base.v 40.2 KB
Newer Older
Robbert Krebbers's avatar
Robbert Krebbers committed
1
(* Copyright (c) 2012-2015, Robbert Krebbers. *)
2 3 4 5 6
(* This file is distributed under the terms of the BSD license. *)
(** This file collects type class interfaces, notations, and general theorems
that are used throughout the whole development. Most importantly it contains
abstract interfaces for ordered structures, collections, and various other data
structures. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
7 8
Global Generalizable All Variables.
Global Set Automatic Coercions Import.
Robbert Krebbers's avatar
Robbert Krebbers committed
9
Global Set Asymmetric Patterns.
10
From Coq Require Export Morphisms RelationClasses List Bool Utf8 Program Setoid.
11
Obligation Tactic := idtac.
Robbert Krebbers's avatar
Robbert Krebbers committed
12

13
(** * General *)
14 15 16 17 18
(** Zipping lists. *)
Definition zip_with {A B C} (f : A  B  C) : list A  list B  list C :=
  fix go l1 l2 :=
  match l1, l2 with x1 :: l1, x2 :: l2 => f x1 x2 :: go l1 l2 | _ , _ => [] end.
Notation zip := (zip_with pair).
19

20 21
(** Ensure that [simpl] unfolds [id], [compose], and [flip] when fully
applied. *)
22
Arguments id _ _ /.
23
Arguments compose _ _ _ _ _ _ /.
24
Arguments flip _ _ _ _ _ _ /.
25 26
Arguments const _ _ _ _ /.
Typeclasses Transparent id compose flip const.
Robbert Krebbers's avatar
Robbert Krebbers committed
27
Instance: Params (@pair) 2.
28

29 30 31 32
(** Change [True] and [False] into notations in order to enable overloading.
We will use this in the file [assertions] to give [True] and [False] a
different interpretation in [assert_scope] used for assertions of our axiomatic
semantics. *)
33 34
Notation "'True'" := True : type_scope.
Notation "'False'" := False : type_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
35

36 37
Notation curry := prod_curry.
Notation uncurry := prod_uncurry.
38 39 40 41
Definition curry3 {A B C D} (f : A  B  C  D) (p : A * B * C) : D :=
  let '(a,b,c) := p in f a b c.
Definition curry4 {A B C D E} (f : A  B  C  D  E) (p : A * B * C * D) : E :=
  let '(a,b,c,d) := p in f a b c d.
42

43 44
(** Throughout this development we use [C_scope] for all general purpose
notations that do not belong to a more specific scope. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
45 46 47
Delimit Scope C_scope with C.
Global Open Scope C_scope.

48
(** Introduce some Haskell style like notations. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
49 50 51 52 53 54 55
Notation "(=)" := eq (only parsing) : C_scope.
Notation "( x =)" := (eq x) (only parsing) : C_scope.
Notation "(= x )" := (λ y, eq y x) (only parsing) : C_scope.
Notation "(≠)" := (λ x y, x  y) (only parsing) : C_scope.
Notation "( x ≠)" := (λ y, x  y) (only parsing) : C_scope.
Notation "(≠ x )" := (λ y, y  x) (only parsing) : C_scope.

56
Hint Extern 0 (_ = _) => reflexivity.
57
Hint Extern 100 (_  _) => discriminate.
Robbert Krebbers's avatar
Robbert Krebbers committed
58

59 60 61 62
Notation "(→)" := (λ A B, A  B) (only parsing) : C_scope.
Notation "( A →)" := (λ B, A  B) (only parsing) : C_scope.
Notation "(→ B )" := (λ A, A  B) (only parsing) : C_scope.

63
Notation "t $ r" := (t r)
64
  (at level 65, right associativity, only parsing) : C_scope.
65 66 67
Notation "($)" := (λ f x, f x) (only parsing) : C_scope.
Notation "($ x )" := (λ f, f x) (only parsing) : C_scope.

Robbert Krebbers's avatar
Robbert Krebbers committed
68 69 70 71
Infix "∘" := compose : C_scope.
Notation "(∘)" := compose (only parsing) : C_scope.
Notation "( f ∘)" := (compose f) (only parsing) : C_scope.
Notation "(∘ f )" := (λ g, compose g f) (only parsing) : C_scope.
72

73 74 75 76 77 78 79 80 81 82 83 84
Notation "(∧)" := and (only parsing) : C_scope.
Notation "( A ∧)" := (and A) (only parsing) : C_scope.
Notation "(∧ B )" := (λ A, A  B) (only parsing) : C_scope.

Notation "(∨)" := or (only parsing) : C_scope.
Notation "( A ∨)" := (or A) (only parsing) : C_scope.
Notation "(∨ B )" := (λ A, A  B) (only parsing) : C_scope.

Notation "(↔)" := iff (only parsing) : C_scope.
Notation "( A ↔)" := (iff A) (only parsing) : C_scope.
Notation "(↔ B )" := (λ A, A  B) (only parsing) : C_scope.

85 86 87 88 89 90 91 92 93
Hint Extern 0 (_  _) => reflexivity.
Hint Extern 0 (_  _) => symmetry; assumption.

Notation "( x ,)" := (pair x) (only parsing) : C_scope.
Notation "(, y )" := (λ x, (x,y)) (only parsing) : C_scope.

Notation "p .1" := (fst p) (at level 10, format "p .1").
Notation "p .2" := (snd p) (at level 10, format "p .2").

94 95
Definition fun_map {A A' B B'} (f : A' -> A) (g : B -> B')
  (h : A -> B) : A' -> B' := g  h  f.
96 97 98 99 100 101 102
Definition prod_map {A A' B B'} (f : A  A') (g : B  B')
  (p : A * B) : A' * B' := (f (p.1), g (p.2)).
Arguments prod_map {_ _ _ _} _ _ !_ /.
Definition prod_zip {A A' A'' B B' B''} (f : A  A'  A'') (g : B  B'  B'')
    (p : A * B) (q : A' * B') : A'' * B'' := (f (p.1) (q.1), g (p.2) (q.2)).
Arguments prod_zip {_ _ _ _ _ _} _ _ !_ !_ /.

103 104
(** Set convenient implicit arguments for [existT] and introduce notations. *)
Arguments existT {_ _} _ _.
105
Arguments proj1_sig {_ _} _.
Robbert Krebbers's avatar
Robbert Krebbers committed
106
Notation "x ↾ p" := (exist _ x p) (at level 20) : C_scope.
107
Notation "` x" := (proj1_sig x) (at level 10, format "` x") : C_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
108

109 110 111 112
(** * Type classes *)
(** ** Provable propositions *)
(** This type class collects provable propositions. It is useful to constraint
type classes by arbitrary propositions. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
113 114
Class PropHolds (P : Prop) := prop_holds: P.

115 116
Hint Extern 0 (PropHolds _) => assumption : typeclass_instances.
Instance: Proper (iff ==> iff) PropHolds.
117
Proof. repeat intro; trivial. Qed.
118 119 120

Ltac solve_propholds :=
  match goal with
121 122
  | |- PropHolds (?P) => apply _
  | |- ?P => change (PropHolds P); apply _
123 124 125 126 127 128 129
  end.

(** ** Decidable propositions *)
(** This type class by (Spitters/van der Weegen, 2011) collects decidable
propositions. For example to declare a parameter expressing decidable equality
on a type [A] we write [`{∀ x y : A, Decision (x = y)}] and use it by writing
[decide (x = y)]. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
130 131 132
Class Decision (P : Prop) := decide : {P} + {¬P}.
Arguments decide _ {_}.

133 134
(** ** Inhabited types *)
(** This type class collects types that are inhabited. *)
135
Class Inhabited (A : Type) : Type := populate { inhabitant : A }.
136 137 138
Arguments populate {_} _.

Instance unit_inhabited: Inhabited unit := populate ().
Robbert Krebbers's avatar
Robbert Krebbers committed
139
Instance bool_inhabated : Inhabited bool := populate true.
140 141 142
Instance list_inhabited {A} : Inhabited (list A) := populate [].
Instance prod_inhabited {A B} (iA : Inhabited A)
    (iB : Inhabited B) : Inhabited (A * B) :=
143
  match iA, iB with populate x, populate y => populate (x,y) end.
144
Instance sum_inhabited_l {A B} (iA : Inhabited A) : Inhabited (A + B) :=
145
  match iA with populate x => populate (inl x) end.
146
Instance sum_inhabited_r {A B} (iB : Inhabited A) : Inhabited (A + B) :=
147
  match iB with populate y => populate (inl y) end.
148 149
Instance option_inhabited {A} : Inhabited (option A) := populate None.

150 151 152 153 154 155
(** ** Proof irrelevant types *)
(** This type class collects types that are proof irrelevant. That means, all
elements of the type are equal. We use this notion only used for propositions,
but by universe polymorphism we can generalize it. *)
Class ProofIrrel (A : Type) : Prop := proof_irrel (x y : A) : x = y.

156 157 158
(** ** Setoid equality *)
(** We define an operational type class for setoid equality. This is based on
(Spitters/van der Weegen, 2011). *)
Robbert Krebbers's avatar
Robbert Krebbers committed
159 160 161
Class Equiv A := equiv: relation A.
Infix "≡" := equiv (at level 70, no associativity) : C_scope.
Notation "(≡)" := equiv (only parsing) : C_scope.
162 163 164 165 166 167
Notation "( X ≡)" := (equiv X) (only parsing) : C_scope.
Notation "(≡ X )" := (λ Y, Y  X) (only parsing) : C_scope.
Notation "(≢)" := (λ X Y, ¬X  Y) (only parsing) : C_scope.
Notation "X ≢ Y":= (¬X  Y) (at level 70, no associativity) : C_scope.
Notation "( X ≢)" := (λ Y, X  Y) (only parsing) : C_scope.
Notation "(≢ X )" := (λ Y, Y  X) (only parsing) : C_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
168

169 170 171 172
(** The type class [LeibnizEquiv] collects setoid equalities that coincide
with Leibniz equality. We provide the tactic [fold_leibniz] to transform such
setoid equalities into Leibniz equalities, and [unfold_leibniz] for the
reverse. *)
173 174 175 176 177
Class LeibnizEquiv A `{Equiv A} := leibniz_equiv x y : x  y  x = y.
Lemma leibniz_equiv_iff `{LeibnizEquiv A, !Reflexive (@equiv A _)} (x y : A) :
  x  y  x = y.
Proof. split. apply leibniz_equiv. intros ->; reflexivity. Qed.
 
178 179 180
Ltac fold_leibniz := repeat
  match goal with
  | H : context [ @equiv ?A _ _ _ ] |- _ =>
181
    setoid_rewrite (leibniz_equiv_iff (A:=A)) in H
182
  | |- context [ @equiv ?A _ _ _ ] =>
183
    setoid_rewrite (leibniz_equiv_iff (A:=A))
184 185 186 187
  end.
Ltac unfold_leibniz := repeat
  match goal with
  | H : context [ @eq ?A _ _ ] |- _ =>
188
    setoid_rewrite <-(leibniz_equiv_iff (A:=A)) in H
189
  | |- context [ @eq ?A _ _ ] =>
190
    setoid_rewrite <-(leibniz_equiv_iff (A:=A))
191 192
  end.

193 194
Definition equivL {A} : Equiv A := (=).

195 196 197 198 199 200 201 202
(** A [Params f n] instance forces the setoid rewriting mechanism not to
rewrite in the first [n] arguments of the function [f]. We will declare such
instances for all operational type classes in this development. *)
Instance: Params (@equiv) 2.

(** The following instance forces [setoid_replace] to use setoid equality
(for types that have an [Equiv] instance) rather than the standard Leibniz
equality. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
203
Instance equiv_default_relation `{Equiv A} : DefaultRelation () | 3.
204
Hint Extern 0 (_  _) => reflexivity.
205
Hint Extern 0 (_  _) => symmetry; assumption.
Robbert Krebbers's avatar
Robbert Krebbers committed
206

207
(** ** Operations on collections *)
208
(** We define operational type classes for the traditional operations and
209
relations on collections: the empty collection [∅], the union [(∪)],
210 211
intersection [(∩)], and difference [(∖)], the singleton [{[_]}], the subset
[(⊆)] and element of [(∈)] relation, and disjointess [(⊥)]. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
212 213 214
Class Empty A := empty: A.
Notation "∅" := empty : C_scope.

215 216 217
Class Top A := top : A.
Notation "⊤" := top : C_scope.

Robbert Krebbers's avatar
Robbert Krebbers committed
218
Class Union A := union: A  A  A.
219
Instance: Params (@union) 2.
Robbert Krebbers's avatar
Robbert Krebbers committed
220 221 222 223
Infix "∪" := union (at level 50, left associativity) : C_scope.
Notation "(∪)" := union (only parsing) : C_scope.
Notation "( x ∪)" := (union x) (only parsing) : C_scope.
Notation "(∪ x )" := (λ y, union y x) (only parsing) : C_scope.
224 225 226 227 228 229
Infix "∪*" := (zip_with ()) (at level 50, left associativity) : C_scope.
Notation "(∪*)" := (zip_with ()) (only parsing) : C_scope.
Infix "∪**" := (zip_with (zip_with ()))
  (at level 50, left associativity) : C_scope.
Infix "∪*∪**" := (zip_with (prod_zip () (*)))
  (at level 50, left associativity) : C_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
230

231
Definition union_list `{Empty A} `{Union A} : list A  A := fold_right () .
232 233 234
Arguments union_list _ _ _ !_ /.
Notation "⋃ l" := (union_list l) (at level 20, format "⋃  l") : C_scope.

Robbert Krebbers's avatar
Robbert Krebbers committed
235
Class Intersection A := intersection: A  A  A.
236
Instance: Params (@intersection) 2.
Robbert Krebbers's avatar
Robbert Krebbers committed
237 238 239 240 241 242
Infix "∩" := intersection (at level 40) : C_scope.
Notation "(∩)" := intersection (only parsing) : C_scope.
Notation "( x ∩)" := (intersection x) (only parsing) : C_scope.
Notation "(∩ x )" := (λ y, intersection y x) (only parsing) : C_scope.

Class Difference A := difference: A  A  A.
243
Instance: Params (@difference) 2.
Robbert Krebbers's avatar
Robbert Krebbers committed
244 245 246 247
Infix "∖" := difference (at level 40) : C_scope.
Notation "(∖)" := difference (only parsing) : C_scope.
Notation "( x ∖)" := (difference x) (only parsing) : C_scope.
Notation "(∖ x )" := (λ y, difference y x) (only parsing) : C_scope.
248 249 250 251 252 253
Infix "∖*" := (zip_with ()) (at level 40, left associativity) : C_scope.
Notation "(∖*)" := (zip_with ()) (only parsing) : C_scope.
Infix "∖**" := (zip_with (zip_with ()))
  (at level 40, left associativity) : C_scope.
Infix "∖*∖**" := (zip_with (prod_zip () (*)))
  (at level 50, left associativity) : C_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
254

255 256
Class Singleton A B := singleton: A  B.
Instance: Params (@singleton) 3.
257
Notation "{[ x ]}" := (singleton x) (at level 1) : C_scope.
258
Notation "{[ x ; y ; .. ; z ]}" :=
259 260 261 262 263 264
  (union .. (union (singleton x) (singleton y)) .. (singleton z))
  (at level 1) : C_scope.
Notation "{[ x , y ]}" := (singleton (x,y))
  (at level 1, y at next level) : C_scope.
Notation "{[ x , y , z ]}" := (singleton (x,y,z))
  (at level 1, y at next level, z at next level) : C_scope.
265

266
Class SubsetEq A := subseteq: relation A.
267
Instance: Params (@subseteq) 2.
Robbert Krebbers's avatar
Robbert Krebbers committed
268 269 270
Infix "⊆" := subseteq (at level 70) : C_scope.
Notation "(⊆)" := subseteq (only parsing) : C_scope.
Notation "( X ⊆ )" := (subseteq X) (only parsing) : C_scope.
271
Notation "( ⊆ X )" := (λ Y, Y  X) (only parsing) : C_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
272 273 274 275
Notation "X ⊈ Y" := (¬X  Y) (at level 70) : C_scope.
Notation "(⊈)" := (λ X Y, X  Y) (only parsing) : C_scope.
Notation "( X ⊈ )" := (λ Y, X  Y) (only parsing) : C_scope.
Notation "( ⊈ X )" := (λ Y, Y  X) (only parsing) : C_scope.
276 277 278 279 280 281 282
Infix "⊆*" := (Forall2 ()) (at level 70) : C_scope.
Notation "(⊆*)" := (Forall2 ()) (only parsing) : C_scope.
Infix "⊆**" := (Forall2 (*)) (at level 70) : C_scope.
Infix "⊆1*" := (Forall2 (λ p q, p.1  q.1)) (at level 70) : C_scope.
Infix "⊆2*" := (Forall2 (λ p q, p.2  q.2)) (at level 70) : C_scope.
Infix "⊆1**" := (Forall2 (λ p q, p.1 * q.1)) (at level 70) : C_scope.
Infix "⊆2**" := (Forall2 (λ p q, p.2 * q.2)) (at level 70) : C_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
283

284
Hint Extern 0 (_  _) => reflexivity.
285 286 287
Hint Extern 0 (_ * _) => reflexivity.
Hint Extern 0 (_ ** _) => reflexivity.

288 289
Definition strict {A} (R : relation A) : relation A := λ X Y, R X Y  ¬R Y X.
Instance: Params (@strict) 2.
290 291 292 293
Infix "⊂" := (strict ()) (at level 70) : C_scope.
Notation "(⊂)" := (strict ()) (only parsing) : C_scope.
Notation "( X ⊂ )" := (strict () X) (only parsing) : C_scope.
Notation "( ⊂ X )" := (λ Y, Y  X) (only parsing) : C_scope.
294 295 296 297
Notation "X ⊄  Y" := (¬X  Y) (at level 70) : C_scope.
Notation "(⊄)" := (λ X Y, X  Y) (only parsing) : C_scope.
Notation "( X ⊄ )" := (λ Y, X  Y) (only parsing) : C_scope.
Notation "( ⊄ X )" := (λ Y, Y  X) (only parsing) : C_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
298

299 300 301 302 303
(** The class [Lexico A] is used for the lexicographic order on [A]. This order
is used to create finite maps, finite sets, etc, and is typically different from
the order [(⊆)]. *)
Class Lexico A := lexico: relation A.

Robbert Krebbers's avatar
Robbert Krebbers committed
304
Class ElemOf A B := elem_of: A  B  Prop.
305
Instance: Params (@elem_of) 3.
Robbert Krebbers's avatar
Robbert Krebbers committed
306 307 308 309 310 311 312 313 314
Infix "∈" := elem_of (at level 70) : C_scope.
Notation "(∈)" := elem_of (only parsing) : C_scope.
Notation "( x ∈)" := (elem_of x) (only parsing) : C_scope.
Notation "(∈ X )" := (λ x, elem_of x X) (only parsing) : C_scope.
Notation "x ∉ X" := (¬x  X) (at level 80) : C_scope.
Notation "(∉)" := (λ x X, x  X) (only parsing) : C_scope.
Notation "( x ∉)" := (λ X, x  X) (only parsing) : C_scope.
Notation "(∉ X )" := (λ x, x  X) (only parsing) : C_scope.

Robbert Krebbers's avatar
Robbert Krebbers committed
315 316 317 318
Class Disjoint A := disjoint : A  A  Prop.
Instance: Params (@disjoint) 2.
Infix "⊥" := disjoint (at level 70) : C_scope.
Notation "(⊥)" := disjoint (only parsing) : C_scope.
319
Notation "( X ⊥.)" := (disjoint X) (only parsing) : C_scope.
320
Notation "(.⊥ X )" := (λ Y, Y  X) (only parsing) : C_scope.
321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345
Infix "⊥*" := (Forall2 ()) (at level 70) : C_scope.
Notation "(⊥*)" := (Forall2 ()) (only parsing) : C_scope.
Infix "⊥**" := (Forall2 (*)) (at level 70) : C_scope.
Infix "⊥1*" := (Forall2 (λ p q, p.1  q.1)) (at level 70) : C_scope.
Infix "⊥2*" := (Forall2 (λ p q, p.2  q.2)) (at level 70) : C_scope.
Infix "⊥1**" := (Forall2 (λ p q, p.1 * q.1)) (at level 70) : C_scope.
Infix "⊥2**" := (Forall2 (λ p q, p.2 * q.2)) (at level 70) : C_scope.
Hint Extern 0 (_  _) => symmetry; eassumption.
Hint Extern 0 (_ * _) => symmetry; eassumption.

Class DisjointE E A := disjointE : E  A  A  Prop.
Instance: Params (@disjointE) 4.
Notation "X ⊥{ Γ } Y" := (disjointE Γ X Y)
  (at level 70, format "X  ⊥{ Γ }  Y") : C_scope.
Notation "(⊥{ Γ } )" := (disjointE Γ) (only parsing, Γ at level 1) : C_scope.
Notation "Xs ⊥{ Γ }* Ys" := (Forall2 ({Γ}) Xs Ys)
  (at level 70, format "Xs  ⊥{ Γ }*  Ys") : C_scope.
Notation "(⊥{ Γ }* )" := (Forall2 ({Γ}))
  (only parsing, Γ at level 1) : C_scope.
Notation "X ⊥{ Γ1 , Γ2 , .. , Γ3 } Y" := (disjoint (pair .. (Γ1, Γ2) .. Γ3) X Y)
  (at level 70, format "X  ⊥{ Γ1 , Γ2 , .. , Γ3 }  Y") : C_scope.
Notation "Xs ⊥{ Γ1 , Γ2 , .. , Γ3 }* Ys" :=
  (Forall2 (disjoint (pair .. (Γ1, Γ2) .. Γ3)) Xs Ys)
  (at level 70, format "Xs  ⊥{ Γ1 ,  Γ2 , .. , Γ3 }*  Ys") : C_scope.
Hint Extern 0 (_ {_} _) => symmetry; eassumption.
346 347 348

Class DisjointList A := disjoint_list : list A  Prop.
Instance: Params (@disjoint_list) 2.
349
Notation "⊥ Xs" := (disjoint_list Xs) (at level 20, format "⊥  Xs") : C_scope.
350

351 352 353 354 355 356
Section disjoint_list.
  Context `{Disjoint A, Union A, Empty A}.
  Inductive disjoint_list_default : DisjointList A :=
    | disjoint_nil_2 :  (@nil A)
    | disjoint_cons_2 (X : A) (Xs : list A) : X   Xs   Xs   (X :: Xs).
  Global Existing Instance disjoint_list_default.
357

358
  Lemma disjoint_list_nil  :  @nil A  True.
359 360 361
  Proof. split; constructor. Qed.
  Lemma disjoint_list_cons X Xs :  (X :: Xs)  X   Xs   Xs.
  Proof. split. inversion_clear 1; auto. intros [??]. constructor; auto. Qed.
362
End disjoint_list.
363 364

Class Filter A B := filter:  (P : A  Prop) `{ x, Decision (P x)}, B  B.
365 366 367

(** ** Monadic operations *)
(** We define operational type classes for the monadic operations bind, join 
368 369 370
and fmap. We use these type classes merely for convenient overloading of
notations and do not formalize any theory on monads (we do not even define a
class with the monad laws). *)
371 372
Class MRet (M : Type  Type) := mret:  {A}, A  M A.
Arguments mret {_ _ _} _.
373
Instance: Params (@mret) 3.
374 375
Class MBind (M : Type  Type) := mbind :  {A B}, (A  M B)  M A  M B.
Arguments mbind {_ _ _ _} _ !_ /.
376
Instance: Params (@mbind) 4.
377
Class MJoin (M : Type  Type) := mjoin:  {A}, M (M A)  M A.
378
Arguments mjoin {_ _ _} !_ /.
379
Instance: Params (@mjoin) 3.
380 381
Class FMap (M : Type  Type) := fmap :  {A B}, (A  B)  M A  M B.
Arguments fmap {_ _ _ _} _ !_ /.
382
Instance: Params (@fmap) 4.
383 384
Class OMap (M : Type  Type) := omap:  {A B}, (A  option B)  M A  M B.
Arguments omap {_ _ _ _} _ !_ /.
385
Instance: Params (@omap) 4.
386

387 388 389 390 391 392
Notation "m ≫= f" := (mbind f m) (at level 60, right associativity) : C_scope.
Notation "( m ≫=)" := (λ f, mbind f m) (only parsing) : C_scope.
Notation "(≫= f )" := (mbind f) (only parsing) : C_scope.
Notation "(≫=)" := (λ m f, mbind f m) (only parsing) : C_scope.

Notation "x ← y ; z" := (y = (λ x : _, z))
Robbert Krebbers's avatar
Robbert Krebbers committed
393
  (at level 65, only parsing, right associativity) : C_scope.
394
Infix "<$>" := fmap (at level 60, right associativity) : C_scope.
395
Notation "' ( x1 , x2 ) ← y ; z" :=
396
  (y = (λ x : _, let ' (x1, x2) := x in z))
Robbert Krebbers's avatar
Robbert Krebbers committed
397
  (at level 65, only parsing, right associativity) : C_scope.
398
Notation "' ( x1 , x2 , x3 ) ← y ; z" :=
399
  (y = (λ x : _, let ' (x1,x2,x3) := x in z))
Robbert Krebbers's avatar
Robbert Krebbers committed
400
  (at level 65, only parsing, right associativity) : C_scope.
401
Notation "' ( x1 , x2 , x3  , x4 ) ← y ; z" :=
402
  (y = (λ x : _, let ' (x1,x2,x3,x4) := x in z))
Robbert Krebbers's avatar
Robbert Krebbers committed
403
  (at level 65, only parsing, right associativity) : C_scope.
404 405
Notation "' ( x1 , x2 , x3  , x4 , x5 ) ← y ; z" :=
  (y = (λ x : _, let ' (x1,x2,x3,x4,x5) := x in z))
Robbert Krebbers's avatar
Robbert Krebbers committed
406
  (at level 65, only parsing, right associativity) : C_scope.
407 408
Notation "' ( x1 , x2 , x3  , x4 , x5 , x6 ) ← y ; z" :=
  (y = (λ x : _, let ' (x1,x2,x3,x4,x5,x6) := x in z))
Robbert Krebbers's avatar
Robbert Krebbers committed
409
  (at level 65, only parsing, right associativity) : C_scope.
410

411 412 413 414 415
Notation "ps .*1" := (fmap (M:=list) fst ps)
  (at level 10, format "ps .*1").
Notation "ps .*2" := (fmap (M:=list) snd ps)
  (at level 10, format "ps .*2").

416
Class MGuard (M : Type  Type) :=
417 418 419
  mguard:  P {dec : Decision P} {A}, (P  M A)  M A.
Arguments mguard _ _ _ !_ _ _ /.
Notation "'guard' P ; o" := (mguard P (λ _, o))
Robbert Krebbers's avatar
Robbert Krebbers committed
420
  (at level 65, only parsing, right associativity) : C_scope.
421
Notation "'guard' P 'as' H ; o" := (mguard P (λ H, o))
Robbert Krebbers's avatar
Robbert Krebbers committed
422
  (at level 65, only parsing, right associativity) : C_scope.
423

424
(** ** Operations on maps *)
425 426
(** In this section we define operational type classes for the operations
on maps. In the file [fin_maps] we will axiomatize finite maps.
427
The function look up [m !! k] should yield the element at key [k] in [m]. *)
428
Class Lookup (K A M : Type) := lookup: K  M  option A.
429 430 431
Instance: Params (@lookup) 4.
Notation "m !! i" := (lookup i m) (at level 20) : C_scope.
Notation "(!!)" := lookup (only parsing) : C_scope.
432
Notation "( m !!)" := (λ i, m !! i) (only parsing) : C_scope.
433
Notation "(!! i )" := (lookup i) (only parsing) : C_scope.
434
Arguments lookup _ _ _ _ !_ !_ / : simpl nomatch.
435

436 437 438
(** The singleton map *)
Class SingletonM K A M := singletonM: K  A  M.
Instance: Params (@singletonM) 5.
439
Notation "{[ k := a ]}" := (singletonM k a) (at level 1) : C_scope.
440

441 442
(** The function insert [<[k:=a]>m] should update the element at key [k] with
value [a] in [m]. *)
443
Class Insert (K A M : Type) := insert: K  A  M  M.
Robbert Krebbers's avatar
Robbert Krebbers committed
444
Instance: Params (@insert) 5.
445 446
Notation "<[ k := a ]>" := (insert k a)
  (at level 5, right associativity, format "<[ k := a ]>") : C_scope.
447
Arguments insert _ _ _ _ !_ _ !_ / : simpl nomatch.
448

449 450 451
(** The function delete [delete k m] should delete the value at key [k] in
[m]. If the key [k] is not a member of [m], the original map should be
returned. *)
452
Class Delete (K M : Type) := delete: K  M  M.
Robbert Krebbers's avatar
Robbert Krebbers committed
453
Instance: Params (@delete) 4.
454
Arguments delete _ _ _ !_ !_ / : simpl nomatch.
455 456

(** The function [alter f k m] should update the value at key [k] using the
457
function [f], which is called with the original value. *)
458
Class Alter (K A M : Type) := alter: (A  A)  K  M  M.
459
Instance: Params (@alter) 5.
460
Arguments alter {_ _ _ _} _ !_ !_ / : simpl nomatch.
461 462

(** The function [alter f k m] should update the value at key [k] using the
463 464 465
function [f], which is called with the original value at key [k] or [None]
if [k] is not a member of [m]. The value at [k] should be deleted if [f] 
yields [None]. *)
466 467
Class PartialAlter (K A M : Type) :=
  partial_alter: (option A  option A)  K  M  M.
468
Instance: Params (@partial_alter) 4.
469
Arguments partial_alter _ _ _ _ _ !_ !_ / : simpl nomatch.
470 471 472

(** The function [dom C m] should yield the domain of [m]. That is a finite
collection of type [C] that contains the keys that are a member of [m]. *)
473 474 475
Class Dom (M C : Type) := dom: M  C.
Instance: Params (@dom) 3.
Arguments dom {_} _ {_} !_ / : simpl nomatch, clear implicits.
476 477

(** The function [merge f m1 m2] should merge the maps [m1] and [m2] by
478 479 480 481 482
constructing a new map whose value at key [k] is [f (m1 !! k) (m2 !! k)].*)
Class Merge (M : Type  Type) :=
  merge:  {A B C}, (option A  option B  option C)  M A  M B  M C.
Instance: Params (@merge) 4.
Arguments merge _ _ _ _ _ _ !_ !_ / : simpl nomatch.
483

484 485 486 487 488
(** The function [union_with f m1 m2] is supposed to yield the union of [m1]
and [m2] using the function [f] to combine values of members that are in
both [m1] and [m2]. *)
Class UnionWith (A M : Type) :=
  union_with: (A  A  option A)  M  M  M.
489
Instance: Params (@union_with) 3.
490
Arguments union_with {_ _ _} _ !_ !_ / : simpl nomatch.
491

492 493 494
(** Similarly for intersection and difference. *)
Class IntersectionWith (A M : Type) :=
  intersection_with: (A  A  option A)  M  M  M.
495
Instance: Params (@intersection_with) 3.
496 497
Arguments intersection_with {_ _ _} _ !_ !_ / : simpl nomatch.

498 499
Class DifferenceWith (A M : Type) :=
  difference_with: (A  A  option A)  M  M  M.
500
Instance: Params (@difference_with) 3.
501
Arguments difference_with {_ _ _} _ !_ !_ / : simpl nomatch.
Robbert Krebbers's avatar
Robbert Krebbers committed
502

503 504 505 506
Definition intersection_with_list `{IntersectionWith A M}
  (f : A  A  option A) : M  list M  M := fold_right (intersection_with f).
Arguments intersection_with_list _ _ _ _ _ !_ /.

507 508 509 510 511 512 513 514
Class LookupE (E K A M : Type) := lookupE: E  K  M  option A.
Instance: Params (@lookupE) 6.
Notation "m !!{ Γ } i" := (lookupE Γ i m)
  (at level 20, format "m  !!{ Γ }  i") : C_scope.
Notation "(!!{ Γ } )" := (lookupE Γ) (only parsing, Γ at level 1) : C_scope.
Arguments lookupE _ _ _ _ _ _ !_ !_ / : simpl nomatch.

Class InsertE (E K A M : Type) := insertE: E  K  A  M  M.
Robbert Krebbers's avatar
Robbert Krebbers committed
515
Instance: Params (@insertE) 6.
516 517 518 519
Notation "<[ k := a ]{ Γ }>" := (insertE Γ k a)
  (at level 5, right associativity, format "<[ k := a ]{ Γ }>") : C_scope.
Arguments insertE _ _ _ _ _ _ !_ _ !_ / : simpl nomatch.

520 521 522
(** ** Common properties *)
(** These operational type classes allow us to refer to common mathematical
properties in a generic way. For example, for injectivity of [(k ++)] it
523 524 525 526
allows us to write [inj (k ++)] instead of [app_inv_head k]. *)
Class Inj {A B} (R : relation A) (S : relation B) (f : A  B) : Prop :=
  inj x y : S (f x) (f y)  R x y.
Class Inj2 {A B C} (R1 : relation A) (R2 : relation B)
527
    (S : relation C) (f : A  B  C) : Prop :=
528
  inj2 x1 x2 y1 y2 : S (f x1 x2) (f y1 y2)  R1 x1 y1  R2 x2 y2.
529
Class Cancel {A B} (S : relation B) (f : A  B) (g : B  A) : Prop :=
530 531 532 533 534 535 536
  cancel :  x, S (f (g x)) x.
Class Surj {A B} (R : relation B) (f : A  B) :=
  surj y :  x, R (f x) y.
Class IdemP {A} (R : relation A) (f : A  A  A) : Prop :=
  idemp x : R (f x x) x.
Class Comm {A B} (R : relation A) (f : B  B  A) : Prop :=
  comm x y : R (f x y) (f y x).
537
Class LeftId {A} (R : relation A) (i : A) (f : A  A  A) : Prop :=
538
  left_id x : R (f i x) x.
539
Class RightId {A} (R : relation A) (i : A) (f : A  A  A) : Prop :=
540 541 542
  right_id x : R (f x i) x.
Class Assoc {A} (R : relation A) (f : A  A  A) : Prop :=
  assoc x y z : R (f x (f y z)) (f (f x y) z).
543
Class LeftAbsorb {A} (R : relation A) (i : A) (f : A  A  A) : Prop :=
544
  left_absorb x : R (f i x) i.
545
Class RightAbsorb {A} (R : relation A) (i : A) (f : A  A  A) : Prop :=
546 547 548
  right_absorb x : R (f x i) i.
Class AntiSymm {A} (R S : relation A) : Prop :=
  anti_symm x y : S x y  S y x  R x y.
549 550
Class Total {A} (R : relation A) := total x y : R x y  R y x.
Class Trichotomy {A} (R : relation A) :=
551
  trichotomy x y : R x y  x = y  R y x.
552
Class TrichotomyT {A} (R : relation A) :=
553
  trichotomyT x y : {R x y} + {x = y} + {R y x}.
Robbert Krebbers's avatar
Robbert Krebbers committed
554

555
Arguments irreflexivity {_} _ {_} _ _.
556 557
Arguments inj {_ _ _ _} _ {_} _ _ _.
Arguments inj2 {_ _ _ _ _ _} _ {_} _ _ _ _ _.
558
Arguments cancel {_ _ _} _ _ {_} _.
559 560 561
Arguments surj {_ _ _} _ {_} _.
Arguments idemp {_ _} _ {_} _.
Arguments comm {_ _ _} _ {_} _ _.
Robbert Krebbers's avatar
Robbert Krebbers committed
562 563
Arguments left_id {_ _} _ _ {_} _.
Arguments right_id {_ _} _ _ {_} _.
564
Arguments assoc {_ _} _ {_} _ _ _.
565 566
Arguments left_absorb {_ _} _ _ {_} _.
Arguments right_absorb {_ _} _ _ {_} _.
567
Arguments anti_symm {_ _} _ {_} _ _ _ _.
568 569 570
Arguments total {_} _ {_} _ _.
Arguments trichotomy {_} _ {_} _ _.
Arguments trichotomyT {_} _ {_} _ _.
571

572
Instance id_inj {A} : Inj (=) (=) (@id A).
573 574
Proof. intros ??; auto. Qed.

575 576 577
(** The following lemmas are specific versions of the projections of the above
type classes for Leibniz equality. These lemmas allow us to enforce Coq not to
use the setoid rewriting mechanism. *)
578
Lemma idemp_L {A} (f : A  A  A) `{!IdemP (=) f} x : f x x = x.
579
Proof. auto. Qed.
580
Lemma comm_L {A B} (f : B  B  A) `{!Comm (=) f} x y :
581
  f x y = f y x.
582
Proof. auto. Qed.
583
Lemma left_id_L {A} (i : A) (f : A  A  A) `{!LeftId (=) i f} x : f i x = x.
584
Proof. auto. Qed.
585
Lemma right_id_L {A} (i : A) (f : A  A  A) `{!RightId (=) i f} x : f x i = x.
586
Proof. auto. Qed.
587
Lemma assoc_L {A} (f : A  A  A) `{!Assoc (=) f} x y z :
588
  f x (f y z) = f (f x y) z.
589
Proof. auto. Qed.
590
Lemma left_absorb_L {A} (i : A) (f : A  A  A) `{!LeftAbsorb (=) i f} x :
591 592
  f i x = i.
Proof. auto. Qed.
593
Lemma right_absorb_L {A} (i : A) (f : A  A  A) `{!RightAbsorb (=) i f} x :
594 595
  f x i = i.
Proof. auto. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
596

597
(** ** Axiomatization of ordered structures *)
598 599
(** The classes [PreOrder], [PartialOrder], and [TotalOrder] use an arbitrary
relation [R] instead of [⊆] to support multiple orders on the same type. *)
600
Class PartialOrder {A} (R : relation A) : Prop := {
601
  partial_order_pre :> PreOrder R;
602
  partial_order_anti_symm :> AntiSymm (=) R
603 604
}.
Class TotalOrder {A} (R : relation A) : Prop := {
605 606
  total_order_partial :> PartialOrder R;
  total_order_trichotomy :> Trichotomy (strict R)
607 608
}.

609 610 611 612 613 614
(** We do not use a setoid equality in the following interfaces to avoid the
need for proofs that the relations and operations are proper. Instead, we
define setoid equality generically [λ X Y, X ⊆ Y ∧ Y ⊆ X]. *)
Class EmptySpec A `{Empty A, SubsetEq A} : Prop := subseteq_empty X :   X.
Class JoinSemiLattice A `{SubsetEq A, Union A} : Prop := {
  join_semi_lattice_pre :>> PreOrder ();
615 616 617
  union_subseteq_l X Y : X  X  Y;
  union_subseteq_r X Y : Y  X  Y;
  union_least X Y Z : X  Z  Y  Z  X  Y  Z
Robbert Krebbers's avatar
Robbert Krebbers committed
618
}.
619 620
Class MeetSemiLattice A `{SubsetEq A, Intersection A} : Prop := {
  meet_semi_lattice_pre :>> PreOrder ();
621 622 623
  intersection_subseteq_l X Y : X  Y  X;
  intersection_subseteq_r X Y : X  Y  Y;
  intersection_greatest X Y Z : Z  X  Z  Y  Z  X  Y
Robbert Krebbers's avatar
Robbert Krebbers committed
624
}.
625 626 627 628
Class Lattice A `{SubsetEq A, Union A, Intersection A} : Prop := {
  lattice_join :>> JoinSemiLattice A;
  lattice_meet :>> MeetSemiLattice A;
  lattice_distr X Y Z : (X  Y)  (X  Z)  X  (Y  Z)
629
}.
630

631
(** ** Axiomatization of collections *)
632 633
(** The class [SimpleCollection A C] axiomatizes a collection of type [C] with
elements of type [A]. *)
634 635
Class SimpleCollection A C `{ElemOf A C,
    Empty C, Singleton A C, Union C} : Prop := {
636
  not_elem_of_empty (x : A) : x  ;
637
  elem_of_singleton (x y : A) : x  {[ y ]}  x = y;
638 639
  elem_of_union X Y (x : A) : x  X  Y  x  X  x  Y
}.
640 641
Class Collection A C `{ElemOf A C, Empty C, Singleton A C,
    Union C, Intersection C, Difference C} : Prop := {
642
  collection_simple :>> SimpleCollection A C;
Robbert Krebbers's avatar
Robbert Krebbers committed
643
  elem_of_intersection X Y (x : A) : x  X  Y  x  X  x  Y;
644 645
  elem_of_difference X Y (x : A) : x  X  Y  x  X  x  Y
}.
646 647
Class CollectionOps A C `{ElemOf A C, Empty C, Singleton A C, Union C,
    Intersection C, Difference C, IntersectionWith A C, Filter A C} : Prop := {
648
  collection_ops :>> Collection A C;
649
  elem_of_intersection_with (f : A  A  option A) X Y (x : A) :
650
    x  intersection_with f X Y   x1 x2, x1  X  x2  Y  f x1 x2 = Some x;
651
  elem_of_filter X P `{ x, Decision (P x)} x : x  filter P X  P x  x  X
Robbert Krebbers's avatar
Robbert Krebbers committed
652 653
}.

654 655 656
(** We axiomative a finite collection as a collection whose elements can be
enumerated as a list. These elements, given by the [elements] function, may be
in any order and should not contain duplicates. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
657
Class Elements A C := elements: C  list A.
658
Instance: Params (@elements) 3.
659 660 661 662 663 664 665 666 667 668 669 670 671

(** We redefine the standard library's [In] and [NoDup] using type classes. *)
Inductive elem_of_list {A} : ElemOf A (list A) :=
  | elem_of_list_here (x : A) l : x  x :: l
  | elem_of_list_further (x y : A) l : x  l  x  y :: l.
Existing Instance elem_of_list.

Inductive NoDup {A} : list A  Prop :=
  | NoDup_nil_2 : NoDup []
  | NoDup_cons_2 x l : x  l  NoDup l  NoDup (x :: l).

(** Decidability of equality of the carrier set is admissible, but we add it
anyway so as to avoid cycles in type class search. *)
672 673 674
Class FinCollection A C `{ElemOf A C, Empty C, Singleton A C,
    Union C, Intersection C, Difference C,
    Elements A C,  x y : A, Decision (x = y)} : Prop := {
Robbert Krebbers's avatar
Robbert Krebbers committed
675
  fin_collection :>> Collection A C;
676 677
  elem_of_elements X x : x  elements X  x  X;
  NoDup_elements X : NoDup (elements X)
678 679
}.
Class Size C := size: C  nat.
680
Arguments size {_ _} !_ / : simpl nomatch.
681
Instance: Params (@size) 2.
Robbert Krebbers's avatar
Robbert Krebbers committed
682

683 684 685 686 687 688 689 690
(** The class [Collection M] axiomatizes a type constructor [M] that can be
used to construct a collection [M A] with elements of type [A]. The advantage
of this class, compared to [Collection], is that it also axiomatizes the
the monadic operations. The disadvantage, is that not many inhabits are
possible (we will only provide an inhabitant using unordered lists without
duplicates removed). More interesting implementations typically need
decidability of equality, or a total order on the elements, which do not fit
in a type constructor of type [Type → Type]. *)
691 692 693
Class CollectionMonad M `{ A, ElemOf A (M A),
     A, Empty (M A),  A, Singleton A (M A),  A, Union (M A),
    !MBind M, !MRet M, !FMap M, !MJoin M} : Prop := {
694 695 696
  collection_monad_simple A :> SimpleCollection A (M A);
  elem_of_bind {A B} (f : A  M B) (X : M A) (x : B) :
    x  X = f   y, x  f y  y  X;
697
  elem_of_ret {A} (x y : A) : x  mret y  x = y;
698 699
  elem_of_fmap {A B} (f : A  B) (X : M A) (x : B) :
    x  f <$> X   y, x = f y  y  X;
700
  elem_of_join {A} (X : M (M A)) (x : A) : x  mjoin X   Y, x  Y  Y  X
701 702
}.

703 704 705
(** The function [fresh X] yields an element that is not contained in [X]. We
will later prove that [fresh] is [Proper] with respect to the induced setoid
equality on collections. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
706
Class Fresh A C := fresh: C  A.
707
Instance: Params (@fresh) 3.
708 709
Class FreshSpec A C `{ElemOf A C,
    Empty C, Singleton A C, Union C, Fresh A C} : Prop := {
710
  fresh_collection_simple :>> SimpleCollection A C;
711
  fresh_proper_alt X Y : ( x, x  X  x  Y)  fresh X = fresh Y;
Robbert Krebbers's avatar
Robbert Krebbers committed
712 713 714
  is_fresh (X : C) : fresh X  X
}.

715 716 717
(** * Booleans *)
(** The following coercion allows us to use Booleans as propositions. *)
Coercion Is_true : bool >-> Sortclass.
718
Hint Unfold Is_true.
719
Hint Immediate Is_true_eq_left.
720
Hint Resolve orb_prop_intro andb_prop_intro.
721 722 723 724 725 726 727 728 729 730 731
Notation "(&&)" := andb (only parsing).
Notation "(||)" := orb (only parsing).
Infix "&&*" := (zip_with (&&)) (at level 40).
Infix "||*" := (zip_with (||)) (at level 50).

Definition bool_le (β1 β2 : bool) : Prop := negb β1 || β2.
Infix "=.>" := bool_le (at level 70).
Infix "=.>*" := (Forall2 bool_le) (at level 70).
Instance: PartialOrder bool_le.
Proof. repeat split; repeat intros [|]; compute; tauto. Qed.

732 733 734 735 736 737 738 739 740
Lemma andb_True b1 b2 : b1 && b2  b1  b2.
Proof. destruct b1, b2; simpl; tauto. Qed.
Lemma orb_True b1 b2 : b1 || b2  b1  b2.
Proof. destruct b1, b2; simpl; tauto. Qed.
Lemma negb_True b : negb b  ¬b.
Proof. destruct b; simpl; tauto. Qed.
Lemma Is_true_false (b : bool) : b = false  ¬b.
Proof. now intros -> ?. Qed.

741
(** * Miscellaneous *)
742
Class Half A := half: A  A.
743 744
Notation "½" := half : C_scope.
Notation "½*" := (fmap (M:=list) half) : C_scope.
745

746 747
Lemma proj1_sig_inj {A} (P : A  Prop) x (Px : P x) y (Py : P y) :
  xPx = yPy  x = y.
748
Proof. injection 1; trivial. Qed.
749
Lemma not_symmetry `{R : relation A, !Symmetric R} x y : ¬R x y  ¬R y x.
750
Proof. intuition. Qed.
751
Lemma symmetry_iff `(R : relation A) `{!Symmetric R} x y : R x y  R y x.
752 753
Proof. intuition. Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
754 755 756 757 758
(** ** Unit *)
Instance unit_equiv : Equiv unit := λ _ _, True.
Instance unit_equivalence : Equivalence (@equiv unit _).
Proof. repeat split. Qed.

759
(** ** Products *)
760 761
Instance prod_map_inj {A A' B B'} (f : A  A') (g : B  B') :
  Inj (=) (=) f  Inj (=) (=) g  Inj (=) (=) (prod_map f g).
762 763
Proof.
  intros ?? [??] [??] ?; simpl in *; f_equal;
764
    [apply (inj f)|apply (inj g)]; congruence.
765
Qed.
766

767
Definition prod_relation {A B} (R1 : relation A) (R2 : relation B) :
768
  relation (A * B) := λ x y, R1 (x.1) (y.1)  R2 (x.2) (y.2).
Robbert Krebbers's avatar
Robbert Krebbers committed
769
Section prod_relation.
770
  Context `{R1 : relation A, R2 : relation B}.
771 772
  Global Instance:
    Reflexive R1  Reflexive R2  Reflexive (prod_relation R1 R2).
Robbert Krebbers's avatar
Robbert Krebbers committed
773
  Proof. firstorder eauto. Qed.
774 775
  Global Instance:
    Symmetric R1  Symmetric R2  Symmetric (prod_relation R1 R2).
Robbert Krebbers's avatar
Robbert Krebbers committed
776
  Proof. firstorder eauto. Qed.