemma alter_id {A} (f : A  A) m i :
  ( x, m !! i = Some x  f x = x)  alter f i m = m.
321
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
322
323
324
  intros Hi; apply map_eq; intros j; destruct (decide (i = j)) as [->|?].
  { rewrite lookup_alter; destruct (m !! j); f_equal'; auto. }
  by rewrite lookup_alter_ne by done.
325
326
327
328
329
330
331
332
333
334
335
Qed.

(** ** Properties of the [delete] operation *)
Lemma lookup_delete {A} (m : M A) i : delete i m !! i = None.
Proof. apply lookup_partial_alter. Qed.
Lemma lookup_delete_ne {A} (m : M A) i j : i  j  delete i m !! j = m !! j.
Proof. apply lookup_partial_alter_ne. Qed.
Lemma lookup_delete_Some {A} (m : M A) i j y :
  delete i m !! j = Some y  i  j  m !! j = Some y.
Proof.
  split.
336
  * destruct (decide (i = j)) as [->|?];
337
338
339
      rewrite ?lookup_delete, ?lookup_delete_ne; intuition congruence.
  * intros [??]. by rewrite lookup_delete_ne.
Qed.
340
341
342
Lemma lookup_delete_is_Some {A} (m : M A) i j :
  is_Some (delete i m !! j)  i  j  is_Some (m !! j).
Proof. unfold is_Some; setoid_rewrite lookup_delete_Some; naive_solver. Qed.
343
344
345
Lemma lookup_delete_None {A} (m : M A) i j :
  delete i m !! j = None  i = j  m !! j = None.
Proof.
346
347
  destruct (decide (i = j)) as [->|?];
    rewrite ?lookup_delete, ?lookup_delete_ne; tauto.
348
349
350
Qed.
Lemma delete_empty {A} i : delete i ( : M A) = .
Proof. rewrite <-(partial_alter_self ) at 2. by rewrite lookup_empty. Qed.
351
Lemma delete_singleton {A} i (x : A) : delete i {[i  x]} = .
352
353
354
355
356
357
358
Proof. setoid_rewrite <-partial_alter_compose. apply delete_empty. Qed.
Lemma delete_commute {A} (m : M A) i j :
  delete i (delete j m) = delete j (delete i m).
Proof. destruct (decide (i = j)). by subst. by apply partial_alter_commute. Qed.
Lemma delete_insert_ne {A} (m : M A) i j x :
  i  j  delete i (<[j:=x]>m) = <[j:=x]>(delete i m).
Proof. intro. by apply partial_alter_commute. Qed.
359
Lemma delete_notin {A} (m : M A) i : m !! i = None  delete i m = m.
360
Proof.
361
362
  intros. apply map_eq. intros j. by destruct (decide (i = j)) as [->|?];
    rewrite ?lookup_delete, ?lookup_delete_ne.
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
Qed.
Lemma delete_partial_alter {A} (m : M A) i f :
  m !! i = None  delete i (partial_alter f i m) = m.
Proof.
  intros. unfold delete, map_delete. rewrite <-partial_alter_compose.
  unfold compose. by apply partial_alter_self_alt.
Qed.
Lemma delete_insert {A} (m : M A) i x :
  m !! i = None  delete i (<[i:=x]>m) = m.
Proof. apply delete_partial_alter. Qed.
Lemma insert_delete {A} (m : M A) i x :
  m !! i = Some x  <[i:=x]>(delete i m) = m.
Proof.
  intros Hmi. unfold delete, map_delete, insert, map_insert.
  rewrite <-partial_alter_compose. unfold compose. rewrite <-Hmi.
  by apply partial_alter_self_alt.
Qed.
380
Lemma delete_subseteq {A} (m : M A) i : delete i m  m.
381
382
383
Proof.
  rewrite !map_subseteq_spec. intros j x. rewrite lookup_delete_Some. tauto.
Qed.
384
Lemma delete_subseteq_compat {A} (m1 m2 : M A) i :
385
  m1  m2  delete i m1  delete i m2.
386
387
388
389
Proof.
  rewrite !map_subseteq_spec. intros ? j x.
  rewrite !lookup_delete_Some. intuition eauto.
Qed.
390
Lemma delete_subset_alt {A} (m : M A) i x : m !! i = Some x  delete i m  m.
391
Proof.
392
393
394
  split; [apply delete_subseteq|].
  rewrite !map_subseteq_spec. intros Hi. apply (None_ne_Some x).
  by rewrite <-(lookup_delete m i), (Hi i x).
395
Qed.
396
Lemma delete_subset {A} (m : M A) i : is_Some (m !! i)  delete i m  m.
397
398
399
400
401
Proof. inversion 1. eauto using delete_subset_alt. Qed.

(** ** Properties of the [insert] operation *)
Lemma lookup_insert {A} (m : M A) i x : <[i:=x]>m !! i = Some x.
Proof. unfold insert. apply lookup_partial_alter. Qed.
402
Lemma lookup_insert_rev {A}  (m : M A) i x y : <[i:=x]>m !! i = Some y  x = y.
403
Proof. rewrite lookup_insert. congruence. Qed.
404
Lemma lookup_insert_ne {A} (m : M A) i j x : i  j  <[i:=x]>m !! j = m !! j.
405
406
407
408
409
410
411
412
Proof. unfold insert. apply lookup_partial_alter_ne. Qed.
Lemma insert_commute {A} (m : M A) i j x y :
  i  j  <[i:=x]>(<[j:=y]>m) = <[j:=y]>(<[i:=x]>m).
Proof. apply partial_alter_commute. Qed.
Lemma lookup_insert_Some {A} (m : M A) i j x y :
  <[i:=x]>m !! j = Some y  (i = j  x = y)  (i  j  m !! j = Some y).
Proof.
  split.
413
  * destruct (decide (i = j)) as [->|?];
414
      rewrite ?lookup_insert, ?lookup_insert_ne; intuition congruence.
415
  * intros [[-> ->]|[??]]; [apply lookup_insert|]. by rewrite lookup_insert_ne.
416
Qed.
417
418
419
Lemma lookup_insert_is_Some {A} (m : M A) i j x :
  is_Some (<[i:=x]>m !! j)  i = j  i  j  is_Some (m !! j).
Proof. unfold is_Some; setoid_rewrite lookup_insert_Some; naive_solver. Qed.
420
421
422
Lemma lookup_insert_None {A} (m : M A) i j x :
  <[i:=x]>m !! j = None  m !! j = None  i  j.
Proof.
423
424
425
  split; [|by intros [??]; rewrite lookup_insert_ne].
  destruct (decide (i = j)) as [->|];
    rewrite ?lookup_insert, ?lookup_insert_ne; intuition congruence.
426
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
427
Lemma insert_id {A} (m : M A) i x : m !! i = Some x  <[i:=x]>m = m.
428
429
430
431
432
433
434
435
Proof.
  intros; apply map_eq; intros j; destruct (decide (i = j)) as [->|];
    by rewrite ?lookup_insert, ?lookup_insert_ne by done.
Qed.
Lemma insert_included {A} R `{!Reflexive R} (m : M A) i x :
  ( y, m !! i = Some y  R y x)  map_included R m (<[i:=x]>m).
Proof.
  intros ? j; destruct (decide (i = j)) as [->|].
Robbert Krebbers's avatar
Robbert Krebbers committed
436
437
  * rewrite lookup_insert. destruct (m !! j); simpl; eauto.
  * rewrite lookup_insert_ne by done. by destruct (m !! j); simpl.
438
Qed.
439
Lemma insert_subseteq {A} (m : M A) i x : m !! i = None  m  <[i:=x]>m.
440
Proof. apply partial_alter_subseteq. Qed.
441
Lemma insert_subset {A} (m : M A) i x : m !! i = None  m  <[i:=x]>m.
442
443
Proof. intro. apply partial_alter_subset; eauto. Qed.
Lemma insert_subseteq_r {A} (m1 m2 : M A) i x :
444
  m1 !! i = None  m1  m2  m1  <[i:=x]>m2.
445
Proof.
446
447
448
  rewrite !map_subseteq_spec. intros ?? j ?.
  destruct (decide (j = i)) as [->|?]; [congruence|].
  rewrite lookup_insert_ne; auto.
449
450
Qed.
Lemma insert_delete_subseteq {A} (m1 m2 : M A) i x :
451
  m1 !! i = None  <[i:=x]> m1  m2  m1  delete i m2.
452
Proof.
453
454
455
456
  rewrite !map_subseteq_spec. intros Hi Hix j y Hj.
  destruct (decide (i = j)) as [->|]; [congruence|].
  rewrite lookup_delete_ne by done.
  apply Hix; by rewrite lookup_insert_ne by done.
457
458
Qed.
Lemma delete_insert_subseteq {A} (m1 m2 : M A) i x :
459
  m1 !! i = Some x  delete i m1  m2  m1  <[i:=x]> m2.
460
Proof.
461
462
  rewrite !map_subseteq_spec.
  intros Hix Hi j y Hj. destruct (decide (i = j)) as [->|?].
463
  * rewrite lookup_insert. congruence.
464
  * rewrite lookup_insert_ne by done. apply Hi. by rewrite lookup_delete_ne.
465
466
Qed.
Lemma insert_delete_subset {A} (m1 m2 : M A) i x :
467
  m1 !! i = None  <[i:=x]> m1  m2  m1  delete i m2.
468
Proof.
469
470
471
  intros ? [Hm12 Hm21]; split; [eauto using insert_delete_subseteq|].
  contradict Hm21. apply delete_insert_subseteq; auto.
  eapply lookup_weaken, Hm12. by rewrite lookup_insert.
472
473
Qed.
Lemma insert_subset_inv {A} (m1 m2 : M A) i x :
474
  m1 !! i = None  <[i:=x]> m1  m2 
475
476
477
   m2', m2 = <[i:=x]>m2'  m1  m2'  m2' !! i = None.
Proof.
  intros Hi Hm1m2. exists (delete i m2). split_ands.
478
  * rewrite insert_delete. done. eapply lookup_weaken, strict_include; eauto.
479
480
481
482
    by rewrite lookup_insert.
  * eauto using insert_delete_subset.
  * by rewrite lookup_delete.
Qed.
483
484
485
486
487
488
489
Lemma fmap_insert {A B} (f : A  B) (m : M A) i x :
  f <$> <[i:=x]>m = <[i:=f x]>(f <$> m).
Proof.
  apply map_eq; intros i'; destruct (decide (i' = i)) as [->|].
  * by rewrite lookup_fmap, !lookup_insert.
  * by rewrite lookup_fmap, !lookup_insert_ne, lookup_fmap by done.
Qed.
490
Lemma insert_empty {A} i (x : A) : <[i:=x]> = {[i  x]}.
491
Proof. done. Qed.
492
493
494

(** ** Properties of the singleton maps *)
Lemma lookup_singleton_Some {A} i j (x y : A) :
495
  {[i  x]} !! j = Some y  i = j  x = y.
496
Proof.
497
  rewrite <-insert_empty,lookup_insert_Some, lookup_empty; intuition congruence.
498
Qed.
499
500
501
Lemma lookup_singleton_None {A} i j (x : A) : {[i  x]} !! j = None  i  j.
Proof. rewrite <-insert_empty,lookup_insert_None, lookup_empty; tauto. Qed.
Lemma lookup_singleton {A} i (x : A) : {[i  x]} !! i = Some x.
502
Proof. by rewrite lookup_singleton_Some. Qed.
503
Lemma lookup_singleton_ne {A} i j (x : A) : i  j  {[i  x]} !! j = None.
504
Proof. by rewrite lookup_singleton_None. Qed.
505
Lemma map_non_empty_singleton {A} i (x : A) : {[i  x]}  .
506
507
508
509
Proof.
  intros Hix. apply (f_equal (!! i)) in Hix.
  by rewrite lookup_empty, lookup_singleton in Hix.
Qed.
510
Lemma insert_singleton {A} i (x y : A) : <[i:=y]>{[i  x]} = {[i  y]}.
511
Proof.
512
  unfold singletonM, map_singleton, insert, map_insert.
513
514
  by rewrite <-partial_alter_compose.
Qed.
515
Lemma alter_singleton {A} (f : A  A) i x : alter f i {[i  x]} = {[i  f x]}.
516
Proof.
517
  intros. apply map_eq. intros i'. destruct (decide (i = i')) as [->|?].
518
519
520
521
  * by rewrite lookup_alter, !lookup_singleton.
  * by rewrite lookup_alter_ne, !lookup_singleton_ne.
Qed.
Lemma alter_singleton_ne {A} (f : A  A) i j x :
522
  i  j  alter f i {[j  x]} = {[j  x]}.
523
Proof.
524
525
  intros. apply map_eq; intros i'. by destruct (decide (i = i')) as [->|?];
    rewrite ?lookup_alter, ?lookup_singleton_ne, ?lookup_alter_ne by done.
526
Qed.
527
528
529
530
Lemma map_fmap_singleton {A B} (f : A  B) i x : f <$> {[i  x]} = {[i  f x]}.
Proof.
  by unfold singletonM, map_singleton; rewrite fmap_insert, map_fmap_empty.
Qed.
531

532
533
534
535
536
(** ** Properties of the map operations *)
Lemma fmap_empty {A B} (f : A  B) : f <$>  = .
Proof. apply map_empty; intros i. by rewrite lookup_fmap, lookup_empty. Qed.
Lemma omap_empty {A B} (f : A  option B) : omap f  = .
Proof. apply map_empty; intros i. by rewrite lookup_omap, lookup_empty. Qed.
537
Lemma omap_singleton {A B} (f : A  option B) i x y :
538
  f x = Some y  omap f {[ i  x ]} = {[ i  y ]}.
539
540
541
542
543
Proof.
  intros; apply map_eq; intros j; destruct (decide (i = j)) as [->|].
  * by rewrite lookup_omap, !lookup_singleton.
  * by rewrite lookup_omap, !lookup_singleton_ne.
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
544
545
546
547
548
Lemma map_fmap_id {A} (m : M A) : id <$> m = m.
Proof. apply map_eq; intros i; by rewrite lookup_fmap, option_fmap_id. Qed.
Lemma map_fmap_compose {A B C} (f : A  B) (g : B  C) (m : M A) :
  g  f <$> m = g <$> f <$> m.
Proof. apply map_eq; intros i; by rewrite !lookup_fmap,option_fmap_compose. Qed.
549
550
551
552
553
554
Lemma map_fmap_setoid_ext `{Equiv A, Equiv B} (f1 f2 : A  B) m :
  ( i x, m !! i = Some x  f1 x  f2 x)  f1 <$> m  f2 <$> m.
Proof.
  intros Hi i; rewrite !lookup_fmap.
  destruct (m !! i) eqn:?; constructor; eauto.
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
555
556
557
558
559
560
Lemma map_fmap_ext {A B} (f1 f2 : A  B) m :
  ( i x, m !! i = Some x  f1 x = f2 x)  f1 <$> m = f2 <$> m.
Proof.
  intros Hi; apply map_eq; intros i; rewrite !lookup_fmap.
  by destruct (m !! i) eqn:?; simpl; erewrite ?Hi by eauto.
Qed.
561

562
563
(** ** Properties of conversion to lists *)
Lemma map_to_list_unique {A} (m : M A) i x y :
564
  (i,x)  map_to_list m  (i,y)  map_to_list m  x = y.
565
Proof. rewrite !elem_of_map_to_list. congruence. Qed.
566
Lemma NoDup_fst_map_to_list {A} (m : M A) : NoDup ((map_to_list m).*1).
567
Proof. eauto using NoDup_fmap_fst, map_to_list_unique, NoDup_map_to_list. Qed.
568
569
570
571
572
573
574
575
576
577
Lemma elem_of_map_of_list_1_help {A} (l : list (K * A)) i x :
  (i,x)  l  ( y, (i,y)  l  y = x)  map_of_list l !! i = Some x.
Proof.
  induction l as [|[j y] l IH]; csimpl; [by rewrite elem_of_nil|].
  setoid_rewrite elem_of_cons.
  intros [?|?] Hdup; simplify_equality; [by rewrite lookup_insert|].
  destruct (decide (i = j)) as [->|].
  * rewrite lookup_insert; f_equal; eauto.
  * rewrite lookup_insert_ne by done; eauto.
Qed.
578
Lemma elem_of_map_of_list_1 {A} (l : list (K * A)) i x :
579
  NoDup (l.*1)  (i,x)  l  map_of_list l !! i = Some x.
580
Proof.
581
582
  intros ? Hx; apply elem_of_map_of_list_1_help; eauto using NoDup_fmap_fst.
  intros y; revert Hx. rewrite !elem_of_list_lookup; intros [i' Hi'] [j' Hj'].
583
  cut (i' = j'); [naive_solver|]. apply NoDup_lookup with (l.*1) i;
584
    by rewrite ?list_lookup_fmap, ?Hi', ?Hj'.
585
586
Qed.
Lemma elem_of_map_of_list_2 {A} (l : list (K * A)) i x :
587
  map_of_list l !! i = Some x  (i,x)  l.
588
Proof.
589
590
591
  induction l as [|[j y] l IH]; simpl; [by rewrite lookup_empty|].
  rewrite elem_of_cons. destruct (decide (i = j)) as [->|];
    rewrite ?lookup_insert, ?lookup_insert_ne; intuition congruence.
592
593
Qed.
Lemma elem_of_map_of_list {A} (l : list (K * A)) i x :
594
  NoDup (l.*1)  (i,x)  l  map_of_list l !! i = Some x.
595
Proof. split; auto using elem_of_map_of_list_1, elem_of_map_of_list_2. Qed.
596
Lemma not_elem_of_map_of_list_1 {A} (l : list (K * A)) i :
597
  i  l.*1  map_of_list l !! i = None.
598
Proof.
599
600
  rewrite elem_of_list_fmap, eq_None_not_Some. intros Hi [x ?]; destruct Hi.
  exists (i,x); simpl; auto using elem_of_map_of_list_2.
601
602
Qed.
Lemma not_elem_of_map_of_list_2 {A} (l : list (K * A)) i :
603
  map_of_list l !! i = None  i  l.*1.
604
Proof.
605
  induction l as [|[j y] l IH]; csimpl; [rewrite elem_of_nil; tauto|].
606
607
608
609
610
  rewrite elem_of_cons. destruct (decide (i = j)); simplify_equality.
  * by rewrite lookup_insert.
  * by rewrite lookup_insert_ne; intuition.
Qed.
Lemma not_elem_of_map_of_list {A} (l : list (K * A)) i :
611
  i  l.*1  map_of_list l !! i = None.
612
Proof. red; auto using not_elem_of_map_of_list_1,not_elem_of_map_of_list_2. Qed.
613
Lemma map_of_list_proper {A} (l1 l2 : list (K * A)) :
614
  NoDup (l1.*1)  l1  l2  map_of_list l1 = map_of_list l2.
615
616
617
618
619
Proof.
  intros ? Hperm. apply map_eq. intros i. apply option_eq. intros x.
  by rewrite <-!elem_of_map_of_list; rewrite <-?Hperm.
Qed.
Lemma map_of_list_inj {A} (l1 l2 : list (K * A)) :
620
  NoDup (l1.*1)  NoDup (l2.*1)  map_of_list l1 = map_of_list l2  l1  l2.
621
Proof.
622
  intros ?? Hl1l2. apply NoDup_Permutation; auto using (NoDup_fmap_1 fst).
623
624
  intros [i x]. by rewrite !elem_of_map_of_list, Hl1l2.
Qed.
625
Lemma map_of_to_list {A} (m : M A) : map_of_list (map_to_list m) = m.
626
627
628
Proof.
  apply map_eq. intros i. apply option_eq. intros x.
  by rewrite <-elem_of_map_of_list, elem_of_map_to_list
629
    by auto using NoDup_fst_map_to_list.
630
631
Qed.
Lemma map_to_of_list {A} (l : list (K * A)) :
632
  NoDup (l.*1)  map_to_list (map_of_list l)  l.
633
Proof. auto using map_of_list_inj, NoDup_fst_map_to_list, map_of_to_list. Qed.
634
Lemma map_to_list_inj {A} (m1 m2 : M A) :
635
  map_to_list m1  map_to_list m2  m1 = m2.
636
Proof.
637
  intros. rewrite <-(map_of_to_list m1), <-(map_of_to_list m2).
638
  auto using map_of_list_proper, NoDup_fst_map_to_list.
639
Qed.
640
641
642
643
644
645
Lemma map_to_of_list_flip {A} (m1 : M A) l2 :
  map_to_list m1  l2  m1 = map_of_list l2.
Proof.
  intros. rewrite <-(map_of_to_list m1).
  auto using map_of_list_proper, NoDup_fst_map_to_list.
Qed.
646
Lemma map_to_list_empty {A} : map_to_list  = @nil (K * A).
647
648
649
650
651
Proof.
  apply elem_of_nil_inv. intros [i x].
  rewrite elem_of_map_to_list. apply lookup_empty_Some.
Qed.
Lemma map_to_list_insert {A} (m : M A) i x :
652
  m !! i = None  map_to_list (<[i:=x]>m)  (i,x) :: map_to_list m.
653
Proof.
654
  intros. apply map_of_list_inj; csimpl.
655
656
  * apply NoDup_fst_map_to_list.
  * constructor; auto using NoDup_fst_map_to_list.
657
    rewrite elem_of_list_fmap. intros [[??] [? Hlookup]]; subst; simpl in *.
658
659
660
    rewrite elem_of_map_to_list in Hlookup. congruence.
  * by rewrite !map_of_to_list.
Qed.
661
Lemma map_of_list_nil {A} : map_of_list (@nil (K * A)) = .
662
663
664
665
Proof. done. Qed.
Lemma map_of_list_cons {A} (l : list (K * A)) i x :
  map_of_list ((i, x) :: l) = <[i:=x]>(map_of_list l).
Proof. done. Qed.
666
Lemma map_to_list_empty_inv_alt {A}  (m : M A) : map_to_list m  []  m = .
667
Proof. rewrite <-map_to_list_empty. apply map_to_list_inj. Qed.
668
Lemma map_to_list_empty_inv {A} (m : M A) : map_to_list m = []  m = .
669
670
Proof. intros Hm. apply map_to_list_empty_inv_alt. by rewrite Hm. Qed.
Lemma map_to_list_insert_inv {A} (m : M A) l i x :
671
  map_to_list m  (i,x) :: l  m = <[i:=x]>(map_of_list l).
672
673
Proof.
  intros Hperm. apply map_to_list_inj.
674
675
676
  assert (i  l.*1  NoDup (l.*1)) as [].
  { rewrite <-NoDup_cons. change (NoDup (((i,x)::l).*1)). rewrite <-Hperm.
    auto using NoDup_fst_map_to_list. }
677
678
679
  rewrite Hperm, map_to_list_insert, map_to_of_list;
    auto using not_elem_of_map_of_list_1.
Qed.
680
681
682
683
Lemma map_choose {A} (m : M A) : m     i x, m !! i = Some x.
Proof.
  intros Hemp. destruct (map_to_list m) as [|[i x] l] eqn:Hm.
  { destruct Hemp; eauto using map_to_list_empty_inv. }
684
  exists i, x. rewrite <-elem_of_map_to_list, Hm. by left.
685
Qed.
686

687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
(** Properties of the imap function *)
Lemma lookup_imap {A B} (f : K  A  option B) m i :
  map_imap f m !! i = m !! i = f i.
Proof.
  unfold map_imap; destruct (m !! i = f i) as [y|] eqn:Hi; simpl.
  * destruct (m !! i) as [x|] eqn:?; simplify_equality'.
    apply elem_of_map_of_list_1_help.
    { apply elem_of_list_omap; exists (i,x); split;
        [by apply elem_of_map_to_list|by simplify_option_equality]. }
    intros y'; rewrite elem_of_list_omap; intros ([i' x']&Hi'&?).
    by rewrite elem_of_map_to_list in Hi'; simplify_option_equality.
  * apply not_elem_of_map_of_list; rewrite elem_of_list_fmap.
    intros ([i' x]&->&Hi'); simplify_equality'.
    rewrite elem_of_list_omap in Hi'; destruct Hi' as ([j y]&Hj&?).
    rewrite elem_of_map_to_list in Hj; simplify_option_equality.
Qed.

704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
(** ** Properties of conversion from collections *)
Lemma lookup_map_of_collection {A} `{FinCollection K C}
    (f : K  option A) X i x :
  map_of_collection f X !! i = Some x  i  X  f i = Some x.
Proof.
  assert (NoDup (fst <$> omap (λ i, (i,) <$> f i) (elements X))).
  { induction (NoDup_elements X) as [|i' l]; csimpl; [constructor|].
    destruct (f i') as [x'|]; csimpl; auto; constructor; auto.
    rewrite elem_of_list_fmap. setoid_rewrite elem_of_list_omap.
    by intros (?&?&?&?&?); simplify_option_equality. }
  unfold map_of_collection; rewrite <-elem_of_map_of_list by done.
  rewrite elem_of_list_omap. setoid_rewrite elem_of_elements; split.
  * intros (?&?&?); simplify_option_equality; eauto.
  * intros [??]; exists i; simplify_option_equality; eauto.
Qed.

(** ** Induction principles *)
721
Lemma map_ind {A} (P : M A  Prop) :
722
  P   ( i x m, m !! i = None  P m  P (<[i:=x]>m))   m, P m.
723
Proof.
724
  intros ? Hins. cut ( l, NoDup (l.*1)   m, map_to_list m  l  P m).
725
  { intros help m.
726
    apply (help (map_to_list m)); auto using NoDup_fst_map_to_list. }
727
728
729
  induction l as [|[i x] l IH]; intros Hnodup m Hml.
  { apply map_to_list_empty_inv_alt in Hml. by subst. }
  inversion_clear Hnodup.
730
  apply map_to_list_insert_inv in Hml; subst m. apply Hins.
731
732
733
734
  * by apply not_elem_of_map_of_list_1.
  * apply IH; auto using map_to_of_list.
Qed.
Lemma map_to_list_length {A} (m1 m2 : M A) :
735
  m1  m2  length (map_to_list m1) < length (map_to_list m2).
736
737
738
739
Proof.
  revert m2. induction m1 as [|i x m ? IH] using map_ind.
  { intros m2 Hm2. rewrite map_to_list_empty. simpl.
    apply neq_0_lt. intros Hlen. symmetry in Hlen.
740
    apply nil_length_inv, map_to_list_empty_inv in Hlen.
741
742
743
744
745
    rewrite Hlen in Hm2. destruct (irreflexivity ()  Hm2). }
  intros m2 Hm2.
  destruct (insert_subset_inv m m2 i x) as (m2'&?&?&?); auto; subst.
  rewrite !map_to_list_insert; simpl; auto with arith.
Qed.
746
Lemma map_wf {A} : wf (strict (@subseteq (M A) _)).
747
748
749
750
751
752
Proof.
  apply (wf_projected (<) (length  map_to_list)).
  * by apply map_to_list_length.
  * by apply lt_wf.
Qed.

753
(** ** Properties of the [map_Forall] predicate *)
754
Section map_Forall.
755
756
Context {A} (P : K  A  Prop).

757
Lemma map_Forall_to_list m : map_Forall P m