fin_maps.v 73.6 KB
Newer Older
1
(* Copyright (c) 2012-2017, Robbert Krebbers. *)
2
3
4
(* This file is distributed under the terms of the BSD license. *)
(** Finite maps associate data to keys. This file defines an interface for
finite maps and collects some theory on it. Most importantly, it proves useful
5
induction principles for finite maps and implements the tactic
6
[simplify_map_eq] to simplify goals involving finite maps. *)
7
From Coq Require Import Permutation.
8
From stdpp Require Export relations orders vector.
9
10
(* FIXME: This file needs a 'Proof Using' hint, but the default we use
   everywhere makes for lots of extra ssumptions. *)
11

12
13
(** * Axiomatization of finite maps *)
(** We require Leibniz equality to be extensional on finite maps. This of
14
15
16
17
18
course limits the space of finite map implementations, but since we are mainly
interested in finite maps with numbers as indexes, we do not consider this to
be a serious limitation. The main application of finite maps is to implement
the memory, where extensionality of Leibniz equality is very important for a
convenient use in the assertions of our axiomatic semantics. *)
19

Robbert Krebbers's avatar
Robbert Krebbers committed
20
21
(** Finiteness is axiomatized by requiring that each map can be translated
to an association list. The translation to association lists is used to
22
prove well founded recursion on finite maps. *)
23

24
25
26
(** Finite map implementations are required to implement the [merge] function
which enables us to give a generic implementation of [union_with],
[intersection_with], and [difference_with]. *)
27

28
Class FinMapToList K A M := map_to_list: M  list (K * A).
Robbert Krebbers's avatar
Robbert Krebbers committed
29

30
31
Class FinMap K M `{FMap M,  A, Lookup K A (M A),  A, Empty (M A),  A,
    PartialAlter K A (M A), OMap M, Merge M,  A, FinMapToList K A (M A),
32
    EqDecision K} := {
33
34
  map_eq {A} (m1 m2 : M A) : ( i, m1 !! i = m2 !! i)  m1 = m2;
  lookup_empty {A} i : ( : M A) !! i = None;
35
36
37
38
  lookup_partial_alter {A} f (m : M A) i :
    partial_alter f i m !! i = f (m !! i);
  lookup_partial_alter_ne {A} f (m : M A) i j :
    i  j  partial_alter f i m !! j = m !! j;
39
  lookup_fmap {A B} (f : A  B) (m : M A) i : (f <$> m) !! i = f <$> m !! i;
40
  NoDup_map_to_list {A} (m : M A) : NoDup (map_to_list m);
41
42
  elem_of_map_to_list {A} (m : M A) i x :
    (i,x)  map_to_list m  m !! i = Some x;
43
  lookup_omap {A B} (f : A  option B) m i : omap f m !! i = m !! i = f;
44
  lookup_merge {A B C} (f: option A  option B  option C) `{!DiagNone f} m1 m2 i :
45
    merge f m1 m2 !! i = f (m1 !! i) (m2 !! i)
Robbert Krebbers's avatar
Robbert Krebbers committed
46
47
}.

48
49
50
(** * Derived operations *)
(** All of the following functions are defined in a generic way for arbitrary
finite map implementations. These generic implementations do not cause a
51
52
significant performance loss to make including them in the finite map interface
worthwhile. *)
53
54
55
56
57
58
59
60
61
62
Instance map_insert `{PartialAlter K A M} : Insert K A M :=
  λ i x, partial_alter (λ _, Some x) i.
Instance map_alter `{PartialAlter K A M} : Alter K A M :=
  λ f, partial_alter (fmap f).
Instance map_delete `{PartialAlter K A M} : Delete K M :=
  partial_alter (λ _, None).
Instance map_singleton `{PartialAlter K A M, Empty M} :
  SingletonM K A M := λ i x, <[i:=x]> .

Definition map_of_list `{Insert K A M, Empty M} : list (K * A)  M :=
63
  fold_right (λ p, <[p.1:=p.2]>) .
64
65
Definition map_of_collection `{Elements K C, Insert K A M, Empty M}
    (f : K  option A) (X : C) : M :=
66
  map_of_list (omap (λ i, (i,) <$> f i) (elements X)).
Robbert Krebbers's avatar
Robbert Krebbers committed
67

68
69
70
71
72
73
Instance map_union_with `{Merge M} {A} : UnionWith A (M A) :=
  λ f, merge (union_with f).
Instance map_intersection_with `{Merge M} {A} : IntersectionWith A (M A) :=
  λ f, merge (intersection_with f).
Instance map_difference_with `{Merge M} {A} : DifferenceWith A (M A) :=
  λ f, merge (difference_with f).
Robbert Krebbers's avatar
Robbert Krebbers committed
74

75
Instance map_equiv `{ A, Lookup K A (M A), Equiv A} : Equiv (M A) | 18 :=
76
  λ m1 m2,  i, m1 !! i  m2 !! i.
Robbert Krebbers's avatar
Robbert Krebbers committed
77

78
79
(** The relation [intersection_forall R] on finite maps describes that the
relation [R] holds for each pair in the intersection. *)
80
Definition map_Forall `{Lookup K A M} (P : K  A  Prop) : M  Prop :=
Robbert Krebbers's avatar
Robbert Krebbers committed
81
  λ m,  i x, m !! i = Some x  P i x.
82
Definition map_relation `{ A, Lookup K A (M A)} {A B} (R : A  B  Prop)
Robbert Krebbers's avatar
Robbert Krebbers committed
83
84
    (P : A  Prop) (Q : B  Prop) (m1 : M A) (m2 : M B) : Prop :=  i,
  option_relation R P Q (m1 !! i) (m2 !! i).
85
Definition map_included `{ A, Lookup K A (M A)} {A}
Robbert Krebbers's avatar
Robbert Krebbers committed
86
  (R : relation A) : relation (M A) := map_relation R (λ _, False) (λ _, True).
87
Definition map_disjoint `{ A, Lookup K A (M A)} {A} : relation (M A) :=
Robbert Krebbers's avatar
Robbert Krebbers committed
88
89
90
91
92
  map_relation (λ _ _, False) (λ _, True) (λ _, True).
Infix "⊥ₘ" := map_disjoint (at level 70) : C_scope.
Hint Extern 0 (_  _) => symmetry; eassumption.
Notation "( m ⊥ₘ.)" := (map_disjoint m) (only parsing) : C_scope.
Notation "(.⊥ₘ m )" := (λ m2, m2  m) (only parsing) : C_scope.
93
Instance map_subseteq `{ A, Lookup K A (M A)} {A} : SubsetEq (M A) :=
Robbert Krebbers's avatar
Robbert Krebbers committed
94
  map_included (=).
Robbert Krebbers's avatar
Robbert Krebbers committed
95
96
97
98
99

(** The union of two finite maps only has a meaningful definition for maps
that are disjoint. However, as working with partial functions is inconvenient
in Coq, we define the union as a total function. In case both finite maps
have a value at the same index, we take the value of the first map. *)
100
Instance map_union `{Merge M} {A} : Union (M A) := union_with (λ x _, Some x).
101
102
103
Instance map_intersection `{Merge M} {A} : Intersection (M A) :=
  intersection_with (λ x _, Some x).

104
105
(** The difference operation removes all values from the first map whose
index contains a value in the second map as well. *)
106
Instance map_difference `{Merge M} {A} : Difference (M A) :=
107
  difference_with (λ _ _, None).
Robbert Krebbers's avatar
Robbert Krebbers committed
108

109
110
(** A stronger variant of map that allows the mapped function to use the index
of the elements. Implemented by conversion to lists, so not very efficient. *)
111
112
Definition map_imap `{ A, Insert K A (M A),  A, Empty (M A),
     A, FinMapToList K A (M A)} {A B} (f : K  A  option B) (m : M A) : M B :=
113
114
  map_of_list (omap (λ ix, (fst ix,) <$> curry f ix) (map_to_list m)).

115
116
117
118
119
(* Folds a function [f] over a map. The order in which the function is called
is unspecified. *)
Definition map_fold `{FinMapToList K A M} {B}
  (f : K  A  B  B) (b : B) : M  B := foldr (curry f) b  map_to_list.

120
121
122
123
(** * Theorems *)
Section theorems.
Context `{FinMap K M}.

Robbert Krebbers's avatar
Robbert Krebbers committed
124
125
(** ** Setoids *)
Section setoid.
126
  Context `{Equiv A}.
127

128
129
130
131
  Lemma map_equiv_lookup_l (m1 m2 : M A) i x :
    m1  m2  m1 !! i = Some x   y, m2 !! i = Some y  x  y.
  Proof. generalize (equiv_Some_inv_l (m1 !! i) (m2 !! i) x); naive_solver. Qed.

132
133
  Global Instance map_equivalence :
    Equivalence (() : relation A)  Equivalence (() : relation (M A)).
Robbert Krebbers's avatar
Robbert Krebbers committed
134
135
  Proof.
    split.
136
137
    - by intros m i.
    - by intros m1 m2 ? i.
138
    - by intros m1 m2 m3 ?? i; trans (m2 !! i).
Robbert Krebbers's avatar
Robbert Krebbers committed
139
  Qed.
140
141
  Global Instance lookup_proper (i : K) :
    Proper (() ==> ()) (lookup (M:=M A) i).
Robbert Krebbers's avatar
Robbert Krebbers committed
142
143
  Proof. by intros m1 m2 Hm. Qed.
  Global Instance partial_alter_proper :
144
    Proper ((() ==> ()) ==> (=) ==> () ==> ()) (partial_alter (M:=M A)).
Robbert Krebbers's avatar
Robbert Krebbers committed
145
146
147
148
149
150
  Proof.
    by intros f1 f2 Hf i ? <- m1 m2 Hm j; destruct (decide (i = j)) as [->|];
      rewrite ?lookup_partial_alter, ?lookup_partial_alter_ne by done;
      try apply Hf; apply lookup_proper.
  Qed.
  Global Instance insert_proper (i : K) :
151
    Proper (() ==> () ==> ()) (insert (M:=M A) i).
Robbert Krebbers's avatar
Robbert Krebbers committed
152
  Proof. by intros ???; apply partial_alter_proper; [constructor|]. Qed.
153
154
  Global Instance singleton_proper k :
    Proper (() ==> ()) (singletonM k : A  M A).
155
156
157
158
  Proof.
    intros ???; apply insert_proper; [done|].
    intros ?. rewrite lookup_empty; constructor.
  Qed.
159
160
  Global Instance delete_proper (i : K) :
    Proper (() ==> ()) (delete (M:=M A) i).
Robbert Krebbers's avatar
Robbert Krebbers committed
161
162
  Proof. by apply partial_alter_proper; [constructor|]. Qed.
  Global Instance alter_proper :
163
    Proper ((() ==> ()) ==> (=) ==> () ==> ()) (alter (A:=A) (M:=M A)).
Robbert Krebbers's avatar
Robbert Krebbers committed
164
165
166
167
  Proof.
    intros ?? Hf; apply partial_alter_proper.
    by destruct 1; constructor; apply Hf.
  Qed.
168
  Lemma merge_ext f g `{!DiagNone f, !DiagNone g} :
Robbert Krebbers's avatar
Robbert Krebbers committed
169
    (() ==> () ==> ())%signature f g 
170
    (() ==> () ==> ())%signature (merge (M:=M) f) (merge g).
Robbert Krebbers's avatar
Robbert Krebbers committed
171
172
173
174
  Proof.
    by intros Hf ?? Hm1 ?? Hm2 i; rewrite !lookup_merge by done; apply Hf.
  Qed.
  Global Instance union_with_proper :
175
    Proper ((() ==> () ==> ()) ==> () ==> () ==>()) (union_with (M:=M A)).
Robbert Krebbers's avatar
Robbert Krebbers committed
176
177
178
  Proof.
    intros ?? Hf ?? Hm1 ?? Hm2 i; apply (merge_ext _ _); auto.
    by do 2 destruct 1; first [apply Hf | constructor].
179
  Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
180
  Global Instance map_leibniz `{!LeibnizEquiv A} : LeibnizEquiv (M A).
181
  Proof. intros m1 m2 Hm; apply map_eq; intros i. apply leibniz_equiv, Hm. Qed.
182
183
  Lemma map_equiv_empty (m : M A) : m    m = .
  Proof.
184
185
186
    split; [intros Hm; apply map_eq; intros i|intros ->].
    - generalize (Hm i). by rewrite lookup_empty, equiv_None.
    - intros ?. rewrite lookup_empty; constructor.
187
  Qed.
188
189
190
191
192
  Global Instance map_fmap_proper `{Equiv B} (f : A  B) :
    Proper (() ==> ()) f  Proper (() ==> ()) (fmap (M:=M) f).
  Proof.
    intros ? m m' ? k; rewrite !lookup_fmap. by apply option_fmap_proper.
  Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
193
194
195
End setoid.

(** ** General properties *)
196
197
198
199
200
Lemma map_eq_iff {A} (m1 m2 : M A) : m1 = m2   i, m1 !! i = m2 !! i.
Proof. split. by intros ->. apply map_eq. Qed.
Lemma map_subseteq_spec {A} (m1 m2 : M A) :
  m1  m2   i x, m1 !! i = Some x  m2 !! i = Some x.
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
201
  unfold subseteq, map_subseteq, map_relation. split; intros Hm i;
202
203
    specialize (Hm i); destruct (m1 !! i), (m2 !! i); naive_solver.
Qed.
204
205
Global Instance:  {A} (R : relation A), PreOrder R  PreOrder (map_included R).
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
206
  split; [intros m i; by destruct (m !! i); simpl|].
207
  intros m1 m2 m3 Hm12 Hm23 i; specialize (Hm12 i); specialize (Hm23 i).
208
  destruct (m1 !! i), (m2 !! i), (m3 !! i); simplify_eq/=;
209
    done || etrans; eauto.
210
Qed.
211
Global Instance: PartialOrder (() : relation (M A)).
212
Proof.
213
214
215
  split; [apply _|].
  intros m1 m2; rewrite !map_subseteq_spec.
  intros; apply map_eq; intros i; apply option_eq; naive_solver.
216
217
218
Qed.
Lemma lookup_weaken {A} (m1 m2 : M A) i x :
  m1 !! i = Some x  m1  m2  m2 !! i = Some x.
219
Proof. rewrite !map_subseteq_spec. auto. Qed.
220
221
222
223
224
225
Lemma lookup_weaken_is_Some {A} (m1 m2 : M A) i :
  is_Some (m1 !! i)  m1  m2  is_Some (m2 !! i).
Proof. inversion 1. eauto using lookup_weaken. Qed.
Lemma lookup_weaken_None {A} (m1 m2 : M A) i :
  m2 !! i = None  m1  m2  m1 !! i = None.
Proof.
226
227
  rewrite map_subseteq_spec, !eq_None_not_Some.
  intros Hm2 Hm [??]; destruct Hm2; eauto.
228
229
Qed.
Lemma lookup_weaken_inv {A} (m1 m2 : M A) i x y :
230
231
  m1 !! i = Some x  m1  m2  m2 !! i = Some y  x = y.
Proof. intros Hm1 ? Hm2. eapply lookup_weaken in Hm1; eauto. congruence. Qed.
232
233
234
235
236
237
238
239
240
Lemma lookup_ne {A} (m : M A) i j : m !! i  m !! j  i  j.
Proof. congruence. Qed.
Lemma map_empty {A} (m : M A) : ( i, m !! i = None)  m = .
Proof. intros Hm. apply map_eq. intros. by rewrite Hm, lookup_empty. Qed.
Lemma lookup_empty_is_Some {A} i : ¬is_Some (( : M A) !! i).
Proof. rewrite lookup_empty. by inversion 1. Qed.
Lemma lookup_empty_Some {A} i (x : A) : ¬ !! i = Some x.
Proof. by rewrite lookup_empty. Qed.
Lemma map_subset_empty {A} (m : M A) : m  .
241
242
243
Proof.
  intros [_ []]. rewrite map_subseteq_spec. intros ??. by rewrite lookup_empty.
Qed.
244
245
Lemma map_fmap_empty {A B} (f : A  B) : f <$> ( : M A) = .
Proof. by apply map_eq; intros i; rewrite lookup_fmap, !lookup_empty. Qed.
246
247

(** ** Properties of the [partial_alter] operation *)
248
249
250
Lemma partial_alter_ext {A} (f g : option A  option A) (m : M A) i :
  ( x, m !! i = x  f x = g x)  partial_alter f i m = partial_alter g i m.
Proof.
251
252
  intros. apply map_eq; intros j. by destruct (decide (i = j)) as [->|?];
    rewrite ?lookup_partial_alter, ?lookup_partial_alter_ne; auto.
253
254
Qed.
Lemma partial_alter_compose {A} f g (m : M A) i:
255
256
  partial_alter (f  g) i m = partial_alter f i (partial_alter g i m).
Proof.
257
258
  intros. apply map_eq. intros ii. by destruct (decide (i = ii)) as [->|?];
    rewrite ?lookup_partial_alter, ?lookup_partial_alter_ne.
259
Qed.
260
Lemma partial_alter_commute {A} f g (m : M A) i j :
261
  i  j  partial_alter f i (partial_alter g j m) =
262
263
    partial_alter g j (partial_alter f i m).
Proof.
264
265
266
267
  intros. apply map_eq; intros jj. destruct (decide (jj = j)) as [->|?].
  { by rewrite lookup_partial_alter_ne,
      !lookup_partial_alter, lookup_partial_alter_ne. }
  destruct (decide (jj = i)) as [->|?].
268
  - by rewrite lookup_partial_alter,
269
     !lookup_partial_alter_ne, lookup_partial_alter by congruence.
270
  - by rewrite !lookup_partial_alter_ne by congruence.
271
272
273
274
Qed.
Lemma partial_alter_self_alt {A} (m : M A) i x :
  x = m !! i  partial_alter (λ _, x) i m = m.
Proof.
275
276
  intros. apply map_eq. intros ii. by destruct (decide (i = ii)) as [->|];
    rewrite ?lookup_partial_alter, ?lookup_partial_alter_ne.
277
Qed.
278
Lemma partial_alter_self {A} (m : M A) i : partial_alter (λ _, m !! i) i m = m.
279
Proof. by apply partial_alter_self_alt. Qed.
280
Lemma partial_alter_subseteq {A} f (m : M A) i :
281
  m !! i = None  m  partial_alter f i m.
282
283
284
285
Proof.
  rewrite map_subseteq_spec. intros Hi j x Hj.
  rewrite lookup_partial_alter_ne; congruence.
Qed.
286
Lemma partial_alter_subset {A} f (m : M A) i :
287
  m !! i = None  is_Some (f (m !! i))  m  partial_alter f i m.
288
Proof.
289
290
291
292
  intros Hi Hfi. split; [by apply partial_alter_subseteq|].
  rewrite !map_subseteq_spec. inversion Hfi as [x Hx]. intros Hm.
  apply (Some_ne_None x). rewrite <-(Hm i x); [done|].
  by rewrite lookup_partial_alter.
293
294
295
Qed.

(** ** Properties of the [alter] operation *)
296
297
Lemma alter_ext {A} (f g : A  A) (m : M A) i :
  ( x, m !! i = Some x  f x = g x)  alter f i m = alter g i m.
298
Proof. intro. apply partial_alter_ext. intros [x|] ?; f_equal/=; auto. Qed.
299
Lemma lookup_alter {A} (f : A  A) m i : alter f i m !! i = f <$> m !! i.
300
Proof. unfold alter. apply lookup_partial_alter. Qed.
301
Lemma lookup_alter_ne {A} (f : A  A) m i j : i  j  alter f i m !! j = m !! j.
302
Proof. unfold alter. apply lookup_partial_alter_ne. Qed.
303
304
305
306
307
308
309
310
311
Lemma alter_compose {A} (f g : A  A) (m : M A) i:
  alter (f  g) i m = alter f i (alter g i m).
Proof.
  unfold alter, map_alter. rewrite <-partial_alter_compose.
  apply partial_alter_ext. by intros [?|].
Qed.
Lemma alter_commute {A} (f g : A  A) (m : M A) i j :
  i  j  alter f i (alter g j m) = alter g j (alter f i m).
Proof. apply partial_alter_commute. Qed.
312
313
314
315
Lemma lookup_alter_Some {A} (f : A  A) m i j y :
  alter f i m !! j = Some y 
    (i = j   x, m !! j = Some x  y = f x)  (i  j  m !! j = Some y).
Proof.
316
  destruct (decide (i = j)) as [->|?].
317
  - rewrite lookup_alter. naive_solver (simplify_option_eq; eauto).
318
  - rewrite lookup_alter_ne by done. naive_solver.
319
320
321
322
Qed.
Lemma lookup_alter_None {A} (f : A  A) m i j :
  alter f i m !! j = None  m !! j = None.
Proof.
323
324
  by destruct (decide (i = j)) as [->|?];
    rewrite ?lookup_alter, ?fmap_None, ?lookup_alter_ne.
325
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
326
327
Lemma alter_id {A} (f : A  A) m i :
  ( x, m !! i = Some x  f x = x)  alter f i m = m.
328
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
329
  intros Hi; apply map_eq; intros j; destruct (decide (i = j)) as [->|?].
330
  { rewrite lookup_alter; destruct (m !! j); f_equal/=; auto. }
Robbert Krebbers's avatar
Robbert Krebbers committed
331
  by rewrite lookup_alter_ne by done.
332
333
334
335
336
337
338
339
340
341
342
Qed.

(** ** Properties of the [delete] operation *)
Lemma lookup_delete {A} (m : M A) i : delete i m !! i = None.
Proof. apply lookup_partial_alter. Qed.
Lemma lookup_delete_ne {A} (m : M A) i j : i  j  delete i m !! j = m !! j.
Proof. apply lookup_partial_alter_ne. Qed.
Lemma lookup_delete_Some {A} (m : M A) i j y :
  delete i m !! j = Some y  i  j  m !! j = Some y.
Proof.
  split.
343
  - destruct (decide (i = j)) as [->|?];
344
      rewrite ?lookup_delete, ?lookup_delete_ne; intuition congruence.
345
  - intros [??]. by rewrite lookup_delete_ne.
346
Qed.
347
348
349
Lemma lookup_delete_is_Some {A} (m : M A) i j :
  is_Some (delete i m !! j)  i  j  is_Some (m !! j).
Proof. unfold is_Some; setoid_rewrite lookup_delete_Some; naive_solver. Qed.
350
351
352
Lemma lookup_delete_None {A} (m : M A) i j :
  delete i m !! j = None  i = j  m !! j = None.
Proof.
353
354
  destruct (decide (i = j)) as [->|?];
    rewrite ?lookup_delete, ?lookup_delete_ne; tauto.
355
356
357
Qed.
Lemma delete_empty {A} i : delete i ( : M A) = .
Proof. rewrite <-(partial_alter_self ) at 2. by rewrite lookup_empty. Qed.
358
Lemma delete_singleton {A} i (x : A) : delete i {[i := x]} = .
359
360
361
362
363
364
365
Proof. setoid_rewrite <-partial_alter_compose. apply delete_empty. Qed.
Lemma delete_commute {A} (m : M A) i j :
  delete i (delete j m) = delete j (delete i m).
Proof. destruct (decide (i = j)). by subst. by apply partial_alter_commute. Qed.
Lemma delete_insert_ne {A} (m : M A) i j x :
  i  j  delete i (<[j:=x]>m) = <[j:=x]>(delete i m).
Proof. intro. by apply partial_alter_commute. Qed.
366
Lemma delete_notin {A} (m : M A) i : m !! i = None  delete i m = m.
367
Proof.
368
369
  intros. apply map_eq. intros j. by destruct (decide (i = j)) as [->|?];
    rewrite ?lookup_delete, ?lookup_delete_ne.
370
371
372
373
374
375
376
377
378
379
Qed.
Lemma delete_partial_alter {A} (m : M A) i f :
  m !! i = None  delete i (partial_alter f i m) = m.
Proof.
  intros. unfold delete, map_delete. rewrite <-partial_alter_compose.
  unfold compose. by apply partial_alter_self_alt.
Qed.
Lemma delete_insert {A} (m : M A) i x :
  m !! i = None  delete i (<[i:=x]>m) = m.
Proof. apply delete_partial_alter. Qed.
380
381
Lemma insert_delete {A} (m : M A) i x : <[i:=x]>(delete i m) = <[i:=x]> m.
Proof. symmetry; apply (partial_alter_compose (λ _, Some x)). Qed.
382
Lemma delete_subseteq {A} (m : M A) i : delete i m  m.
383
384
385
Proof.
  rewrite !map_subseteq_spec. intros j x. rewrite lookup_delete_Some. tauto.
Qed.
386
Lemma delete_subseteq_compat {A} (m1 m2 : M A) i :
387
  m1  m2  delete i m1  delete i m2.
388
389
390
391
Proof.
  rewrite !map_subseteq_spec. intros ? j x.
  rewrite !lookup_delete_Some. intuition eauto.
Qed.
392
Lemma delete_subset_alt {A} (m : M A) i x : m !! i = Some x  delete i m  m.
393
Proof.
394
395
396
  split; [apply delete_subseteq|].
  rewrite !map_subseteq_spec. intros Hi. apply (None_ne_Some x).
  by rewrite <-(lookup_delete m i), (Hi i x).
397
Qed.
398
Lemma delete_subset {A} (m : M A) i : is_Some (m !! i)  delete i m  m.
399
400
401
402
403
Proof. inversion 1. eauto using delete_subset_alt. Qed.

(** ** Properties of the [insert] operation *)
Lemma lookup_insert {A} (m : M A) i x : <[i:=x]>m !! i = Some x.
Proof. unfold insert. apply lookup_partial_alter. Qed.
404
Lemma lookup_insert_rev {A}  (m : M A) i x y : <[i:=x]>m !! i = Some y  x = y.
405
Proof. rewrite lookup_insert. congruence. Qed.
406
Lemma lookup_insert_ne {A} (m : M A) i j x : i  j  <[i:=x]>m !! j = m !! j.
407
Proof. unfold insert. apply lookup_partial_alter_ne. Qed.
408
409
Lemma insert_insert {A} (m : M A) i x y : <[i:=x]>(<[i:=y]>m) = <[i:=x]>m.
Proof. unfold insert, map_insert. by rewrite <-partial_alter_compose. Qed.
410
411
412
413
414
415
416
Lemma insert_commute {A} (m : M A) i j x y :
  i  j  <[i:=x]>(<[j:=y]>m) = <[j:=y]>(<[i:=x]>m).
Proof. apply partial_alter_commute. Qed.
Lemma lookup_insert_Some {A} (m : M A) i j x y :
  <[i:=x]>m !! j = Some y  (i = j  x = y)  (i  j  m !! j = Some y).
Proof.
  split.
417
  - destruct (decide (i = j)) as [->|?];
418
      rewrite ?lookup_insert, ?lookup_insert_ne; intuition congruence.
419
  - intros [[-> ->]|[??]]; [apply lookup_insert|]. by rewrite lookup_insert_ne.
420
Qed.
421
422
423
Lemma lookup_insert_is_Some {A} (m : M A) i j x :
  is_Some (<[i:=x]>m !! j)  i = j  i  j  is_Some (m !! j).
Proof. unfold is_Some; setoid_rewrite lookup_insert_Some; naive_solver. Qed.
424
425
426
Lemma lookup_insert_None {A} (m : M A) i j x :
  <[i:=x]>m !! j = None  m !! j = None  i  j.
Proof.
427
428
429
  split; [|by intros [??]; rewrite lookup_insert_ne].
  destruct (decide (i = j)) as [->|];
    rewrite ?lookup_insert, ?lookup_insert_ne; intuition congruence.
430
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
431
Lemma insert_id {A} (m : M A) i x : m !! i = Some x  <[i:=x]>m = m.
432
433
434
435
436
437
438
439
Proof.
  intros; apply map_eq; intros j; destruct (decide (i = j)) as [->|];
    by rewrite ?lookup_insert, ?lookup_insert_ne by done.
Qed.
Lemma insert_included {A} R `{!Reflexive R} (m : M A) i x :
  ( y, m !! i = Some y  R y x)  map_included R m (<[i:=x]>m).
Proof.
  intros ? j; destruct (decide (i = j)) as [->|].
440
441
  - rewrite lookup_insert. destruct (m !! j); simpl; eauto.
  - rewrite lookup_insert_ne by done. by destruct (m !! j); simpl.
442
Qed.
443
Lemma insert_subseteq {A} (m : M A) i x : m !! i = None  m  <[i:=x]>m.
444
Proof. apply partial_alter_subseteq. Qed.
445
Lemma insert_subset {A} (m : M A) i x : m !! i = None  m  <[i:=x]>m.
446
447
Proof. intro. apply partial_alter_subset; eauto. Qed.
Lemma insert_subseteq_r {A} (m1 m2 : M A) i x :
448
  m1 !! i = None  m1  m2  m1  <[i:=x]>m2.
449
Proof.
450
451
452
  rewrite !map_subseteq_spec. intros ?? j ?.
  destruct (decide (j = i)) as [->|?]; [congruence|].
  rewrite lookup_insert_ne; auto.
453
454
Qed.
Lemma insert_delete_subseteq {A} (m1 m2 : M A) i x :
455
  m1 !! i = None  <[i:=x]> m1  m2  m1  delete i m2.
456
Proof.
457
458
459
460
  rewrite !map_subseteq_spec. intros Hi Hix j y Hj.
  destruct (decide (i = j)) as [->|]; [congruence|].
  rewrite lookup_delete_ne by done.
  apply Hix; by rewrite lookup_insert_ne by done.
461
462
Qed.
Lemma delete_insert_subseteq {A} (m1 m2 : M A) i x :
463
  m1 !! i = Some x  delete i m1  m2  m1  <[i:=x]> m2.
464
Proof.
465
466
  rewrite !map_subseteq_spec.
  intros Hix Hi j y Hj. destruct (decide (i = j)) as [->|?].
467
468
  - rewrite lookup_insert. congruence.
  - rewrite lookup_insert_ne by done. apply Hi. by rewrite lookup_delete_ne.
469
470
Qed.
Lemma insert_delete_subset {A} (m1 m2 : M A) i x :
471
  m1 !! i = None  <[i:=x]> m1  m2  m1  delete i m2.
472
Proof.
473
474
475
  intros ? [Hm12 Hm21]; split; [eauto using insert_delete_subseteq|].
  contradict Hm21. apply delete_insert_subseteq; auto.
  eapply lookup_weaken, Hm12. by rewrite lookup_insert.
476
477
Qed.
Lemma insert_subset_inv {A} (m1 m2 : M A) i x :
478
  m1 !! i = None  <[i:=x]> m1  m2 
479
480
   m2', m2 = <[i:=x]>m2'  m1  m2'  m2' !! i = None.
Proof.
481
  intros Hi Hm1m2. exists (delete i m2). split_and?.
482
483
  - rewrite insert_delete, insert_id. done.
    eapply lookup_weaken, strict_include; eauto. by rewrite lookup_insert.
484
485
  - eauto using insert_delete_subset.
  - by rewrite lookup_delete.
486
Qed.
487
Lemma insert_empty {A} i (x : A) : <[i:=x]> = {[i := x]}.
488
Proof. done. Qed.
489
490
491
492
Lemma insert_non_empty {A} (m : M A) i x : <[i:=x]>m  .
Proof.
  intros Hi%(f_equal (!! i)). by rewrite lookup_insert, lookup_empty in Hi.
Qed.
493
494
495

(** ** Properties of the singleton maps *)
Lemma lookup_singleton_Some {A} i j (x y : A) :
496
  {[i := x]} !! j = Some y  i = j  x = y.
497
Proof.
498
  rewrite <-insert_empty,lookup_insert_Some, lookup_empty; intuition congruence.
499
Qed.
500
Lemma lookup_singleton_None {A} i j (x : A) : {[i := x]} !! j = None  i  j.
501
Proof. rewrite <-insert_empty,lookup_insert_None, lookup_empty; tauto. Qed.
502
Lemma lookup_singleton {A} i (x : A) : {[i := x]} !! i = Some x.
503
Proof. by rewrite lookup_singleton_Some. Qed.
504
Lemma lookup_singleton_ne {A} i j (x : A) : i  j  {[i := x]} !! j = None.
505
Proof. by rewrite lookup_singleton_None. Qed.
506
Lemma map_non_empty_singleton {A} i (x : A) : {[i := x]}  .
507
508
509
510
Proof.
  intros Hix. apply (f_equal (!! i)) in Hix.
  by rewrite lookup_empty, lookup_singleton in Hix.
Qed.
511
Lemma insert_singleton {A} i (x y : A) : <[i:=y]>{[i := x]} = {[i := y]}.
512
Proof.
513
  unfold singletonM, map_singleton, insert, map_insert.
514
515
  by rewrite <-partial_alter_compose.
Qed.
516
Lemma alter_singleton {A} (f : A  A) i x : alter f i {[i := x]} = {[i := f x]}.
517
Proof.
518
  intros. apply map_eq. intros i'. destruct (decide (i = i')) as [->|?].
519
520
  - by rewrite lookup_alter, !lookup_singleton.
  - by rewrite lookup_alter_ne, !lookup_singleton_ne.
521
522
Qed.
Lemma alter_singleton_ne {A} (f : A  A) i j x :
523
  i  j  alter f i {[j := x]} = {[j := x]}.
524
Proof.
525
526
  intros. apply map_eq; intros i'. by destruct (decide (i = i')) as [->|?];
    rewrite ?lookup_alter, ?lookup_singleton_ne, ?lookup_alter_ne by done.
527
Qed.
528
529
Lemma singleton_non_empty {A} i (x : A) : {[i:=x]}  .
Proof. apply insert_non_empty. Qed.
530

531
532
533
534
535
(** ** Properties of the map operations *)
Lemma fmap_empty {A B} (f : A  B) : f <$>  = .
Proof. apply map_empty; intros i. by rewrite lookup_fmap, lookup_empty. Qed.
Lemma omap_empty {A B} (f : A  option B) : omap f  = .
Proof. apply map_empty; intros i. by rewrite lookup_omap, lookup_empty. Qed.
536
537
538
Lemma fmap_insert {A B} (f: A  B) m i x: f <$> <[i:=x]>m = <[i:=f x]>(f <$> m).
Proof.
  apply map_eq; intros i'; destruct (decide (i' = i)) as [->|].
539
540
  - by rewrite lookup_fmap, !lookup_insert.
  - by rewrite lookup_fmap, !lookup_insert_ne, lookup_fmap by done.
541
Qed.
542
543
544
545
546
547
Lemma fmap_delete {A B} (f: A  B) m i: f <$> delete i m = delete i (f <$> m).
Proof.
  apply map_eq; intros i'; destruct (decide (i' = i)) as [->|].
  - by rewrite lookup_fmap, !lookup_delete.
  - by rewrite lookup_fmap, !lookup_delete_ne, lookup_fmap by done.
Qed.
548
549
550
551
Lemma omap_insert {A B} (f : A  option B) m i x y :
  f x = Some y  omap f (<[i:=x]>m) = <[i:=y]>(omap f m).
Proof.
  intros; apply map_eq; intros i'; destruct (decide (i' = i)) as [->|].
552
553
  - by rewrite lookup_omap, !lookup_insert.
  - by rewrite lookup_omap, !lookup_insert_ne, lookup_omap by done.
554
Qed.
555
Lemma map_fmap_singleton {A B} (f : A  B) i x : f <$> {[i := x]} = {[i := f x]}.
556
557
558
Proof.
  by unfold singletonM, map_singleton; rewrite fmap_insert, map_fmap_empty.
Qed.
559
Lemma omap_singleton {A B} (f : A  option B) i x y :
560
  f x = Some y  omap f {[ i := x ]} = {[ i := y ]}.
561
Proof.
562
563
  intros. unfold singletonM, map_singleton.
  by erewrite omap_insert, omap_empty by eauto.
564
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
565
566
567
568
569
Lemma map_fmap_id {A} (m : M A) : id <$> m = m.
Proof. apply map_eq; intros i; by rewrite lookup_fmap, option_fmap_id. Qed.
Lemma map_fmap_compose {A B C} (f : A  B) (g : B  C) (m : M A) :
  g  f <$> m = g <$> f <$> m.
Proof. apply map_eq; intros i; by rewrite !lookup_fmap,option_fmap_compose. Qed.
570
Lemma map_fmap_equiv_ext `{Equiv A, Equiv B} (f1 f2 : A  B) m :
571
572
573
574
575
  ( i x, m !! i = Some x  f1 x  f2 x)  f1 <$> m  f2 <$> m.
Proof.
  intros Hi i; rewrite !lookup_fmap.
  destruct (m !! i) eqn:?; constructor; eauto.
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
576
577
578
579
580
581
Lemma map_fmap_ext {A B} (f1 f2 : A  B) m :
  ( i x, m !! i = Some x  f1 x = f2 x)  f1 <$> m = f2 <$> m.
Proof.
  intros Hi; apply map_eq; intros i; rewrite !lookup_fmap.
  by destruct (m !! i) eqn:?; simpl; erewrite ?Hi by eauto.
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
582
583
584
585
586
587
Lemma omap_ext {A B} (f1 f2 : A  option B) m :
  ( i x, m !! i = Some x  f1 x = f2 x)  omap f1 m = omap f2 m.
Proof.
  intros Hi; apply map_eq; intros i; rewrite !lookup_omap.
  by destruct (m !! i) eqn:?; simpl; erewrite ?Hi by eauto.
Qed.
588

589
590
(** ** Properties of conversion to lists *)
Lemma map_to_list_unique {A} (m : M A) i x y :
591
  (i,x)  map_to_list m  (i,y)  map_to_list m  x = y.
592
Proof. rewrite !elem_of_map_to_list. congruence. Qed.
593
Lemma NoDup_fst_map_to_list {A} (m : M A) : NoDup ((map_to_list m).*1).
594
Proof. eauto using NoDup_fmap_fst, map_to_list_unique, NoDup_map_to_list. Qed.
595
596
597
598
599
Lemma elem_of_map_of_list_1_help {A} (l : list (K * A)) i x :
  (i,x)  l  ( y, (i,y)  l  y = x)  map_of_list l !! i = Some x.
Proof.
  induction l as [|[j y] l IH]; csimpl; [by rewrite elem_of_nil|].
  setoid_rewrite elem_of_cons.
600
  intros [?|?] Hdup; simplify_eq; [by rewrite lookup_insert|].
601
  destruct (decide (i = j)) as [->|].
602
603
  - rewrite lookup_insert; f_equal; eauto.
  - rewrite lookup_insert_ne by done; eauto.
604
Qed.
605
Lemma elem_of_map_of_list_1 {A} (l : list (K * A)) i x :
606
  NoDup (l.*1)  (i,x)  l  map_of_list l !! i = Some x.
607
Proof.
608
609
  intros ? Hx; apply elem_of_map_of_list_1_help; eauto using NoDup_fmap_fst.
  intros y; revert Hx. rewrite !elem_of_list_lookup; intros [i' Hi'] [j' Hj'].
610
  cut (i' = j'); [naive_solver|]. apply NoDup_lookup with (l.*1) i;
611
    by rewrite ?list_lookup_fmap, ?Hi', ?Hj'.
612
613
Qed.
Lemma elem_of_map_of_list_2 {A} (l : list (K * A)) i x :
614
  map_of_list l !! i = Some x  (i,x)  l.
615
Proof.
616
617
618
  induction l as [|[j y] l IH]; simpl; [by rewrite lookup_empty|].
  rewrite elem_of_cons. destruct (decide (i = j)) as [->|];
    rewrite ?lookup_insert, ?lookup_insert_ne; intuition congruence.
619
620
Qed.
Lemma elem_of_map_of_list {A} (l : list (K * A)) i x :
621
  NoDup (l.*1)  (i,x)  l  map_of_list l !! i = Some x.
622
Proof. split; auto using elem_of_map_of_list_1, elem_of_map_of_list_2. Qed.
623
Lemma not_elem_of_map_of_list_1 {A} (l : list (K * A)) i :
624
  i  l.*1  map_of_list l !! i = None.
625
Proof.
626
627
  rewrite elem_of_list_fmap, eq_None_not_Some. intros Hi [x ?]; destruct Hi.
  exists (i,x); simpl; auto using elem_of_map_of_list_2.
628
629
Qed.
Lemma not_elem_of_map_of_list_2 {A} (l : list (K * A)) i :
630
  map_of_list l !! i = None  i  l.*1.
631
Proof.
632
  induction l as [|[j y] l IH]; csimpl; [rewrite elem_of_nil; tauto|].
633
  rewrite elem_of_cons. destruct (decide (i = j)); simplify_eq.
634
635
  - by rewrite lookup_insert.
  - by rewrite lookup_insert_ne; intuition.
636
637
Qed.
Lemma not_elem_of_map_of_list {A} (l : list (K * A)) i :
638
  i  l.*1  map_of_list l !! i = None.
639
Proof. red; auto using not_elem_of_map_of_list_1,not_elem_of_map_of_list_2. Qed.
640
Lemma map_of_list_proper {A} (l1 l2 : list (K * A)) :
641
  NoDup (l1.*1)  l1  l2  map_of_list l1 = map_of_list l2.
642
643
644
645
646
Proof.
  intros ? Hperm. apply map_eq. intros i. apply option_eq. intros x.
  by rewrite <-!elem_of_map_of_list; rewrite <-?Hperm.
Qed.
Lemma map_of_list_inj {A} (l1 l2 : list (K * A)) :
647
  NoDup (l1.*1)  NoDup (l2.*1)  map_of_list l1 = map_of_list l2  l1  l2.
648
Proof.
649
  intros ?? Hl1l2. apply NoDup_Permutation; auto using (NoDup_fmap_1 fst).
650
651
  intros [i x]. by rewrite !elem_of_map_of_list, Hl1l2.
Qed.
652
Lemma map_of_to_list {A} (m : M A) : map_of_list (map_to_list m) = m.
653
654
655
Proof.
  apply map_eq. intros i. apply option_eq. intros x.
  by rewrite <-elem_of_map_of_list, elem_of_map_to_list
656
    by auto using NoDup_fst_map_to_list.
657
658
Qed.
Lemma map_to_of_list {A} (l : list (K * A)) :
659
  NoDup (l.*1)  map_to_list (map_of_list l)  l.
660
Proof. auto using map_of_list_inj, NoDup_fst_map_to_list, map_of_to_list. Qed.
661
Lemma map_to_list_inj {A} (m1 m2 : M A) :
662
  map_to_list m1  map_to_list m2  m1 = m2.
663
Proof.
664
  intros. rewrite <-(map_of_to_list m1), <-(map_of_to_list m2).
665
  auto using map_of_list_proper, NoDup_fst_map_to_list.
666
Qed.
667
668
669
670
671
672
Lemma map_to_of_list_flip {A} (