fin_maps.v 86.8 KB
Newer Older
1
(* Copyright (c) 2012-2017, Coq-std++ developers. *)
2
3
4
(* This file is distributed under the terms of the BSD license. *)
(** Finite maps associate data to keys. This file defines an interface for
finite maps and collects some theory on it. Most importantly, it proves useful
5
induction principles for finite maps and implements the tactic
6
[simplify_map_eq] to simplify goals involving finite maps. *)
7
From Coq Require Import Permutation.
8
From stdpp Require Export relations orders vector fin_collections.
9
10
(* FIXME: This file needs a 'Proof Using' hint, but the default we use
   everywhere makes for lots of extra ssumptions. *)
11

12
13
(** * Axiomatization of finite maps *)
(** We require Leibniz equality to be extensional on finite maps. This of
14
15
16
17
18
course limits the space of finite map implementations, but since we are mainly
interested in finite maps with numbers as indexes, we do not consider this to
be a serious limitation. The main application of finite maps is to implement
the memory, where extensionality of Leibniz equality is very important for a
convenient use in the assertions of our axiomatic semantics. *)
19

Robbert Krebbers's avatar
Robbert Krebbers committed
20
21
(** Finiteness is axiomatized by requiring that each map can be translated
to an association list. The translation to association lists is used to
22
prove well founded recursion on finite maps. *)
23

24
25
26
(** Finite map implementations are required to implement the [merge] function
which enables us to give a generic implementation of [union_with],
[intersection_with], and [difference_with]. *)
27

28
Class FinMapToList K A M := map_to_list: M  list (K * A).
29
30
Hint Mode FinMapToList ! - - : typeclass_instances.
Hint Mode FinMapToList - - ! : typeclass_instances.
Robbert Krebbers's avatar
Robbert Krebbers committed
31

32
33
Class FinMap K M `{FMap M,  A, Lookup K A (M A),  A, Empty (M A),  A,
    PartialAlter K A (M A), OMap M, Merge M,  A, FinMapToList K A (M A),
34
    EqDecision K} := {
35
36
  map_eq {A} (m1 m2 : M A) : ( i, m1 !! i = m2 !! i)  m1 = m2;
  lookup_empty {A} i : ( : M A) !! i = None;
37
38
39
40
  lookup_partial_alter {A} f (m : M A) i :
    partial_alter f i m !! i = f (m !! i);
  lookup_partial_alter_ne {A} f (m : M A) i j :
    i  j  partial_alter f i m !! j = m !! j;
41
  lookup_fmap {A B} (f : A  B) (m : M A) i : (f <$> m) !! i = f <$> m !! i;
42
  NoDup_map_to_list {A} (m : M A) : NoDup (map_to_list m);
43
44
  elem_of_map_to_list {A} (m : M A) i x :
    (i,x)  map_to_list m  m !! i = Some x;
45
  lookup_omap {A B} (f : A  option B) m i : omap f m !! i = m !! i = f;
46
  lookup_merge {A B C} (f: option A  option B  option C) `{!DiagNone f} m1 m2 i :
47
    merge f m1 m2 !! i = f (m1 !! i) (m2 !! i)
Robbert Krebbers's avatar
Robbert Krebbers committed
48
49
}.

50
51
52
(** * Derived operations *)
(** All of the following functions are defined in a generic way for arbitrary
finite map implementations. These generic implementations do not cause a
53
54
significant performance loss, which justifies including them in the finite map
interface as primitive operations. *)
55
56
57
58
59
60
61
62
63
64
Instance map_insert `{PartialAlter K A M} : Insert K A M :=
  λ i x, partial_alter (λ _, Some x) i.
Instance map_alter `{PartialAlter K A M} : Alter K A M :=
  λ f, partial_alter (fmap f).
Instance map_delete `{PartialAlter K A M} : Delete K M :=
  partial_alter (λ _, None).
Instance map_singleton `{PartialAlter K A M, Empty M} :
  SingletonM K A M := λ i x, <[i:=x]> .

Definition map_of_list `{Insert K A M, Empty M} : list (K * A)  M :=
65
  fold_right (λ p, <[p.1:=p.2]>) .
66
67
68
69
70
71
72

Definition map_to_collection `{FinMapToList K A M,
    Singleton B C, Empty C, Union C} (f : K  A  B) (m : M) : C :=
  of_list (curry f <$> map_to_list m).
Definition map_of_collection `{Elements B C, Insert K A M, Empty M}
    (f : B  K * A) (X : C) : M :=
  map_of_list (f <$> elements X).
Robbert Krebbers's avatar
Robbert Krebbers committed
73

74
75
76
77
78
79
Instance map_union_with `{Merge M} {A} : UnionWith A (M A) :=
  λ f, merge (union_with f).
Instance map_intersection_with `{Merge M} {A} : IntersectionWith A (M A) :=
  λ f, merge (intersection_with f).
Instance map_difference_with `{Merge M} {A} : DifferenceWith A (M A) :=
  λ f, merge (difference_with f).
Robbert Krebbers's avatar
Robbert Krebbers committed
80

81
Instance map_equiv `{ A, Lookup K A (M A), Equiv A} : Equiv (M A) | 18 :=
82
  λ m1 m2,  i, m1 !! i  m2 !! i.
Robbert Krebbers's avatar
Robbert Krebbers committed
83

84
85
(** The relation [intersection_forall R] on finite maps describes that the
relation [R] holds for each pair in the intersection. *)
86
Definition map_Forall `{Lookup K A M} (P : K  A  Prop) : M  Prop :=
Robbert Krebbers's avatar
Robbert Krebbers committed
87
  λ m,  i x, m !! i = Some x  P i x.
88
Definition map_relation `{ A, Lookup K A (M A)} {A B} (R : A  B  Prop)
Robbert Krebbers's avatar
Robbert Krebbers committed
89
90
    (P : A  Prop) (Q : B  Prop) (m1 : M A) (m2 : M B) : Prop :=  i,
  option_relation R P Q (m1 !! i) (m2 !! i).
91
Definition map_included `{ A, Lookup K A (M A)} {A}
Robbert Krebbers's avatar
Robbert Krebbers committed
92
  (R : relation A) : relation (M A) := map_relation R (λ _, False) (λ _, True).
93
Definition map_disjoint `{ A, Lookup K A (M A)} {A} : relation (M A) :=
Robbert Krebbers's avatar
Robbert Krebbers committed
94
  map_relation (λ _ _, False) (λ _, True) (λ _, True).
95
Infix "##ₘ" := map_disjoint (at level 70) : stdpp_scope.
96
Hint Extern 0 (_ ## _) => symmetry; eassumption.
97
98
Notation "( m ##ₘ.)" := (map_disjoint m) (only parsing) : stdpp_scope.
Notation "(.##ₘ m )" := (λ m2, m2 ## m) (only parsing) : stdpp_scope.
99
Instance map_subseteq `{ A, Lookup K A (M A)} {A} : SubsetEq (M A) :=
Robbert Krebbers's avatar
Robbert Krebbers committed
100
  map_included (=).
Robbert Krebbers's avatar
Robbert Krebbers committed
101
102
103
104
105

(** The union of two finite maps only has a meaningful definition for maps
that are disjoint. However, as working with partial functions is inconvenient
in Coq, we define the union as a total function. In case both finite maps
have a value at the same index, we take the value of the first map. *)
106
Instance map_union `{Merge M} {A} : Union (M A) := union_with (λ x _, Some x).
107
108
109
Instance map_intersection `{Merge M} {A} : Intersection (M A) :=
  intersection_with (λ x _, Some x).

110
111
(** The difference operation removes all values from the first map whose
index contains a value in the second map as well. *)
112
Instance map_difference `{Merge M} {A} : Difference (M A) :=
113
  difference_with (λ _ _, None).
Robbert Krebbers's avatar
Robbert Krebbers committed
114

115
116
(** A stronger variant of map that allows the mapped function to use the index
of the elements. Implemented by conversion to lists, so not very efficient. *)
117
118
Definition map_imap `{ A, Insert K A (M A),  A, Empty (M A),
     A, FinMapToList K A (M A)} {A B} (f : K  A  option B) (m : M A) : M B :=
119
120
  map_of_list (omap (λ ix, (fst ix,) <$> curry f ix) (map_to_list m)).

121
122
123
124
125
126
127
(* The zip operation on maps combines two maps key-wise. The keys of resulting
map correspond to the keys that are in both maps. *)
Definition map_zip_with `{Merge M} {A B C} (f : A  B  C) : M A  M B  M C :=
  merge (λ mx my,
    match mx, my with Some x, Some y => Some (f x y) | _, _ => None end).
Notation map_zip := (map_zip_with pair).

128
129
130
131
132
(* Folds a function [f] over a map. The order in which the function is called
is unspecified. *)
Definition map_fold `{FinMapToList K A M} {B}
  (f : K  A  B  B) (b : B) : M  B := foldr (curry f) b  map_to_list.

133
Instance map_filter `{FinMapToList K A M, Insert K A M, Empty M} : Filter (K * A) M :=
134
135
  λ P _, map_fold (λ k v m, if decide (P (k,v)) then <[k := v]>m else m) .

136
137
138
139
(** * Theorems *)
Section theorems.
Context `{FinMap K M}.

Robbert Krebbers's avatar
Robbert Krebbers committed
140
141
(** ** Setoids *)
Section setoid.
142
  Context `{Equiv A}.
143

144
145
146
147
  Lemma map_equiv_lookup_l (m1 m2 : M A) i x :
    m1  m2  m1 !! i = Some x   y, m2 !! i = Some y  x  y.
  Proof. generalize (equiv_Some_inv_l (m1 !! i) (m2 !! i) x); naive_solver. Qed.

148
149
  Global Instance map_equivalence :
    Equivalence (() : relation A)  Equivalence (() : relation (M A)).
Robbert Krebbers's avatar
Robbert Krebbers committed
150
151
  Proof.
    split.
152
153
    - by intros m i.
    - by intros m1 m2 ? i.
154
    - by intros m1 m2 m3 ?? i; trans (m2 !! i).
Robbert Krebbers's avatar
Robbert Krebbers committed
155
  Qed.
156
157
  Global Instance lookup_proper (i : K) :
    Proper (() ==> ()) (lookup (M:=M A) i).
Robbert Krebbers's avatar
Robbert Krebbers committed
158
159
  Proof. by intros m1 m2 Hm. Qed.
  Global Instance partial_alter_proper :
160
    Proper ((() ==> ()) ==> (=) ==> () ==> ()) (partial_alter (M:=M A)).
Robbert Krebbers's avatar
Robbert Krebbers committed
161
162
163
164
165
166
  Proof.
    by intros f1 f2 Hf i ? <- m1 m2 Hm j; destruct (decide (i = j)) as [->|];
      rewrite ?lookup_partial_alter, ?lookup_partial_alter_ne by done;
      try apply Hf; apply lookup_proper.
  Qed.
  Global Instance insert_proper (i : K) :
167
    Proper (() ==> () ==> ()) (insert (M:=M A) i).
Robbert Krebbers's avatar
Robbert Krebbers committed
168
  Proof. by intros ???; apply partial_alter_proper; [constructor|]. Qed.
169
170
  Global Instance singleton_proper k :
    Proper (() ==> ()) (singletonM k : A  M A).
171
172
173
174
  Proof.
    intros ???; apply insert_proper; [done|].
    intros ?. rewrite lookup_empty; constructor.
  Qed.
175
176
  Global Instance delete_proper (i : K) :
    Proper (() ==> ()) (delete (M:=M A) i).
Robbert Krebbers's avatar
Robbert Krebbers committed
177
178
  Proof. by apply partial_alter_proper; [constructor|]. Qed.
  Global Instance alter_proper :
179
    Proper ((() ==> ()) ==> (=) ==> () ==> ()) (alter (A:=A) (M:=M A)).
Robbert Krebbers's avatar
Robbert Krebbers committed
180
181
182
183
  Proof.
    intros ?? Hf; apply partial_alter_proper.
    by destruct 1; constructor; apply Hf.
  Qed.
184
  Lemma merge_ext f g `{!DiagNone f, !DiagNone g} :
Robbert Krebbers's avatar
Robbert Krebbers committed
185
    (() ==> () ==> ())%signature f g 
186
    (() ==> () ==> ())%signature (merge (M:=M) f) (merge g).
Robbert Krebbers's avatar
Robbert Krebbers committed
187
188
189
190
  Proof.
    by intros Hf ?? Hm1 ?? Hm2 i; rewrite !lookup_merge by done; apply Hf.
  Qed.
  Global Instance union_with_proper :
191
    Proper ((() ==> () ==> ()) ==> () ==> () ==>()) (union_with (M:=M A)).
Robbert Krebbers's avatar
Robbert Krebbers committed
192
193
194
  Proof.
    intros ?? Hf ?? Hm1 ?? Hm2 i; apply (merge_ext _ _); auto.
    by do 2 destruct 1; first [apply Hf | constructor].
195
  Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
196
  Global Instance map_leibniz `{!LeibnizEquiv A} : LeibnizEquiv (M A).
197
  Proof. intros m1 m2 Hm; apply map_eq; intros i. apply leibniz_equiv, Hm. Qed.
198
199
  Lemma map_equiv_empty (m : M A) : m    m = .
  Proof.
200
201
202
    split; [intros Hm; apply map_eq; intros i|intros ->].
    - generalize (Hm i). by rewrite lookup_empty, equiv_None.
    - intros ?. rewrite lookup_empty; constructor.
203
  Qed.
204
205
206
207
208
  Global Instance map_fmap_proper `{Equiv B} (f : A  B) :
    Proper (() ==> ()) f  Proper (() ==> ()) (fmap (M:=M) f).
  Proof.
    intros ? m m' ? k; rewrite !lookup_fmap. by apply option_fmap_proper.
  Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
209
210
211
End setoid.

(** ** General properties *)
212
213
214
215
216
Lemma map_eq_iff {A} (m1 m2 : M A) : m1 = m2   i, m1 !! i = m2 !! i.
Proof. split. by intros ->. apply map_eq. Qed.
Lemma map_subseteq_spec {A} (m1 m2 : M A) :
  m1  m2   i x, m1 !! i = Some x  m2 !! i = Some x.
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
217
  unfold subseteq, map_subseteq, map_relation. split; intros Hm i;
218
219
    specialize (Hm i); destruct (m1 !! i), (m2 !! i); naive_solver.
Qed.
220
Global Instance map_included_preorder {A} (R : relation A) :
221
  PreOrder R  PreOrder (map_included R : relation (M A)).
222
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
223
  split; [intros m i; by destruct (m !! i); simpl|].
224
  intros m1 m2 m3 Hm12 Hm23 i; specialize (Hm12 i); specialize (Hm23 i).
225
  destruct (m1 !! i), (m2 !! i), (m3 !! i); simplify_eq/=;
226
    done || etrans; eauto.
227
Qed.
228
Global Instance map_subseteq_po : PartialOrder (() : relation (M A)).
229
Proof.
230
231
232
  split; [apply _|].
  intros m1 m2; rewrite !map_subseteq_spec.
  intros; apply map_eq; intros i; apply option_eq; naive_solver.
233
234
235
Qed.
Lemma lookup_weaken {A} (m1 m2 : M A) i x :
  m1 !! i = Some x  m1  m2  m2 !! i = Some x.
236
Proof. rewrite !map_subseteq_spec. auto. Qed.
237
238
239
240
241
242
Lemma lookup_weaken_is_Some {A} (m1 m2 : M A) i :
  is_Some (m1 !! i)  m1  m2  is_Some (m2 !! i).
Proof. inversion 1. eauto using lookup_weaken. Qed.
Lemma lookup_weaken_None {A} (m1 m2 : M A) i :
  m2 !! i = None  m1  m2  m1 !! i = None.
Proof.
243
244
  rewrite map_subseteq_spec, !eq_None_not_Some.
  intros Hm2 Hm [??]; destruct Hm2; eauto.
245
246
Qed.
Lemma lookup_weaken_inv {A} (m1 m2 : M A) i x y :
247
248
  m1 !! i = Some x  m1  m2  m2 !! i = Some y  x = y.
Proof. intros Hm1 ? Hm2. eapply lookup_weaken in Hm1; eauto. congruence. Qed.
249
250
251
252
253
254
Lemma lookup_ne {A} (m : M A) i j : m !! i  m !! j  i  j.
Proof. congruence. Qed.
Lemma map_empty {A} (m : M A) : ( i, m !! i = None)  m = .
Proof. intros Hm. apply map_eq. intros. by rewrite Hm, lookup_empty. Qed.
Lemma lookup_empty_is_Some {A} i : ¬is_Some (( : M A) !! i).
Proof. rewrite lookup_empty. by inversion 1. Qed.
255
Lemma lookup_empty_Some {A} i (x : A) : ¬( : M A) !! i = Some x.
256
257
Proof. by rewrite lookup_empty. Qed.
Lemma map_subset_empty {A} (m : M A) : m  .
258
259
260
Proof.
  intros [_ []]. rewrite map_subseteq_spec. intros ??. by rewrite lookup_empty.
Qed.
261
262
Lemma map_fmap_empty {A B} (f : A  B) : f <$> ( : M A) = .
Proof. by apply map_eq; intros i; rewrite lookup_fmap, !lookup_empty. Qed.
263

264
265
266
267
268
Lemma map_subset_alt {A} (m1 m2 : M A) :
  m1  m2  m1  m2   i, m1 !! i = None  is_Some (m2 !! i).
Proof.
  rewrite strict_spec_alt. split.
  - intros [? Heq]; split; [done|].
Robbert Krebbers's avatar
Robbert Krebbers committed
269
    destruct (decide (Exists (λ ix, m1 !! ix.1 = None) (map_to_list m2)))
270
271
272
273
274
275
276
277
278
279
      as [[[i x] [?%elem_of_map_to_list ?]]%Exists_exists
         |Hm%(not_Exists_Forall _)]; [eauto|].
    destruct Heq; apply (anti_symm _), map_subseteq_spec; [done|intros i x Hi].
    assert (is_Some (m1 !! i)) as [x' ?].
    { by apply not_eq_None_Some,
        (proj1 (Forall_forall _ _) Hm (i,x)), elem_of_map_to_list. }
    by rewrite <-(lookup_weaken_inv m1 m2 i x' x).
  - intros [? (i&?&x&?)]; split; [done|]. congruence.
Qed.

280
(** ** Properties of the [partial_alter] operation *)
281
282
283
Lemma partial_alter_ext {A} (f g : option A  option A) (m : M A) i :
  ( x, m !! i = x  f x = g x)  partial_alter f i m = partial_alter g i m.
Proof.
284
285
  intros. apply map_eq; intros j. by destruct (decide (i = j)) as [->|?];
    rewrite ?lookup_partial_alter, ?lookup_partial_alter_ne; auto.
286
287
Qed.
Lemma partial_alter_compose {A} f g (m : M A) i:
288
289
  partial_alter (f  g) i m = partial_alter f i (partial_alter g i m).
Proof.
290
291
  intros. apply map_eq. intros ii. by destruct (decide (i = ii)) as [->|?];
    rewrite ?lookup_partial_alter, ?lookup_partial_alter_ne.
292
Qed.
293
Lemma partial_alter_commute {A} f g (m : M A) i j :
294
  i  j  partial_alter f i (partial_alter g j m) =
295
296
    partial_alter g j (partial_alter f i m).
Proof.
297
298
299
300
  intros. apply map_eq; intros jj. destruct (decide (jj = j)) as [->|?].
  { by rewrite lookup_partial_alter_ne,
      !lookup_partial_alter, lookup_partial_alter_ne. }
  destruct (decide (jj = i)) as [->|?].
301
  - by rewrite lookup_partial_alter,
302
     !lookup_partial_alter_ne, lookup_partial_alter by congruence.
303
  - by rewrite !lookup_partial_alter_ne by congruence.
304
305
306
307
Qed.
Lemma partial_alter_self_alt {A} (m : M A) i x :
  x = m !! i  partial_alter (λ _, x) i m = m.
Proof.
308
309
  intros. apply map_eq. intros ii. by destruct (decide (i = ii)) as [->|];
    rewrite ?lookup_partial_alter, ?lookup_partial_alter_ne.
310
Qed.
311
Lemma partial_alter_self {A} (m : M A) i : partial_alter (λ _, m !! i) i m = m.
312
Proof. by apply partial_alter_self_alt. Qed.
313
Lemma partial_alter_subseteq {A} f (m : M A) i :
314
  m !! i = None  m  partial_alter f i m.
315
316
317
318
Proof.
  rewrite map_subseteq_spec. intros Hi j x Hj.
  rewrite lookup_partial_alter_ne; congruence.
Qed.
319
Lemma partial_alter_subset {A} f (m : M A) i :
320
  m !! i = None  is_Some (f (m !! i))  m  partial_alter f i m.
321
Proof.
322
323
  intros Hi Hfi. apply map_subset_alt; split; [by apply partial_alter_subseteq|].
  exists i. by rewrite lookup_partial_alter.
324
325
326
Qed.

(** ** Properties of the [alter] operation *)
327
Lemma lookup_alter {A} (f : A  A) (m : M A) i : alter f i m !! i = f <$> m !! i.
328
Proof. unfold alter. apply lookup_partial_alter. Qed.
329
330
Lemma lookup_alter_ne {A} (f : A  A) (m : M A) i j :
  i  j  alter f i m !! j = m !! j.
331
Proof. unfold alter. apply lookup_partial_alter_ne. Qed.
332
333
334
Lemma alter_ext {A} (f g : A  A) (m : M A) i :
  ( x, m !! i = Some x  f x = g x)  alter f i m = alter g i m.
Proof. intro. apply partial_alter_ext. intros [x|] ?; f_equal/=; auto. Qed.
335
336
337
338
339
340
341
342
343
Lemma alter_compose {A} (f g : A  A) (m : M A) i:
  alter (f  g) i m = alter f i (alter g i m).
Proof.
  unfold alter, map_alter. rewrite <-partial_alter_compose.
  apply partial_alter_ext. by intros [?|].
Qed.
Lemma alter_commute {A} (f g : A  A) (m : M A) i j :
  i  j  alter f i (alter g j m) = alter g j (alter f i m).
Proof. apply partial_alter_commute. Qed.
344
Lemma lookup_alter_Some {A} (f : A  A) (m : M A) i j y :
345
346
347
  alter f i m !! j = Some y 
    (i = j   x, m !! j = Some x  y = f x)  (i  j  m !! j = Some y).
Proof.
348
  destruct (decide (i = j)) as [->|?].
349
  - rewrite lookup_alter. naive_solver (simplify_option_eq; eauto).
350
  - rewrite lookup_alter_ne by done. naive_solver.
351
Qed.
352
Lemma lookup_alter_None {A} (f : A  A) (m : M A) i j :
353
354
  alter f i m !! j = None  m !! j = None.
Proof.
355
356
  by destruct (decide (i = j)) as [->|?];
    rewrite ?lookup_alter, ?fmap_None, ?lookup_alter_ne.
357
Qed.
358
Lemma lookup_alter_is_Some {A} (f : A  A) (m : M A) i j :
359
360
  is_Some (alter f i m !! j)  is_Some (m !! j).
Proof. by rewrite <-!not_eq_None_Some, lookup_alter_None. Qed.
361
Lemma alter_id {A} (f : A  A) (m : M A) i :
Robbert Krebbers's avatar
Robbert Krebbers committed
362
  ( x, m !! i = Some x  f x = x)  alter f i m = m.
363
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
364
  intros Hi; apply map_eq; intros j; destruct (decide (i = j)) as [->|?].
365
  { rewrite lookup_alter; destruct (m !! j); f_equal/=; auto. }
Robbert Krebbers's avatar
Robbert Krebbers committed
366
  by rewrite lookup_alter_ne by done.
367
Qed.
368
369
370
371
372
373
374
375
376
377
378
379
Lemma alter_mono {A} f (m1 m2 : M A) i : m1  m2  alter f i m1  alter f i m2.
Proof.
  rewrite !map_subseteq_spec. intros ? j x.
  rewrite !lookup_alter_Some. naive_solver.
Qed.
Lemma alter_strict_mono {A} f (m1 m2 : M A) i :
  m1  m2  alter f i m1  alter f i m2.
Proof.
  rewrite !map_subset_alt.
  intros [? (j&?&?)]; split; auto using alter_mono.
  exists j. by rewrite lookup_alter_None, lookup_alter_is_Some.
Qed.
380
381
382
383
384
385
386
387
388
389

(** ** Properties of the [delete] operation *)
Lemma lookup_delete {A} (m : M A) i : delete i m !! i = None.
Proof. apply lookup_partial_alter. Qed.
Lemma lookup_delete_ne {A} (m : M A) i j : i  j  delete i m !! j = m !! j.
Proof. apply lookup_partial_alter_ne. Qed.
Lemma lookup_delete_Some {A} (m : M A) i j y :
  delete i m !! j = Some y  i  j  m !! j = Some y.
Proof.
  split.
390
  - destruct (decide (i = j)) as [->|?];
391
      rewrite ?lookup_delete, ?lookup_delete_ne; intuition congruence.
392
  - intros [??]. by rewrite lookup_delete_ne.
393
Qed.
394
395
396
Lemma lookup_delete_is_Some {A} (m : M A) i j :
  is_Some (delete i m !! j)  i  j  is_Some (m !! j).
Proof. unfold is_Some; setoid_rewrite lookup_delete_Some; naive_solver. Qed.
397
398
399
Lemma lookup_delete_None {A} (m : M A) i j :
  delete i m !! j = None  i = j  m !! j = None.
Proof.
400
401
  destruct (decide (i = j)) as [->|?];
    rewrite ?lookup_delete, ?lookup_delete_ne; tauto.
402
403
404
405
406
407
408
409
410
Qed.
Lemma delete_empty {A} i : delete i ( : M A) = .
Proof. rewrite <-(partial_alter_self ) at 2. by rewrite lookup_empty. Qed.
Lemma delete_commute {A} (m : M A) i j :
  delete i (delete j m) = delete j (delete i m).
Proof. destruct (decide (i = j)). by subst. by apply partial_alter_commute. Qed.
Lemma delete_insert_ne {A} (m : M A) i j x :
  i  j  delete i (<[j:=x]>m) = <[j:=x]>(delete i m).
Proof. intro. by apply partial_alter_commute. Qed.
411
Lemma delete_notin {A} (m : M A) i : m !! i = None  delete i m = m.
412
Proof.
413
414
  intros. apply map_eq. intros j. by destruct (decide (i = j)) as [->|?];
    rewrite ?lookup_delete, ?lookup_delete_ne.
415
Qed.
416
417
418
Lemma delete_idemp {A} (m : M A) i :
  delete i (delete i m) = delete i m.
Proof. by setoid_rewrite <-partial_alter_compose. Qed.
419
420
421
422
423
424
425
426
427
Lemma delete_partial_alter {A} (m : M A) i f :
  m !! i = None  delete i (partial_alter f i m) = m.
Proof.
  intros. unfold delete, map_delete. rewrite <-partial_alter_compose.
  unfold compose. by apply partial_alter_self_alt.
Qed.
Lemma delete_insert {A} (m : M A) i x :
  m !! i = None  delete i (<[i:=x]>m) = m.
Proof. apply delete_partial_alter. Qed.
428
429
430
Lemma delete_insert_delete {A} (m : M A) i x :
  delete i (<[i:=x]>m) = delete i m.
Proof. by setoid_rewrite <-partial_alter_compose. Qed.
431
432
Lemma insert_delete {A} (m : M A) i x : <[i:=x]>(delete i m) = <[i:=x]> m.
Proof. symmetry; apply (partial_alter_compose (λ _, Some x)). Qed.
433
Lemma delete_subseteq {A} (m : M A) i : delete i m  m.
434
435
436
Proof.
  rewrite !map_subseteq_spec. intros j x. rewrite lookup_delete_Some. tauto.
Qed.
437
Lemma delete_subset {A} (m : M A) i : is_Some (m !! i)  delete i m  m.
438
Proof.
439
440
  intros [x ?]; apply map_subset_alt; split; [apply delete_subseteq|].
  exists i. rewrite lookup_delete; eauto.
441
Qed.
442
Lemma delete_mono {A} (m1 m2 : M A) i : m1  m2  delete i m1  delete i m2.
443
Proof.
444
445
  rewrite !map_subseteq_spec. intros ? j x.
  rewrite !lookup_delete_Some. intuition eauto.
446
447
448
449
450
Qed.

(** ** Properties of the [insert] operation *)
Lemma lookup_insert {A} (m : M A) i x : <[i:=x]>m !! i = Some x.
Proof. unfold insert. apply lookup_partial_alter. Qed.
451
Lemma lookup_insert_rev {A}  (m : M A) i x y : <[i:=x]>m !! i = Some y  x = y.
452
Proof. rewrite lookup_insert. congruence. Qed.
453
Lemma lookup_insert_ne {A} (m : M A) i j x : i  j  <[i:=x]>m !! j = m !! j.
454
Proof. unfold insert. apply lookup_partial_alter_ne. Qed.
455
456
Lemma insert_insert {A} (m : M A) i x y : <[i:=x]>(<[i:=y]>m) = <[i:=x]>m.
Proof. unfold insert, map_insert. by rewrite <-partial_alter_compose. Qed.
457
458
459
460
461
462
463
Lemma insert_commute {A} (m : M A) i j x y :
  i  j  <[i:=x]>(<[j:=y]>m) = <[j:=y]>(<[i:=x]>m).
Proof. apply partial_alter_commute. Qed.
Lemma lookup_insert_Some {A} (m : M A) i j x y :
  <[i:=x]>m !! j = Some y  (i = j  x = y)  (i  j  m !! j = Some y).
Proof.
  split.
464
  - destruct (decide (i = j)) as [->|?];
465
      rewrite ?lookup_insert, ?lookup_insert_ne; intuition congruence.
466
  - intros [[-> ->]|[??]]; [apply lookup_insert|]. by rewrite lookup_insert_ne.
467
Qed.
468
469
470
Lemma lookup_insert_is_Some {A} (m : M A) i j x :
  is_Some (<[i:=x]>m !! j)  i = j  i  j  is_Some (m !! j).
Proof. unfold is_Some; setoid_rewrite lookup_insert_Some; naive_solver. Qed.
471
472
473
Lemma lookup_insert_is_Some' {A} (m : M A) i j x :
  is_Some (<[i:=x]>m !! j)  i = j  is_Some (m !! j).
Proof. rewrite lookup_insert_is_Some. destruct (decide (i=j)); naive_solver. Qed.
474
475
476
Lemma lookup_insert_None {A} (m : M A) i j x :
  <[i:=x]>m !! j = None  m !! j = None  i  j.
Proof.
477
478
479
  split; [|by intros [??]; rewrite lookup_insert_ne].
  destruct (decide (i = j)) as [->|];
    rewrite ?lookup_insert, ?lookup_insert_ne; intuition congruence.
480
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
481
Lemma insert_id {A} (m : M A) i x : m !! i = Some x  <[i:=x]>m = m.
482
483
484
485
486
487
488
489
Proof.
  intros; apply map_eq; intros j; destruct (decide (i = j)) as [->|];
    by rewrite ?lookup_insert, ?lookup_insert_ne by done.
Qed.
Lemma insert_included {A} R `{!Reflexive R} (m : M A) i x :
  ( y, m !! i = Some y  R y x)  map_included R m (<[i:=x]>m).
Proof.
  intros ? j; destruct (decide (i = j)) as [->|].
490
491
  - rewrite lookup_insert. destruct (m !! j); simpl; eauto.
  - rewrite lookup_insert_ne by done. by destruct (m !! j); simpl.
492
Qed.
493
Lemma insert_empty {A} i (x : A) : <[i:=x]>( : M A) = {[i := x]}.
494
495
496
497
498
499
Proof. done. Qed.
Lemma insert_non_empty {A} (m : M A) i x : <[i:=x]>m  .
Proof.
  intros Hi%(f_equal (!! i)). by rewrite lookup_insert, lookup_empty in Hi.
Qed.

500
Lemma insert_subseteq {A} (m : M A) i x : m !! i = None  m  <[i:=x]>m.
501
Proof. apply partial_alter_subseteq. Qed.
502
Lemma insert_subset {A} (m : M A) i x : m !! i = None  m  <[i:=x]>m.
503
Proof. intro. apply partial_alter_subset; eauto. Qed.
504
505
506
507
508
Lemma insert_mono {A} (m1 m2 : M A) i x : m1  m2  <[i:=x]> m1  <[i:=x]>m2.
Proof.
  rewrite !map_subseteq_spec.
  intros Hm j y. rewrite !lookup_insert_Some. naive_solver.
Qed.
509
Lemma insert_subseteq_r {A} (m1 m2 : M A) i x :
510
  m1 !! i = None  m1  m2  m1  <[i:=x]>m2.
511
Proof.
512
  intros. trans (<[i:=x]> m1); eauto using insert_subseteq, insert_mono.
513
Qed.
514

515
Lemma insert_delete_subseteq {A} (m1 m2 : M A) i x :
516
  m1 !! i = None  <[i:=x]> m1  m2  m1  delete i m2.
517
Proof.
518
519
520
521
  rewrite !map_subseteq_spec. intros Hi Hix j y Hj.
  destruct (decide (i = j)) as [->|]; [congruence|].
  rewrite lookup_delete_ne by done.
  apply Hix; by rewrite lookup_insert_ne by done.
522
523
Qed.
Lemma delete_insert_subseteq {A} (m1 m2 : M A) i x :
524
  m1 !! i = Some x  delete i m1  m2  m1  <[i:=x]> m2.
525
Proof.
526
527
  rewrite !map_subseteq_spec.
  intros Hix Hi j y Hj. destruct (decide (i = j)) as [->|?].
528
529
  - rewrite lookup_insert. congruence.
  - rewrite lookup_insert_ne by done. apply Hi. by rewrite lookup_delete_ne.
530
531
Qed.
Lemma insert_delete_subset {A} (m1 m2 : M A) i x :
532
  m1 !! i = None  <[i:=x]> m1  m2  m1  delete i m2.
533
Proof.
534
535
536
  intros ? [Hm12 Hm21]; split; [eauto using insert_delete_subseteq|].
  contradict Hm21. apply delete_insert_subseteq; auto.
  eapply lookup_weaken, Hm12. by rewrite lookup_insert.
537
538
Qed.
Lemma insert_subset_inv {A} (m1 m2 : M A) i x :
539
  m1 !! i = None  <[i:=x]> m1  m2 
540
541
   m2', m2 = <[i:=x]>m2'  m1  m2'  m2' !! i = None.
Proof.
542
  intros Hi Hm1m2. exists (delete i m2). split_and?.
543
544
  - rewrite insert_delete, insert_id. done.
    eapply lookup_weaken, strict_include; eauto. by rewrite lookup_insert.
545
546
  - eauto using insert_delete_subset.
  - by rewrite lookup_delete.
547
548
549
550
Qed.

(** ** Properties of the singleton maps *)
Lemma lookup_singleton_Some {A} i j (x y : A) :
551
  ({[i := x]} : M A) !! j = Some y  i = j  x = y.
552
Proof.
553
  rewrite <-insert_empty,lookup_insert_Some, lookup_empty; intuition congruence.
554
Qed.
555
556
Lemma lookup_singleton_None {A} i j (x : A) :
  ({[i := x]} : M A) !! j = None  i  j.
557
Proof. rewrite <-insert_empty,lookup_insert_None, lookup_empty; tauto. Qed.
558
Lemma lookup_singleton {A} i (x : A) : ({[i := x]} : M A) !! i = Some x.
559
Proof. by rewrite lookup_singleton_Some. Qed.
560
561
Lemma lookup_singleton_ne {A} i j (x : A) :
  i  j  ({[i := x]} : M A) !! j = None.
562
Proof. by rewrite lookup_singleton_None. Qed.
563
Lemma map_non_empty_singleton {A} i (x : A) : {[i := x]}  ( : M A).
564
565
566
567
Proof.
  intros Hix. apply (f_equal (!! i)) in Hix.
  by rewrite lookup_empty, lookup_singleton in Hix.
Qed.
568
Lemma insert_singleton {A} i (x y : A) : <[i:=y]>({[i := x]} : M A) = {[i := y]}.
569
Proof.
570
  unfold singletonM, map_singleton, insert, map_insert.
571
572
  by rewrite <-partial_alter_compose.
Qed.
573
574
Lemma alter_singleton {A} (f : A  A) i x :
  alter f i ({[i := x]} : M A) = {[i := f x]}.
575
Proof.
576
  intros. apply map_eq. intros i'. destruct (decide (i = i')) as [->|?].
577
578
  - by rewrite lookup_alter, !lookup_singleton.
  - by rewrite lookup_alter_ne, !lookup_singleton_ne.
579
580
Qed.
Lemma alter_singleton_ne {A} (f : A  A) i j x :
581
  i  j  alter f i ({[j := x]} : M A) = {[j := x]}.
582
Proof.
583
584
  intros. apply map_eq; intros i'. by destruct (decide (i = i')) as [->|?];
    rewrite ?lookup_alter, ?lookup_singleton_ne, ?lookup_alter_ne by done.
585
Qed.
586
Lemma singleton_non_empty {A} i (x : A) : {[i:=x]}  ( : M A).
587
Proof. apply insert_non_empty. Qed.
588
Lemma delete_singleton {A} i (x : A) : delete i {[i := x]} = ( : M A).
589
Proof. setoid_rewrite <-partial_alter_compose. apply delete_empty. Qed.
590
Lemma delete_singleton_ne {A} i j (x : A) :
591
  i  j  delete i ({[j := x]} : M A) = {[j := x]}.
592
Proof. intro. apply delete_notin. by apply lookup_singleton_ne. Qed.
593

594
595
596
597
598
(** ** Properties of the map operations *)
Lemma fmap_empty {A B} (f : A  B) : f <$>  = .
Proof. apply map_empty; intros i. by rewrite lookup_fmap, lookup_empty. Qed.
Lemma omap_empty {A B} (f : A  option B) : omap f  = .
Proof. apply map_empty; intros i. by rewrite lookup_omap, lookup_empty. Qed.
599
600
601
Lemma fmap_insert {A B} (f: A  B) m i x: f <$> <[i:=x]>m = <[i:=f x]>(f <$> m).
Proof.
  apply map_eq; intros i'; destruct (decide (i' = i)) as [->|].
602
603
  - by rewrite lookup_fmap, !lookup_insert.
  - by rewrite lookup_fmap, !lookup_insert_ne, lookup_fmap by done.
604
Qed.
605
606
607
608
609
610
Lemma fmap_delete {A B} (f: A  B) m i: f <$> delete i m = delete i (f <$> m).
Proof.
  apply map_eq; intros i'; destruct (decide (i' = i)) as [->|].
  - by rewrite lookup_fmap, !lookup_delete.
  - by rewrite lookup_fmap, !lookup_delete_ne, lookup_fmap by done.
Qed.
611
612
613
614
Lemma omap_insert {A B} (f : A  option B) m i x y :
  f x = Some y  omap f (<[i:=x]>m) = <[i:=y]>(omap f m).
Proof.
  intros; apply map_eq; intros i'; destruct (decide (i' = i)) as [->|].
615
616
  - by rewrite lookup_omap, !lookup_insert.
  - by rewrite lookup_omap, !lookup_insert_ne, lookup_omap by done.
617
Qed.
618
Lemma map_fmap_singleton {A B} (f : A  B) i x : f <$> {[i := x]} = {[i := f x]}.
619
620
621
Proof.
  by unfold singletonM, map_singleton; rewrite fmap_insert, map_fmap_empty.
Qed.
622
Lemma omap_singleton {A B} (f : A  option B) i x y :
623
  f x = Some y  omap f {[ i := x ]} = {[ i := y ]}.
624
Proof.
625
626
  intros. unfold singletonM, map_singleton.
  by erewrite omap_insert, omap_empty by eauto.
627
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
628
629
630
Lemma map_fmap_id {A} (m : M A) : id <$> m = m.
Proof. apply map_eq; intros i; by rewrite lookup_fmap, option_fmap_id. Qed.
Lemma map_fmap_compose {A B C} (f : A  B) (g : B  C) (m : M A) :
631
  g  f <$> m = g <$> (f <$> m).
Robbert Krebbers's avatar
Robbert Krebbers committed
632
Proof. apply map_eq; intros i; by rewrite !lookup_fmap,option_fmap_compose. Qed.
633
Lemma map_fmap_equiv_ext `{Equiv A, Equiv B} (f1 f2 : A  B) (m : M A) :
634
635
636
637
638
  ( i x, m !! i = Some x  f1 x  f2 x)  f1 <$> m  f2 <$> m.
Proof.
  intros Hi i; rewrite !lookup_fmap.
  destruct (m !! i) eqn:?; constructor; eauto.
Qed.
639
Lemma map_fmap_ext {A B} (f1 f2 : A  B) (m : M A) :
Robbert Krebbers's avatar
Robbert Krebbers committed
640
641
642
643
644
  ( i x, m !! i = Some x  f1 x = f2 x)  f1 <$> m = f2 <$> m.
Proof.
  intros Hi; apply map_eq; intros i; rewrite !lookup_fmap.
  by destruct (m !! i) eqn:?; simpl; erewrite ?Hi by eauto.
Qed.
645
Lemma omap_ext {A B} (f1 f2 : A  option B) (m : M A) :
Robbert Krebbers's avatar
Robbert Krebbers committed
646
647
648
649
650
  ( i x, m !! i = Some x  f1 x = f2 x)  omap f1 m = omap f2 m.
Proof.
  intros Hi; apply map_eq; intros i; rewrite !lookup_omap.
  by destruct (m !! i) eqn:?; simpl; erewrite ?Hi by eauto.
Qed.
651

652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
Lemma map_fmap_mono {A B} (f : A  B) (m1 m2 : M A) :
  m1  m2  f <$> m1  f <$> m2.
Proof.
  rewrite !map_subseteq_spec; intros Hm i x.
  rewrite !lookup_fmap, !fmap_Some. naive_solver.
Qed.
Lemma map_fmap_strict_mono {A B} (f : A  B) (m1 m2 : M A) :
  m1  m2  f <$> m1  f <$> m2.
Proof.
  rewrite !map_subset_alt.
  intros [? (j&?&?)]; split; auto using map_fmap_mono.
  exists j. by rewrite !lookup_fmap, fmap_None, fmap_is_Some.
Qed.
Lemma map_omap_mono {A B} (f : A  option B) (m1 m2 : M A) :
  m1  m2  omap f m1  omap f m2.
Proof.
  rewrite !map_subseteq_spec; intros Hm i x.
  rewrite !lookup_omap, !bind_Some. naive_solver.
Qed.

672
(** ** Properties of conversion to lists *)
673
674
675
Lemma elem_of_map_to_list' {A} (m : M A) ix :
  ix  map_to_list m  m !! ix.1 = Some (ix.2).
Proof. destruct ix as [i x]. apply elem_of_map_to_list. Qed.
676
Lemma map_to_list_unique {A} (m : M A) i x y :
677
  (i,x)  map_to_list m  (i,y)  map_to_list m  x = y.
678
Proof. rewrite !elem_of_map_to_list. congruence. Qed.
679
Lemma NoDup_fst_map_to_list {A} (m : M A) : NoDup ((map_to_list m).*1).
680
Proof. eauto using NoDup_fmap_fst, map_to_list_unique, NoDup_map_to_list. Qed.
681
Lemma elem_of_map_of_list_1' {A} (l : list (K * A)) i x :
682
  ( y, (i,y)  l  x = y)  (i,x)  l  (map_of_list l : M A) !! i = Some x.
683
684
685
Proof.
  induction l as [|[j y] l IH]; csimpl; [by rewrite elem_of_nil|].
  setoid_rewrite elem_of_cons.
686
  intros Hdup [?|?]; simplify_eq; [by rewrite lookup_insert|].
687
  destruct (decide (i = j)) as [->|].