fin_maps.v 69.4 KB
Newer Older
Robbert Krebbers's avatar
Robbert Krebbers committed
1
(* Copyright (c) 2012-2015, Robbert Krebbers. *)
2 3 4
(* This file is distributed under the terms of the BSD license. *)
(** Finite maps associate data to keys. This file defines an interface for
finite maps and collects some theory on it. Most importantly, it proves useful
5 6
induction principles for finite maps and implements the tactic
[simplify_map_equality] to simplify goals involving finite maps. *)
7 8
From Coq Require Import Permutation.
From stdpp Require Export relations vector orders.
9

10 11
(** * Axiomatization of finite maps *)
(** We require Leibniz equality to be extensional on finite maps. This of
12 13 14 15 16
course limits the space of finite map implementations, but since we are mainly
interested in finite maps with numbers as indexes, we do not consider this to
be a serious limitation. The main application of finite maps is to implement
the memory, where extensionality of Leibniz equality is very important for a
convenient use in the assertions of our axiomatic semantics. *)
17

Robbert Krebbers's avatar
Robbert Krebbers committed
18 19
(** Finiteness is axiomatized by requiring that each map can be translated
to an association list. The translation to association lists is used to
20
prove well founded recursion on finite maps. *)
21

22 23 24
(** Finite map implementations are required to implement the [merge] function
which enables us to give a generic implementation of [union_with],
[intersection_with], and [difference_with]. *)
25

26
Class FinMapToList K A M := map_to_list: M  list (K * A).
Robbert Krebbers's avatar
Robbert Krebbers committed
27

28 29 30
Class FinMap K M `{FMap M,  A, Lookup K A (M A),  A, Empty (M A),  A,
    PartialAlter K A (M A), OMap M, Merge M,  A, FinMapToList K A (M A),
     i j : K, Decision (i = j)} := {
31 32
  map_eq {A} (m1 m2 : M A) : ( i, m1 !! i = m2 !! i)  m1 = m2;
  lookup_empty {A} i : ( : M A) !! i = None;
33 34 35 36
  lookup_partial_alter {A} f (m : M A) i :
    partial_alter f i m !! i = f (m !! i);
  lookup_partial_alter_ne {A} f (m : M A) i j :
    i  j  partial_alter f i m !! j = m !! j;
37
  lookup_fmap {A B} (f : A  B) (m : M A) i : (f <$> m) !! i = f <$> m !! i;
38
  NoDup_map_to_list {A} (m : M A) : NoDup (map_to_list m);
39 40
  elem_of_map_to_list {A} (m : M A) i x :
    (i,x)  map_to_list m  m !! i = Some x;
41
  lookup_omap {A B} (f : A  option B) m i : omap f m !! i = m !! i = f;
42 43 44
  lookup_merge {A B C} (f : option A  option B  option C)
      `{!PropHolds (f None None = None)} m1 m2 i :
    merge f m1 m2 !! i = f (m1 !! i) (m2 !! i)
Robbert Krebbers's avatar
Robbert Krebbers committed
45 46
}.

47 48 49
(** * Derived operations *)
(** All of the following functions are defined in a generic way for arbitrary
finite map implementations. These generic implementations do not cause a
50 51
significant performance loss to make including them in the finite map interface
worthwhile. *)
52 53 54 55 56
Instance map_insert `{PartialAlter K A M} : Insert K A M :=
  λ i x, partial_alter (λ _, Some x) i.
Instance map_alter `{PartialAlter K A M} : Alter K A M :=
  λ f, partial_alter (fmap f).
Instance map_delete `{PartialAlter K A M} : Delete K M :=
57
  partial_alter (λ _, None).
58
Instance map_singleton `{PartialAlter K A M, Empty M} :
59
  SingletonM K A M := λ i x, <[i:=x]> .
Robbert Krebbers's avatar
Robbert Krebbers committed
60

61
Definition map_of_list `{Insert K A M, Empty M} : list (K * A)  M :=
62
  fold_right (λ p, <[p.1:=p.2]>) .
63 64 65
Definition map_of_collection `{Elements K C, Insert K A M, Empty M}
    (f : K  option A) (X : C) : M :=
  map_of_list (omap (λ i, (i,) <$> f i) (elements X)).
Robbert Krebbers's avatar
Robbert Krebbers committed
66

67 68 69 70 71 72
Instance map_union_with `{Merge M} {A} : UnionWith A (M A) :=
  λ f, merge (union_with f).
Instance map_intersection_with `{Merge M} {A} : IntersectionWith A (M A) :=
  λ f, merge (intersection_with f).
Instance map_difference_with `{Merge M} {A} : DifferenceWith A (M A) :=
  λ f, merge (difference_with f).
Robbert Krebbers's avatar
Robbert Krebbers committed
73

74 75
Instance map_equiv `{ A, Lookup K A (M A), Equiv A} : Equiv (M A) | 18 :=
  λ m1 m2,  i, m1 !! i  m2 !! i.
Robbert Krebbers's avatar
Robbert Krebbers committed
76

77 78
(** The relation [intersection_forall R] on finite maps describes that the
relation [R] holds for each pair in the intersection. *)
79
Definition map_Forall `{Lookup K A M} (P : K  A  Prop) : M  Prop :=
Robbert Krebbers's avatar
Robbert Krebbers committed
80
  λ m,  i x, m !! i = Some x  P i x.
Robbert Krebbers's avatar
Robbert Krebbers committed
81 82 83
Definition map_relation `{ A, Lookup K A (M A)} {A B} (R : A  B  Prop)
    (P : A  Prop) (Q : B  Prop) (m1 : M A) (m2 : M B) : Prop :=  i,
  option_relation R P Q (m1 !! i) (m2 !! i).
84
Definition map_included `{ A, Lookup K A (M A)} {A}
Robbert Krebbers's avatar
Robbert Krebbers committed
85 86 87 88 89 90 91
  (R : relation A) : relation (M A) := map_relation R (λ _, False) (λ _, True).
Definition map_disjoint `{ A, Lookup K A (M A)} {A} : relation (M A) :=
  map_relation (λ _ _, False) (λ _, True) (λ _, True).
Infix "⊥ₘ" := map_disjoint (at level 70) : C_scope.
Hint Extern 0 (_  _) => symmetry; eassumption.
Notation "( m ⊥ₘ.)" := (map_disjoint m) (only parsing) : C_scope.
Notation "(.⊥ₘ m )" := (λ m2, m2  m) (only parsing) : C_scope.
92
Instance map_subseteq `{ A, Lookup K A (M A)} {A} : SubsetEq (M A) :=
Robbert Krebbers's avatar
Robbert Krebbers committed
93
  map_included (=).
Robbert Krebbers's avatar
Robbert Krebbers committed
94 95 96 97 98

(** The union of two finite maps only has a meaningful definition for maps
that are disjoint. However, as working with partial functions is inconvenient
in Coq, we define the union as a total function. In case both finite maps
have a value at the same index, we take the value of the first map. *)
99
Instance map_union `{Merge M} {A} : Union (M A) := union_with (λ x _, Some x).
100 101 102
Instance map_intersection `{Merge M} {A} : Intersection (M A) :=
  intersection_with (λ x _, Some x).

103 104
(** The difference operation removes all values from the first map whose
index contains a value in the second map as well. *)
105
Instance map_difference `{Merge M} {A} : Difference (M A) :=
106
  difference_with (λ _ _, None).
Robbert Krebbers's avatar
Robbert Krebbers committed
107

108 109 110 111 112 113
(** A stronger variant of map that allows the mapped function to use the index
of the elements. Implemented by conversion to lists, so not very efficient. *)
Definition map_imap `{ A, Insert K A (M A),  A, Empty (M A),
     A, FinMapToList K A (M A)} {A B} (f : K  A  option B) (m : M A) : M B :=
  map_of_list (omap (λ ix, (fst ix,) <$> curry f ix) (map_to_list m)).

114 115 116 117
(** * Theorems *)
Section theorems.
Context `{FinMap K M}.

Robbert Krebbers's avatar
Robbert Krebbers committed
118 119
(** ** Setoids *)
Section setoid.
120 121
  Context `{Equiv A} `{!Equivalence (() : relation A)}.
  Global Instance map_equivalence : Equivalence (() : relation (M A)).
Robbert Krebbers's avatar
Robbert Krebbers committed
122 123 124 125 126 127 128 129 130 131
  Proof.
    split.
    * by intros m i.
    * by intros m1 m2 ? i.
    * by intros m1 m2 m3 ?? i; transitivity (m2 !! i).
  Qed.
  Global Instance lookup_proper (i : K) :
    Proper (() ==> ()) (lookup (M:=M A) i).
  Proof. by intros m1 m2 Hm. Qed.
  Global Instance partial_alter_proper :
132
    Proper ((() ==> ()) ==> (=) ==> () ==> ()) (partial_alter (M:=M A)).
Robbert Krebbers's avatar
Robbert Krebbers committed
133 134 135 136 137 138 139 140
  Proof.
    by intros f1 f2 Hf i ? <- m1 m2 Hm j; destruct (decide (i = j)) as [->|];
      rewrite ?lookup_partial_alter, ?lookup_partial_alter_ne by done;
      try apply Hf; apply lookup_proper.
  Qed.
  Global Instance insert_proper (i : K) :
    Proper (() ==> () ==> ()) (insert (M:=M A) i).
  Proof. by intros ???; apply partial_alter_proper; [constructor|]. Qed.
141 142 143
  Global Instance singleton_proper k :
    Proper (() ==> ()) (singletonM k : A  M A).
  Proof. by intros ???; apply insert_proper. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
144 145 146 147 148 149 150 151 152 153 154 155
  Global Instance delete_proper (i : K) :
    Proper (() ==> ()) (delete (M:=M A) i).
  Proof. by apply partial_alter_proper; [constructor|]. Qed.
  Global Instance alter_proper :
    Proper ((() ==> ()) ==> (=) ==> () ==> ()) (alter (A:=A) (M:=M A)).
  Proof.
    intros ?? Hf; apply partial_alter_proper.
    by destruct 1; constructor; apply Hf.
  Qed.
  Lemma merge_ext f g
      `{!PropHolds (f None None = None), !PropHolds (g None None = None)} :
    (() ==> () ==> ())%signature f g 
156
    (() ==> () ==> ())%signature (merge (M:=M) f) (merge g).
Robbert Krebbers's avatar
Robbert Krebbers committed
157 158 159 160
  Proof.
    by intros Hf ?? Hm1 ?? Hm2 i; rewrite !lookup_merge by done; apply Hf.
  Qed.
  Global Instance union_with_proper :
161
    Proper ((() ==> () ==> ()) ==> () ==> () ==>()) (union_with (M:=M A)).
Robbert Krebbers's avatar
Robbert Krebbers committed
162 163 164 165 166 167
  Proof.
    intros ?? Hf ?? Hm1 ?? Hm2 i; apply (merge_ext _ _); auto.
    by do 2 destruct 1; first [apply Hf | constructor].
  Qed.    
  Global Instance map_leibniz `{!LeibnizEquiv A} : LeibnizEquiv (M A).
  Proof.
168 169
    intros m1 m2 Hm; apply map_eq; intros i.
    by unfold_leibniz; apply lookup_proper.
Robbert Krebbers's avatar
Robbert Krebbers committed
170
  Qed.
171 172 173 174 175 176 177 178 179 180
  Lemma map_equiv_empty (m : M A) : m    m = .
  Proof.
    split; [intros Hm; apply map_eq; intros i|by intros ->].
    by rewrite lookup_empty, <-equiv_None, Hm, lookup_empty.
  Qed.
  Lemma map_equiv_lookup (m1 m2 : M A) i x :
    m1  m2  m1 !! i = Some x   y, m2 !! i = Some y  x  y.
  Proof.
    intros Hm ?. destruct (equiv_Some (m1 !! i) (m2 !! i) x) as (y&?&?); eauto.
  Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
181 182 183
End setoid.

(** ** General properties *)
184 185 186 187 188
Lemma map_eq_iff {A} (m1 m2 : M A) : m1 = m2   i, m1 !! i = m2 !! i.
Proof. split. by intros ->. apply map_eq. Qed.
Lemma map_subseteq_spec {A} (m1 m2 : M A) :
  m1  m2   i x, m1 !! i = Some x  m2 !! i = Some x.
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
189
  unfold subseteq, map_subseteq, map_relation. split; intros Hm i;
190 191
    specialize (Hm i); destruct (m1 !! i), (m2 !! i); naive_solver.
Qed.
192
Global Instance: EmptySpec (M A).
193
Proof.
194 195
  intros A m. rewrite !map_subseteq_spec.
  intros i x. by rewrite lookup_empty.
196
Qed.
197 198
Global Instance:  {A} (R : relation A), PreOrder R  PreOrder (map_included R).
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
199
  split; [intros m i; by destruct (m !! i); simpl|].
200
  intros m1 m2 m3 Hm12 Hm23 i; specialize (Hm12 i); specialize (Hm23 i).
Robbert Krebbers's avatar
Robbert Krebbers committed
201 202
  destruct (m1 !! i), (m2 !! i), (m3 !! i); simplify_equality';
    done || etransitivity; eauto.
203
Qed.
204
Global Instance: PartialOrder (() : relation (M A)).
205
Proof.
206 207 208
  split; [apply _|].
  intros m1 m2; rewrite !map_subseteq_spec.
  intros; apply map_eq; intros i; apply option_eq; naive_solver.
209 210 211
Qed.
Lemma lookup_weaken {A} (m1 m2 : M A) i x :
  m1 !! i = Some x  m1  m2  m2 !! i = Some x.
212
Proof. rewrite !map_subseteq_spec. auto. Qed.
213 214 215 216 217 218
Lemma lookup_weaken_is_Some {A} (m1 m2 : M A) i :
  is_Some (m1 !! i)  m1  m2  is_Some (m2 !! i).
Proof. inversion 1. eauto using lookup_weaken. Qed.
Lemma lookup_weaken_None {A} (m1 m2 : M A) i :
  m2 !! i = None  m1  m2  m1 !! i = None.
Proof.
219 220
  rewrite map_subseteq_spec, !eq_None_not_Some.
  intros Hm2 Hm [??]; destruct Hm2; eauto.
221 222
Qed.
Lemma lookup_weaken_inv {A} (m1 m2 : M A) i x y :
223 224
  m1 !! i = Some x  m1  m2  m2 !! i = Some y  x = y.
Proof. intros Hm1 ? Hm2. eapply lookup_weaken in Hm1; eauto. congruence. Qed.
225 226 227 228 229 230 231 232 233
Lemma lookup_ne {A} (m : M A) i j : m !! i  m !! j  i  j.
Proof. congruence. Qed.
Lemma map_empty {A} (m : M A) : ( i, m !! i = None)  m = .
Proof. intros Hm. apply map_eq. intros. by rewrite Hm, lookup_empty. Qed.
Lemma lookup_empty_is_Some {A} i : ¬is_Some (( : M A) !! i).
Proof. rewrite lookup_empty. by inversion 1. Qed.
Lemma lookup_empty_Some {A} i (x : A) : ¬ !! i = Some x.
Proof. by rewrite lookup_empty. Qed.
Lemma map_subset_empty {A} (m : M A) : m  .
234 235 236
Proof.
  intros [_ []]. rewrite map_subseteq_spec. intros ??. by rewrite lookup_empty.
Qed.
237 238
Lemma map_fmap_empty {A B} (f : A  B) : f <$> ( : M A) = .
Proof. by apply map_eq; intros i; rewrite lookup_fmap, !lookup_empty. Qed.
239 240

(** ** Properties of the [partial_alter] operation *)
241 242 243
Lemma partial_alter_ext {A} (f g : option A  option A) (m : M A) i :
  ( x, m !! i = x  f x = g x)  partial_alter f i m = partial_alter g i m.
Proof.
244 245
  intros. apply map_eq; intros j. by destruct (decide (i = j)) as [->|?];
    rewrite ?lookup_partial_alter, ?lookup_partial_alter_ne; auto.
246 247
Qed.
Lemma partial_alter_compose {A} f g (m : M A) i:
248 249
  partial_alter (f  g) i m = partial_alter f i (partial_alter g i m).
Proof.
250 251
  intros. apply map_eq. intros ii. by destruct (decide (i = ii)) as [->|?];
    rewrite ?lookup_partial_alter, ?lookup_partial_alter_ne.
252
Qed.
253
Lemma partial_alter_commute {A} f g (m : M A) i j :
254
  i  j  partial_alter f i (partial_alter g j m) =
255 256
    partial_alter g j (partial_alter f i m).
Proof.
257 258 259 260 261 262 263
  intros. apply map_eq; intros jj. destruct (decide (jj = j)) as [->|?].
  { by rewrite lookup_partial_alter_ne,
      !lookup_partial_alter, lookup_partial_alter_ne. }
  destruct (decide (jj = i)) as [->|?].
  * by rewrite lookup_partial_alter,
     !lookup_partial_alter_ne, lookup_partial_alter by congruence.
  * by rewrite !lookup_partial_alter_ne by congruence.
264 265 266 267
Qed.
Lemma partial_alter_self_alt {A} (m : M A) i x :
  x = m !! i  partial_alter (λ _, x) i m = m.
Proof.
268 269
  intros. apply map_eq. intros ii. by destruct (decide (i = ii)) as [->|];
    rewrite ?lookup_partial_alter, ?lookup_partial_alter_ne.
270
Qed.
271
Lemma partial_alter_self {A} (m : M A) i : partial_alter (λ _, m !! i) i m = m.
272
Proof. by apply partial_alter_self_alt. Qed.
273
Lemma partial_alter_subseteq {A} f (m : M A) i :
274
  m !! i = None  m  partial_alter f i m.
275 276 277 278
Proof.
  rewrite map_subseteq_spec. intros Hi j x Hj.
  rewrite lookup_partial_alter_ne; congruence.
Qed.
279
Lemma partial_alter_subset {A} f (m : M A) i :
280
  m !! i = None  is_Some (f (m !! i))  m  partial_alter f i m.
281
Proof.
282 283 284 285
  intros Hi Hfi. split; [by apply partial_alter_subseteq|].
  rewrite !map_subseteq_spec. inversion Hfi as [x Hx]. intros Hm.
  apply (Some_ne_None x). rewrite <-(Hm i x); [done|].
  by rewrite lookup_partial_alter.
286 287 288
Qed.

(** ** Properties of the [alter] operation *)
289 290
Lemma alter_ext {A} (f g : A  A) (m : M A) i :
  ( x, m !! i = Some x  f x = g x)  alter f i m = alter g i m.
291
Proof. intro. apply partial_alter_ext. intros [x|] ?; f_equal'; auto. Qed.
292
Lemma lookup_alter {A} (f : A  A) m i : alter f i m !! i = f <$> m !! i.
293
Proof. unfold alter. apply lookup_partial_alter. Qed.
294
Lemma lookup_alter_ne {A} (f : A  A) m i j : i  j  alter f i m !! j = m !! j.
295
Proof. unfold alter. apply lookup_partial_alter_ne. Qed.
296 297 298 299 300 301 302 303 304
Lemma alter_compose {A} (f g : A  A) (m : M A) i:
  alter (f  g) i m = alter f i (alter g i m).
Proof.
  unfold alter, map_alter. rewrite <-partial_alter_compose.
  apply partial_alter_ext. by intros [?|].
Qed.
Lemma alter_commute {A} (f g : A  A) (m : M A) i j :
  i  j  alter f i (alter g j m) = alter g j (alter f i m).
Proof. apply partial_alter_commute. Qed.
305 306 307 308
Lemma lookup_alter_Some {A} (f : A  A) m i j y :
  alter f i m !! j = Some y 
    (i = j   x, m !! j = Some x  y = f x)  (i  j  m !! j = Some y).
Proof.
309
  destruct (decide (i = j)) as [->|?].
310 311 312 313 314 315
  * rewrite lookup_alter. naive_solver (simplify_option_equality; eauto).
  * rewrite lookup_alter_ne by done. naive_solver.
Qed.
Lemma lookup_alter_None {A} (f : A  A) m i j :
  alter f i m !! j = None  m !! j = None.
Proof.
316 317
  by destruct (decide (i = j)) as [->|?];
    rewrite ?lookup_alter, ?fmap_None, ?lookup_alter_ne.
318
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
319 320
Lemma alter_id {A} (f : A  A) m i :
  ( x, m !! i = Some x  f x = x)  alter f i m = m.
321
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
322 323 324
  intros Hi; apply map_eq; intros j; destruct (decide (i = j)) as [->|?].
  { rewrite lookup_alter; destruct (m !! j); f_equal'; auto. }
  by rewrite lookup_alter_ne by done.
325 326 327 328 329 330 331 332 333 334 335
Qed.

(** ** Properties of the [delete] operation *)
Lemma lookup_delete {A} (m : M A) i : delete i m !! i = None.
Proof. apply lookup_partial_alter. Qed.
Lemma lookup_delete_ne {A} (m : M A) i j : i  j  delete i m !! j = m !! j.
Proof. apply lookup_partial_alter_ne. Qed.
Lemma lookup_delete_Some {A} (m : M A) i j y :
  delete i m !! j = Some y  i  j  m !! j = Some y.
Proof.
  split.
336
  * destruct (decide (i = j)) as [->|?];
337 338 339
      rewrite ?lookup_delete, ?lookup_delete_ne; intuition congruence.
  * intros [??]. by rewrite lookup_delete_ne.
Qed.
340 341 342
Lemma lookup_delete_is_Some {A} (m : M A) i j :
  is_Some (delete i m !! j)  i  j  is_Some (m !! j).
Proof. unfold is_Some; setoid_rewrite lookup_delete_Some; naive_solver. Qed.
343 344 345
Lemma lookup_delete_None {A} (m : M A) i j :
  delete i m !! j = None  i = j  m !! j = None.
Proof.
346 347
  destruct (decide (i = j)) as [->|?];
    rewrite ?lookup_delete, ?lookup_delete_ne; tauto.
348 349 350
Qed.
Lemma delete_empty {A} i : delete i ( : M A) = .
Proof. rewrite <-(partial_alter_self ) at 2. by rewrite lookup_empty. Qed.
351
Lemma delete_singleton {A} i (x : A) : delete i {[i  x]} = .
352 353 354 355 356 357 358
Proof. setoid_rewrite <-partial_alter_compose. apply delete_empty. Qed.
Lemma delete_commute {A} (m : M A) i j :
  delete i (delete j m) = delete j (delete i m).
Proof. destruct (decide (i = j)). by subst. by apply partial_alter_commute. Qed.
Lemma delete_insert_ne {A} (m : M A) i j x :
  i  j  delete i (<[j:=x]>m) = <[j:=x]>(delete i m).
Proof. intro. by apply partial_alter_commute. Qed.
359
Lemma delete_notin {A} (m : M A) i : m !! i = None  delete i m = m.
360
Proof.
361 362
  intros. apply map_eq. intros j. by destruct (decide (i = j)) as [->|?];
    rewrite ?lookup_delete, ?lookup_delete_ne.
363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379
Qed.
Lemma delete_partial_alter {A} (m : M A) i f :
  m !! i = None  delete i (partial_alter f i m) = m.
Proof.
  intros. unfold delete, map_delete. rewrite <-partial_alter_compose.
  unfold compose. by apply partial_alter_self_alt.
Qed.
Lemma delete_insert {A} (m : M A) i x :
  m !! i = None  delete i (<[i:=x]>m) = m.
Proof. apply delete_partial_alter. Qed.
Lemma insert_delete {A} (m : M A) i x :
  m !! i = Some x  <[i:=x]>(delete i m) = m.
Proof.
  intros Hmi. unfold delete, map_delete, insert, map_insert.
  rewrite <-partial_alter_compose. unfold compose. rewrite <-Hmi.
  by apply partial_alter_self_alt.
Qed.
380
Lemma delete_subseteq {A} (m : M A) i : delete i m  m.
381 382 383
Proof.
  rewrite !map_subseteq_spec. intros j x. rewrite lookup_delete_Some. tauto.
Qed.
384
Lemma delete_subseteq_compat {A} (m1 m2 : M A) i :
385
  m1  m2  delete i m1  delete i m2.
386 387 388 389
Proof.
  rewrite !map_subseteq_spec. intros ? j x.
  rewrite !lookup_delete_Some. intuition eauto.
Qed.
390
Lemma delete_subset_alt {A} (m : M A) i x : m !! i = Some x  delete i m  m.
391
Proof.
392 393 394
  split; [apply delete_subseteq|].
  rewrite !map_subseteq_spec. intros Hi. apply (None_ne_Some x).
  by rewrite <-(lookup_delete m i), (Hi i x).
395
Qed.
396
Lemma delete_subset {A} (m : M A) i : is_Some (m !! i)  delete i m  m.
397 398 399 400 401
Proof. inversion 1. eauto using delete_subset_alt. Qed.

(** ** Properties of the [insert] operation *)
Lemma lookup_insert {A} (m : M A) i x : <[i:=x]>m !! i = Some x.
Proof. unfold insert. apply lookup_partial_alter. Qed.
402
Lemma lookup_insert_rev {A}  (m : M A) i x y : <[i:=x]>m !! i = Some y  x = y.
403
Proof. rewrite lookup_insert. congruence. Qed.
404
Lemma lookup_insert_ne {A} (m : M A) i j x : i  j  <[i:=x]>m !! j = m !! j.
405 406 407 408 409 410 411 412
Proof. unfold insert. apply lookup_partial_alter_ne. Qed.
Lemma insert_commute {A} (m : M A) i j x y :
  i  j  <[i:=x]>(<[j:=y]>m) = <[j:=y]>(<[i:=x]>m).
Proof. apply partial_alter_commute. Qed.
Lemma lookup_insert_Some {A} (m : M A) i j x y :
  <[i:=x]>m !! j = Some y  (i = j  x = y)  (i  j  m !! j = Some y).
Proof.
  split.
413
  * destruct (decide (i = j)) as [->|?];
414
      rewrite ?lookup_insert, ?lookup_insert_ne; intuition congruence.
415
  * intros [[-> ->]|[??]]; [apply lookup_insert|]. by rewrite lookup_insert_ne.
416
Qed.
417 418 419
Lemma lookup_insert_is_Some {A} (m : M A) i j x :
  is_Some (<[i:=x]>m !! j)  i = j  i  j  is_Some (m !! j).
Proof. unfold is_Some; setoid_rewrite lookup_insert_Some; naive_solver. Qed.
420 421 422
Lemma lookup_insert_None {A} (m : M A) i j x :
  <[i:=x]>m !! j = None  m !! j = None  i  j.
Proof.
423 424 425
  split; [|by intros [??]; rewrite lookup_insert_ne].
  destruct (decide (i = j)) as [->|];
    rewrite ?lookup_insert, ?lookup_insert_ne; intuition congruence.
426
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
427
Lemma insert_id {A} (m : M A) i x : m !! i = Some x  <[i:=x]>m = m.
428 429 430 431 432 433 434 435
Proof.
  intros; apply map_eq; intros j; destruct (decide (i = j)) as [->|];
    by rewrite ?lookup_insert, ?lookup_insert_ne by done.
Qed.
Lemma insert_included {A} R `{!Reflexive R} (m : M A) i x :
  ( y, m !! i = Some y  R y x)  map_included R m (<[i:=x]>m).
Proof.
  intros ? j; destruct (decide (i = j)) as [->|].
Robbert Krebbers's avatar
Robbert Krebbers committed
436 437
  * rewrite lookup_insert. destruct (m !! j); simpl; eauto.
  * rewrite lookup_insert_ne by done. by destruct (m !! j); simpl.
438
Qed.
439
Lemma insert_subseteq {A} (m : M A) i x : m !! i = None  m  <[i:=x]>m.
440
Proof. apply partial_alter_subseteq. Qed.
441
Lemma insert_subset {A} (m : M A) i x : m !! i = None  m  <[i:=x]>m.
442 443
Proof. intro. apply partial_alter_subset; eauto. Qed.
Lemma insert_subseteq_r {A} (m1 m2 : M A) i x :
444
  m1 !! i = None  m1  m2  m1  <[i:=x]>m2.
445
Proof.
446 447 448
  rewrite !map_subseteq_spec. intros ?? j ?.
  destruct (decide (j = i)) as [->|?]; [congruence|].
  rewrite lookup_insert_ne; auto.
449 450
Qed.
Lemma insert_delete_subseteq {A} (m1 m2 : M A) i x :
451
  m1 !! i = None  <[i:=x]> m1  m2  m1  delete i m2.
452
Proof.
453 454 455 456
  rewrite !map_subseteq_spec. intros Hi Hix j y Hj.
  destruct (decide (i = j)) as [->|]; [congruence|].
  rewrite lookup_delete_ne by done.
  apply Hix; by rewrite lookup_insert_ne by done.
457 458
Qed.
Lemma delete_insert_subseteq {A} (m1 m2 : M A) i x :
459
  m1 !! i = Some x  delete i m1  m2  m1  <[i:=x]> m2.
460
Proof.
461 462
  rewrite !map_subseteq_spec.
  intros Hix Hi j y Hj. destruct (decide (i = j)) as [->|?].
463
  * rewrite lookup_insert. congruence.
464
  * rewrite lookup_insert_ne by done. apply Hi. by rewrite lookup_delete_ne.
465 466
Qed.
Lemma insert_delete_subset {A} (m1 m2 : M A) i x :
467
  m1 !! i = None  <[i:=x]> m1  m2  m1  delete i m2.
468
Proof.
469 470 471
  intros ? [Hm12 Hm21]; split; [eauto using insert_delete_subseteq|].
  contradict Hm21. apply delete_insert_subseteq; auto.
  eapply lookup_weaken, Hm12. by rewrite lookup_insert.
472 473
Qed.
Lemma insert_subset_inv {A} (m1 m2 : M A) i x :
474
  m1 !! i = None  <[i:=x]> m1  m2 
475 476 477
   m2', m2 = <[i:=x]>m2'  m1  m2'  m2' !! i = None.
Proof.
  intros Hi Hm1m2. exists (delete i m2). split_ands.
478
  * rewrite insert_delete. done. eapply lookup_weaken, strict_include; eauto.
479 480 481 482
    by rewrite lookup_insert.
  * eauto using insert_delete_subset.
  * by rewrite lookup_delete.
Qed.
483 484 485 486 487 488 489
Lemma fmap_insert {A B} (f : A  B) (m : M A) i x :
  f <$> <[i:=x]>m = <[i:=f x]>(f <$> m).
Proof.
  apply map_eq; intros i'; destruct (decide (i' = i)) as [->|].
  * by rewrite lookup_fmap, !lookup_insert.
  * by rewrite lookup_fmap, !lookup_insert_ne, lookup_fmap by done.
Qed.
490
Lemma insert_empty {A} i (x : A) : <[i:=x]> = {[i  x]}.
491
Proof. done. Qed.
492 493 494

(** ** Properties of the singleton maps *)
Lemma lookup_singleton_Some {A} i j (x y : A) :
495
  {[i  x]} !! j = Some y  i = j  x = y.
496
Proof.
497
  rewrite <-insert_empty,lookup_insert_Some, lookup_empty; intuition congruence.
498
Qed.
499 500 501
Lemma lookup_singleton_None {A} i j (x : A) : {[i  x]} !! j = None  i  j.
Proof. rewrite <-insert_empty,lookup_insert_None, lookup_empty; tauto. Qed.
Lemma lookup_singleton {A} i (x : A) : {[i  x]} !! i = Some x.
502
Proof. by rewrite lookup_singleton_Some. Qed.
503
Lemma lookup_singleton_ne {A} i j (x : A) : i  j  {[i  x]} !! j = None.
504
Proof. by rewrite lookup_singleton_None. Qed.
505
Lemma map_non_empty_singleton {A} i (x : A) : {[i  x]}  .
506 507 508 509
Proof.
  intros Hix. apply (f_equal (!! i)) in Hix.
  by rewrite lookup_empty, lookup_singleton in Hix.
Qed.
510
Lemma insert_singleton {A} i (x y : A) : <[i:=y]>{[i  x]} = {[i  y]}.
511
Proof.
512
  unfold singletonM, map_singleton, insert, map_insert.
513 514
  by rewrite <-partial_alter_compose.
Qed.
515
Lemma alter_singleton {A} (f : A  A) i x : alter f i {[i  x]} = {[i  f x]}.
516
Proof.
517
  intros. apply map_eq. intros i'. destruct (decide (i = i')) as [->|?].
518 519 520 521
  * by rewrite lookup_alter, !lookup_singleton.
  * by rewrite lookup_alter_ne, !lookup_singleton_ne.
Qed.
Lemma alter_singleton_ne {A} (f : A  A) i j x :
522
  i  j  alter f i {[j  x]} = {[j  x]}.
523
Proof.
524 525
  intros. apply map_eq; intros i'. by destruct (decide (i = i')) as [->|?];
    rewrite ?lookup_alter, ?lookup_singleton_ne, ?lookup_alter_ne by done.
526
Qed.
527 528 529 530
Lemma map_fmap_singleton {A B} (f : A  B) i x : f <$> {[i  x]} = {[i  f x]}.
Proof.
  by unfold singletonM, map_singleton; rewrite fmap_insert, map_fmap_empty.
Qed.
531

532 533 534 535 536
(** ** Properties of the map operations *)
Lemma fmap_empty {A B} (f : A  B) : f <$>  = .
Proof. apply map_empty; intros i. by rewrite lookup_fmap, lookup_empty. Qed.
Lemma omap_empty {A B} (f : A  option B) : omap f  = .
Proof. apply map_empty; intros i. by rewrite lookup_omap, lookup_empty. Qed.
537
Lemma omap_singleton {A B} (f : A  option B) i x y :
538
  f x = Some y  omap f {[ i  x ]} = {[ i  y ]}.
539 540 541 542 543
Proof.
  intros; apply map_eq; intros j; destruct (decide (i = j)) as [->|].
  * by rewrite lookup_omap, !lookup_singleton.
  * by rewrite lookup_omap, !lookup_singleton_ne.
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
544 545 546 547 548
Lemma map_fmap_id {A} (m : M A) : id <$> m = m.
Proof. apply map_eq; intros i; by rewrite lookup_fmap, option_fmap_id. Qed.
Lemma map_fmap_compose {A B C} (f : A  B) (g : B  C) (m : M A) :
  g  f <$> m = g <$> f <$> m.
Proof. apply map_eq; intros i; by rewrite !lookup_fmap,option_fmap_compose. Qed.
549 550 551 552 553 554
Lemma map_fmap_setoid_ext `{Equiv A, Equiv B} (f1 f2 : A  B) m :
  ( i x, m !! i = Some x  f1 x  f2 x)  f1 <$> m  f2 <$> m.
Proof.
  intros Hi i; rewrite !lookup_fmap.
  destruct (m !! i) eqn:?; constructor; eauto.
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
555 556 557 558 559 560
Lemma map_fmap_ext {A B} (f1 f2 : A  B) m :
  ( i x, m !! i = Some x  f1 x = f2 x)  f1 <$> m = f2 <$> m.
Proof.
  intros Hi; apply map_eq; intros i; rewrite !lookup_fmap.
  by destruct (m !! i) eqn:?; simpl; erewrite ?Hi by eauto.
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
561 562 563 564 565 566
Lemma omap_ext {A B} (f1 f2 : A  option B) m :
  ( i x, m !! i = Some x  f1 x = f2 x)  omap f1 m = omap f2 m.
Proof.
  intros Hi; apply map_eq; intros i; rewrite !lookup_omap.
  by destruct (m !! i) eqn:?; simpl; erewrite ?Hi by eauto.
Qed.
567

568 569
(** ** Properties of conversion to lists *)
Lemma map_to_list_unique {A} (m : M A) i x y :
570
  (i,x)  map_to_list m  (i,y)  map_to_list m  x = y.
571
Proof. rewrite !elem_of_map_to_list. congruence. Qed.
572
Lemma NoDup_fst_map_to_list {A} (m : M A) : NoDup ((map_to_list m).*1).
573
Proof. eauto using NoDup_fmap_fst, map_to_list_unique, NoDup_map_to_list. Qed.
574 575 576 577 578 579 580 581 582 583
Lemma elem_of_map_of_list_1_help {A} (l : list (K * A)) i x :
  (i,x)  l  ( y, (i,y)  l  y = x)  map_of_list l !! i = Some x.
Proof.
  induction l as [|[j y] l IH]; csimpl; [by rewrite elem_of_nil|].
  setoid_rewrite elem_of_cons.
  intros [?|?] Hdup; simplify_equality; [by rewrite lookup_insert|].
  destruct (decide (i = j)) as [->|].
  * rewrite lookup_insert; f_equal; eauto.
  * rewrite lookup_insert_ne by done; eauto.
Qed.
584
Lemma elem_of_map_of_list_1 {A} (l : list (K * A)) i x :
585
  NoDup (l.*1)  (i,x)  l  map_of_list l !! i = Some x.
586
Proof.
587 588
  intros ? Hx; apply elem_of_map_of_list_1_help; eauto using NoDup_fmap_fst.
  intros y; revert Hx. rewrite !elem_of_list_lookup; intros [i' Hi'] [j' Hj'].
589
  cut (i' = j'); [naive_solver|]. apply NoDup_lookup with (l.*1) i;
590
    by rewrite ?list_lookup_fmap, ?Hi', ?Hj'.
591 592
Qed.
Lemma elem_of_map_of_list_2 {A} (l : list (K * A)) i x :
593
  map_of_list l !! i = Some x  (i,x)  l.
594
Proof.
595 596 597
  induction l as [|[j y] l IH]; simpl; [by rewrite lookup_empty|].
  rewrite elem_of_cons. destruct (decide (i = j)) as [->|];
    rewrite ?lookup_insert, ?lookup_insert_ne; intuition congruence.
598 599
Qed.
Lemma elem_of_map_of_list {A} (l : list (K * A)) i x :
600
  NoDup (l.*1)  (i,x)  l  map_of_list l !! i = Some x.
601
Proof. split; auto using elem_of_map_of_list_1, elem_of_map_of_list_2. Qed.
602
Lemma not_elem_of_map_of_list_1 {A} (l : list (K * A)) i :
603
  i  l.*1  map_of_list l !! i = None.
604
Proof.
605 606
  rewrite elem_of_list_fmap, eq_None_not_Some. intros Hi [x ?]; destruct Hi.
  exists (i,x); simpl; auto using elem_of_map_of_list_2.
607 608
Qed.
Lemma not_elem_of_map_of_list_2 {A} (l : list (K * A)) i :
609
  map_of_list l !! i = None  i  l.*1.
610
Proof.
611
  induction l as [|[j y] l IH]; csimpl; [rewrite elem_of_nil; tauto|].
612 613 614 615 616
  rewrite elem_of_cons. destruct (decide (i = j)); simplify_equality.
  * by rewrite lookup_insert.
  * by rewrite lookup_insert_ne; intuition.
Qed.
Lemma not_elem_of_map_of_list {A} (l : list (K * A)) i :
617
  i  l.*1  map_of_list l !! i = None.
618
Proof. red; auto using not_elem_of_map_of_list_1,not_elem_of_map_of_list_2. Qed.
619
Lemma map_of_list_proper {A} (l1 l2 : list (K * A)) :
620
  NoDup (l1.*1)  l1  l2  map_of_list l1 = map_of_list l2.
621 622 623 624 625
Proof.
  intros ? Hperm. apply map_eq. intros i. apply option_eq. intros x.
  by rewrite <-!elem_of_map_of_list; rewrite <-?Hperm.
Qed.
Lemma map_of_list_inj {A} (l1 l2 : list (K * A)) :
626
  NoDup (l1.*1)  NoDup (l2.*1)  map_of_list l1 = map_of_list l2  l1  l2.
627
Proof.
628
  intros ?? Hl1l2. apply NoDup_Permutation; auto using (NoDup_fmap_1 fst).
629 630
  intros [i x]. by rewrite !elem_of_map_of_list, Hl1l2.
Qed.
631
Lemma map_of_to_list {A} (m : M A) : map_of_list (map_to_list m) = m.
632 633 634
Proof.
  apply map_eq. intros i. apply option_eq. intros x.
  by rewrite <-elem_of_map_of_list, elem_of_map_to_list
635
    by auto using NoDup_fst_map_to_list.
636 637
Qed.
Lemma map_to_of_list {A} (l : list (K * A)) :
638
  NoDup (l.*1)  map_to_list (map_of_list l)  l.
639
Proof. auto using map_of_list_inj, NoDup_fst_map_to_list, map_of_to_list. Qed.
640
Lemma map_to_list_inj {A} (m1 m2 : M A) :
641
  map_to_list m1  map_to_list m2  m1 = m2.
642
Proof.
643
  intros. rewrite <-(map_of_to_list m1), <-(map_of_to_list m2).
644
  auto using map_of_list_proper, NoDup_fst_map_to_list.
645
Qed.
646 647 648 649 650 651
Lemma map_to_of_list_flip {A} (m1 : M A) l2 :
  map_to_list m1  l2  m1 = map_of_list l2.
Proof.
  intros. rewrite <-(map_of_to_list m1).
  auto using map_of_list_proper, NoDup_fst_map_to_list.
Qed.
652
Lemma map_to_list_empty {A} : map_to_list  = @nil (K * A).
653 654 655 656 657
Proof.
  apply elem_of_nil_inv. intros [i x].
  rewrite elem_of_map_to_list. apply lookup_empty_Some.
Qed.
Lemma map_to_list_insert {A} (m : M A) i x :
658
  m !! i = None  map_to_list (<[i:=x]>m)  (i,x) :: map_to_list m.
659
Proof.
660
  intros. apply map_of_list_inj; csimpl.
661 662
  * apply NoDup_fst_map_to_list.
  * constructor; auto using NoDup_fst_map_to_list.
663
    rewrite elem_of_list_fmap. intros [[??] [? Hlookup]]; subst; simpl in *.
664 665 666
    rewrite elem_of_map_to_list in Hlookup. congruence.
  * by rewrite !map_of_to_list.
Qed.
667
Lemma map_of_list_nil {A} : map_of_list (@nil (K * A)) = .
668 669 670 671
Proof. done. Qed.
Lemma map_of_list_cons {A} (l : list (K * A)) i x :
  map_of_list ((i, x) :: l) = <[i:=x]>(map_of_list l).
Proof. done. Qed.
672
Lemma map_to_list_empty_inv_alt {A}  (m : M A) : map_to_list m  []  m = .
673
Proof. rewrite <-map_to_list_empty. apply map_to_list_inj. Qed.
674
Lemma map_to_list_empty_inv {A} (m : M A) : map_to_list m = []  m = .
675 676
Proof. intros Hm. apply map_to_list_empty_inv_alt. by rewrite Hm. Qed.
Lemma map_to_list_insert_inv {A} (m : M A) l i x :
677
  map_to_list m  (i,x) :: l  m = <[i:=x]>(map_of_list l).
678 679
Proof.
  intros Hperm. apply map_to_list_inj.
680 681 682
  assert (i  l.*1  NoDup (l.*1)) as [].
  { rewrite <-NoDup_cons. change (NoDup (((i,x)::l).*1)). rewrite <-Hperm.
    auto using NoDup_fst_map_to_list. }
683 684 685
  rewrite Hperm, map_to_list_insert, map_to_of_list;
    auto using not_elem_of_map_of_list_1.
Qed.
686 687 688 689
Lemma map_choose {A} (m : M A) : m     i x, m !! i = Some x.
Proof.
  intros Hemp. destruct (map_to_list m) as [|[i x] l] eqn:Hm.
  { destruct Hemp; eauto using map_to_list_empty_inv. }
690
  exists i, x. rewrite <-elem_of_map_to_list, Hm. by left.
691
Qed.
692

693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709
(** Properties of the imap function *)
Lemma lookup_imap {A B} (f : K  A  option B) m i :
  map_imap f m !! i = m !! i = f i.
Proof.
  unfold map_imap; destruct (m !! i = f i) as [y|] eqn:Hi; simpl.
  * destruct (m !! i) as [x|] eqn:?; simplify_equality'.
    apply elem_of_map_of_list_1_help.
    { apply elem_of_list_omap; exists (i,x); split;
        [by apply elem_of_map_to_list|by simplify_option_equality]. }
    intros y'; rewrite elem_of_list_omap; intros ([i' x']&Hi'&?).
    by rewrite elem_of_map_to_list in Hi'; simplify_option_equality.
  * apply not_elem_of_map_of_list; rewrite elem_of_list_fmap.
    intros ([i' x]&->&Hi'); simplify_equality'.
    rewrite elem_of_list_omap in Hi'; destruct Hi' as ([j y]&Hj&?).
    rewrite elem_of_map_to_list in Hj; simplify_option_equality.
Qed.

710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726
(** ** Properties of conversion from collections *)
Lemma lookup_map_of_collection {A} `{FinCollection K C}
    (f : K  option A) X i x :
  map_of_collection f X !! i = Some x  i  X  f i = Some x.
Proof.
  assert (NoDup (fst <$> omap (λ i, (i,) <$> f i) (elements X))).
  { induction (NoDup_elements X) as [|i' l]; csimpl; [constructor|].
    destruct (f i') as [x'|]; csimpl; auto; constructor; auto.
    rewrite elem_of_list_fmap. setoid_rewrite elem_of_list_omap.
    by intros (?&?&?&?&?); simplify_option_equality. }
  unfold map_of_collection;