decidable.v 8.81 KB
Newer Older
Robbert Krebbers's avatar
Robbert Krebbers committed
1
(* Copyright (c) 2012-2015, Robbert Krebbers. *)
2 3 4 5
(* This file is distributed under the terms of the BSD license. *)
(** This file collects theorems, definitions, tactics, related to propositions
with a decidable equality. Such propositions are collected by the [Decision]
type class. *)
6
From stdpp Require Export proof_irrel.
7

Robbert Krebbers's avatar
Robbert Krebbers committed
8 9
Hint Extern 200 (Decision _) => progress (lazy beta) : typeclass_instances.

10 11
Lemma dec_stable `{Decision P} : ¬¬P  P.
Proof. firstorder. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
12

13 14
Lemma Is_true_reflect (b : bool) : reflect b b.
Proof. destruct b. by left. right. intros []. Qed.
15
Instance: Inj (=) () Is_true.
16
Proof. intros [] []; simpl; intuition. Qed.
17

18 19 20 21 22 23 24 25 26
(** We introduce [decide_rel] to avoid inefficienct computation due to eager
evaluation of propositions by [vm_compute]. This inefficiency occurs if
[(x = y) := (f x = f y)] as [decide (x = y)] evaluates to [decide (f x = f y)]
which then might lead to evaluation of [f x] and [f y]. Using [decide_rel]
we hide [f] under a lambda abstraction to avoid this unnecessary evaluation. *)
Definition decide_rel {A B} (R : A  B  Prop) {dec :  x y, Decision (R x y)}
  (x : A) (y : B) : Decision (R x y) := dec x y.
Lemma decide_rel_correct {A B} (R : A  B  Prop) `{ x y, Decision (R x y)}
  (x : A) (y : B) : decide_rel R x y = decide (R x y).
27
Proof. done. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
28

Robbert Krebbers's avatar
Robbert Krebbers committed
29
Lemma decide_True {A} `{Decision P} (x y : A) :
30 31
  P  (if decide P then x else y) = x.
Proof. by destruct (decide P). Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
32
Lemma decide_False {A} `{Decision P} (x y : A) :
33 34
  ¬P  (if decide P then x else y) = y.
Proof. by destruct (decide P). Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
35 36 37
Lemma decide_iff {A} P Q `{Decision P, Decision Q} (x y : A) :
  (P  Q)  (if decide P then x else y) = (if decide Q then x else y).
Proof. intros [??]. destruct (decide P), (decide Q); intuition. Qed.
38

39 40
(** The tactic [destruct_decide] destructs a sumbool [dec]. If one of the
components is double negated, it will try to remove the double negation. *)
41
Tactic Notation "destruct_decide" constr(dec) "as" ident(H) :=
42 43 44 45
  destruct dec as [H|H];
  try match type of H with
  | ¬¬_ => apply dec_stable in H
  end.
46 47
Tactic Notation "destruct_decide" constr(dec) :=
  let H := fresh in destruct_decide dec as H.
48

49
(** The tactic [case_decide] performs case analysis on an arbitrary occurrence
50
of [decide] or [decide_rel] in the conclusion or hypotheses. *)
51
Tactic Notation "case_decide" "as" ident(Hd) :=
Robbert Krebbers's avatar
Robbert Krebbers committed
52
  match goal with
53
  | H : context [@decide ?P ?dec] |- _ =>
54
    destruct_decide (@decide P dec) as Hd
55
  | H : context [@decide_rel _ _ ?R ?x ?y ?dec] |- _ =>
56
    destruct_decide (@decide_rel _ _ R x y dec) as Hd
57
  | |- context [@decide ?P ?dec] =>
58
    destruct_decide (@decide P dec) as Hd
59
  | |- context [@decide_rel _ _ ?R ?x ?y ?dec] =>
60
    destruct_decide (@decide_rel _ _ R x y dec) as Hd
Robbert Krebbers's avatar
Robbert Krebbers committed
61
  end.
62 63
Tactic Notation "case_decide" :=
  let H := fresh in case_decide as H.
Robbert Krebbers's avatar
Robbert Krebbers committed
64

65 66
(** The tactic [solve_decision] uses Coq's [decide equality] tactic together
with instance resolution to automatically generate decision procedures. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
67 68
Ltac solve_trivial_decision :=
  match goal with
69 70
  | |- Decision (?P) => apply _
  | |- sumbool ?P (¬?P) => change (Decision P); apply _
Robbert Krebbers's avatar
Robbert Krebbers committed
71
  end.
72 73 74
Ltac solve_decision := intros; first
  [ solve_trivial_decision
  | unfold Decision; decide equality; solve_trivial_decision ].
Robbert Krebbers's avatar
Robbert Krebbers committed
75

76 77
(** The following combinators are useful to create Decision proofs in
combination with the [refine] tactic. *)
78
Notation swap_if S := (match S with left H => right H | right H => left H end).
79 80 81 82 83
Notation cast_if S := (if S then left _ else right _).
Notation cast_if_and S1 S2 := (if S1 then cast_if S2 else right _).
Notation cast_if_and3 S1 S2 S3 := (if S1 then cast_if_and S2 S3 else right _).
Notation cast_if_and4 S1 S2 S3 S4 :=
  (if S1 then cast_if_and3 S2 S3 S4 else right _).
84 85
Notation cast_if_and5 S1 S2 S3 S4 S5 :=
  (if S1 then cast_if_and4 S2 S3 S4 S5 else right _).
86 87
Notation cast_if_and6 S1 S2 S3 S4 S5 S6 :=
  (if S1 then cast_if_and5 S2 S3 S4 S5 S6 else right _).
88
Notation cast_if_or S1 S2 := (if S1 then left _ else cast_if S2).
89
Notation cast_if_or3 S1 S2 S3 := (if S1 then left _ else cast_if_or S2 S3).
90 91 92
Notation cast_if_not_or S1 S2 := (if S1 then cast_if S2 else left _).
Notation cast_if_not S := (if S then right _ else left _).

93 94 95
(** We can convert decidable propositions to booleans. *)
Definition bool_decide (P : Prop) {dec : Decision P} : bool :=
  if dec then true else false.
Robbert Krebbers's avatar
Robbert Krebbers committed
96

97 98 99
Lemma bool_decide_reflect P `{dec : Decision P} : reflect P (bool_decide P).
Proof. unfold bool_decide. destruct dec. by left. by right. Qed.

100
Tactic Notation "case_bool_decide" "as" ident (Hd) :=
101 102
  match goal with
  | H : context [@bool_decide ?P ?dec] |- _ =>
103
    destruct_decide (@bool_decide_reflect P dec) as Hd
104
  | |- context [@bool_decide ?P ?dec] =>
105
    destruct_decide (@bool_decide_reflect P dec) as Hd
106
  end.
107 108
Tactic Notation "case_bool_decide" :=
  let H := fresh in case_bool_decide as H.
109

110
Lemma bool_decide_spec (P : Prop) {dec : Decision P} : bool_decide P  P.
111
Proof. unfold bool_decide. by destruct dec. Qed.
112 113
Lemma bool_decide_unpack (P : Prop) {dec : Decision P} : bool_decide P  P.
Proof. by rewrite bool_decide_spec. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
114
Lemma bool_decide_pack (P : Prop) {dec : Decision P} : P  bool_decide P.
115
Proof. by rewrite bool_decide_spec. Qed.
116 117 118 119 120 121 122
Lemma bool_decide_true (P : Prop) `{Decision P} : P  bool_decide P = true.
Proof. by case_bool_decide. Qed.
Lemma bool_decide_false (P : Prop) `{Decision P} : ¬P  bool_decide P = false.
Proof. by case_bool_decide. Qed.
Lemma bool_decide_iff (P Q : Prop) `{Decision P, Decision Q} :
  (P  Q)  bool_decide P = bool_decide Q.
Proof. repeat case_bool_decide; tauto. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
123

124 125 126 127
(** * Decidable Sigma types *)
(** Leibniz equality on Sigma types requires the equipped proofs to be
equal as Coq does not support proof irrelevance. For decidable we
propositions we define the type [dsig P] whose Leibniz equality is proof
Robbert Krebbers's avatar
Robbert Krebbers committed
128
irrelevant. That is [∀ x y : dsig P, x = y ↔ `x = `y]. *)
129 130
Definition dsig `(P : A  Prop) `{ x : A, Decision (P x)} :=
  { x | bool_decide (P x) }.
131

132 133 134 135
Definition proj2_dsig `{ x : A, Decision (P x)} (x : dsig P) : P (`x) :=
  bool_decide_unpack _ (proj2_sig x).
Definition dexist `{ x : A, Decision (P x)} (x : A) (p : P x) : dsig P :=
  xbool_decide_pack _ p.
136
Lemma dsig_eq `(P : A  Prop) `{ x, Decision (P x)}
137
  (x y : dsig P) : x = y  `x = `y.
138
Proof. apply (sig_eq_pi _). Qed.
139 140 141
Lemma dexists_proj1 `(P : A  Prop) `{ x, Decision (P x)} (x : dsig P) p :
  dexist (`x) p = x.
Proof. by apply dsig_eq. Qed.
142 143 144

(** * Instances of Decision *)
(** Instances of [Decision] for operators of propositional logic. *)
145 146
Instance True_dec: Decision True := left I.
Instance False_dec: Decision False := right (False_rect False).
147 148
Instance Is_true_dec b : Decision (Is_true b).
Proof. destruct b; apply _. Defined.
149 150 151 152

Section prop_dec.
  Context `(P_dec : Decision P) `(Q_dec : Decision Q).

153 154
  Global Instance not_dec: Decision (¬P).
  Proof. refine (cast_if_not P_dec); intuition. Defined.
155
  Global Instance and_dec: Decision (P  Q).
156
  Proof. refine (cast_if_and P_dec Q_dec); intuition. Defined.
157
  Global Instance or_dec: Decision (P  Q).
158
  Proof. refine (cast_if_or P_dec Q_dec); intuition. Defined.
159
  Global Instance impl_dec: Decision (P  Q).
160
  Proof. refine (if P_dec then cast_if Q_dec else left _); intuition. Defined.
161
End prop_dec.
162 163
Instance iff_dec `(P_dec : Decision P) `(Q_dec : Decision Q) :
  Decision (P  Q) := and_dec _ _.
164 165

(** Instances of [Decision] for common data types. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
166 167
Instance bool_eq_dec (x y : bool) : Decision (x = y).
Proof. solve_decision. Defined.
168
Instance unit_eq_dec (x y : unit) : Decision (x = y).
169
Proof. solve_decision. Defined.
170
Instance prod_eq_dec `(A_dec :  x y : A, Decision (x = y))
Robbert Krebbers's avatar
Robbert Krebbers committed
171
  `(B_dec :  x y : B, Decision (x = y)) (x y : A * B) : Decision (x = y).
172
Proof. solve_decision. Defined.
173
Instance sum_eq_dec `(A_dec :  x y : A, Decision (x = y))
Robbert Krebbers's avatar
Robbert Krebbers committed
174
  `(B_dec :  x y : B, Decision (x = y)) (x y : A + B) : Decision (x = y).
175
Proof. solve_decision. Defined.
Robbert Krebbers's avatar
Robbert Krebbers committed
176 177 178 179 180 181 182 183

Instance curry_dec `(P_dec :  (x : A) (y : B), Decision (P x y)) p :
    Decision (curry P p) :=
  match p as p return Decision (curry P p) with
  | (x,y) => P_dec x y
  end.
Instance uncurry_dec `(P_dec :  (p : A * B), Decision (P p)) x y :
  Decision (uncurry P x y) := P_dec (x,y).
184 185 186 187

Instance sig_eq_dec `(P : A  Prop) `{ x, ProofIrrel (P x)}
  `{ x y : A, Decision (x = y)} (x y : sig P) : Decision (x = y).
Proof. refine (cast_if (decide (`x = `y))); by rewrite sig_eq_pi. Defined.
188 189

(** Some laws for decidable propositions *)
190 191 192 193 194
Lemma not_and_l {P Q : Prop} `{Decision P} : ¬(P  Q)  ¬P  ¬Q.
Proof. destruct (decide P); tauto. Qed.
Lemma not_and_r {P Q : Prop} `{Decision Q} : ¬(P  Q)  ¬P  ¬Q.
Proof. destruct (decide Q); tauto. Qed.
Lemma not_and_l_alt {P Q : Prop} `{Decision P} : ¬(P  Q)  ¬P  (¬Q  P).
195
Proof. destruct (decide P); tauto. Qed.
196
Lemma not_and_r_alt {P Q : Prop} `{Decision Q} : ¬(P  Q)  (¬P  Q)  ¬Q.
197
Proof. destruct (decide Q); tauto. Qed.