base.v 59.4 KB
Newer Older
1 2
(** This file collects type class interfaces, notations, and general theorems
that are used throughout the whole development. Most importantly it contains
3
abstract interfaces for ordered structures, sets, and various other data
4
structures. *)
5

6 7 8 9 10 11
(** The order of this [Require Export] is important: The definition of [length]
in [List] should shadow the definition of [length] in [String]. We also need
to export [Datatypes] because [List] contains a [parsing only] notation for
[length], not the actual definition of [length], which is in [Datatypes]. *)
From Coq Require Export String Datatypes List.
From Coq Require Export Morphisms RelationClasses Bool Utf8 Setoid.
12
From Coq Require Import Permutation.
13
Set Default Proof Using "Type".
14 15
Export ListNotations.
From Coq.Program Require Export Basics Syntax.
16

17 18 19 20
(** TODO: This hack should be removed once we drop support for Coq 8.10. It is
needed for the transitive export/import bug that is fixed in Coq 8.11. *)
Notation length := Datatypes.length.

Ralf Jung's avatar
Ralf Jung committed
21 22
(** * Enable implicit generalization. *)
(** This option enables implicit generalization in arguments of the form
23 24 25 26 27 28
   `{...} (i.e., anonymous arguments).  Unfortunately, it also enables
   implicit generalization in `Instance`.  We think that the fact taht both
   behaviors are coupled together is a [bug in
   Coq](https://github.com/coq/coq/issues/6030). *)
Global Generalizable All Variables.

29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
(** * Tweak program *)
(** 1. Since we only use Program to solve logical side-conditions, they should
always be made Opaque, otherwise we end up with performance problems due to
Coq blindly unfolding them.

Note that in most cases we use [Next Obligation. (* ... *) Qed.], for which
this option does not matter. However, sometimes we write things like
[Solve Obligations with naive_solver (* ... *)], and then the obligations
should surely be opaque. *)
Global Unset Transparent Obligations.

(** 2. Do not let Program automatically simplify obligations. The default
obligation tactic is [Tactics.program_simpl], which, among other things,
introduces all variables and gives them fresh names. As such, it becomes
impossible to refer to hypotheses in a robust way. *)
44
Obligation Tactic := idtac.
45 46

(** 3. Hide obligations from the results of the [Search] commands. *)
47
Add Search Blacklist "_obligation_".
Robbert Krebbers's avatar
Robbert Krebbers committed
48

49
(** * Sealing off definitions *)
Ralf Jung's avatar
Ralf Jung committed
50 51 52 53
Section seal.
  Local Set Primitive Projections.
  Record seal {A} (f : A) := { unseal : A; seal_eq : unseal = f }.
End seal.
Ralf Jung's avatar
Ralf Jung committed
54 55
Arguments unseal {_ _} _ : assert.
Arguments seal_eq {_ _} _ : assert.
56

57
(** * Non-backtracking type classes *)
58
(** The type class [TCNoBackTrack P] can be used to establish [P] without ever
59 60 61 62 63 64 65 66 67 68 69
backtracking on the instance of [P] that has been found. Backtracking may
normally happen when [P] contains evars that could be instanciated in different
ways depending on which instance is picked, and type class search somewhere else
depends on this evar.

The proper way of handling this would be by setting Coq's option
`Typeclasses Unique Instances`. However, this option seems to be broken, see Coq
issue #6714.

See https://gitlab.mpi-sws.org/FP/iris-coq/merge_requests/112 for a rationale
of this type class. *)
70 71
Class TCNoBackTrack (P : Prop) := { tc_no_backtrack : P }.
Hint Extern 0 (TCNoBackTrack _) => constructor; apply _ : typeclass_instances.
72

73 74
(* A conditional at the type class level. Note that [TCIf P Q R] is not the same
as [TCOr (TCAnd P Q) R]: the latter will backtrack to [R] if it fails to
Paolo G. Giarrusso's avatar
Paolo G. Giarrusso committed
75
establish [Q], i.e. does not have the behavior of a conditional. Furthermore,
76
note that [TCOr (TCAnd P Q) (TCAnd (TCNot P) R)] would not work; we generally
Robbert Krebbers's avatar
Robbert Krebbers committed
77
would not be able to prove the negation of [P]. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
78
Inductive TCIf (P Q R : Prop) : Prop :=
79 80 81 82 83 84 85 86
  | TCIf_true : P  Q  TCIf P Q R
  | TCIf_false : R  TCIf P Q R.
Existing Class TCIf.

Hint Extern 0 (TCIf _ _ _) =>
  first [apply TCIf_true; [apply _|]
        |apply TCIf_false] : typeclass_instances.

87
(** * Typeclass opaque definitions *)
Ralf Jung's avatar
Ralf Jung committed
88
(** The constant [tc_opaque] is used to make definitions opaque for just type
89 90 91 92 93
class search. Note that [simpl] is set up to always unfold [tc_opaque]. *)
Definition tc_opaque {A} (x : A) : A := x.
Typeclasses Opaque tc_opaque.
Arguments tc_opaque {_} _ /.

Ralf Jung's avatar
Ralf Jung committed
94
(** Below we define type class versions of the common logical operators. It is
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
important to note that we duplicate the definitions, and do not declare the
existing logical operators as type classes. That is, we do not say:

  Existing Class or.
  Existing Class and.

If we could define the existing logical operators as classes, there is no way
of disambiguating whether a premise of a lemma should be solved by type class
resolution or not.

These classes are useful for two purposes: writing complicated type class
premises in a more concise way, and for efficiency. For example, using the [Or]
class, instead of defining two instances [P → Q1 → R] and [P → Q2 → R] we could
have one instance [P → Or Q1 Q2 → R]. When we declare the instance that way, we
avoid the need to derive [P] twice. *)
110
Inductive TCOr (P1 P2 : Prop) : Prop :=
111 112 113 114 115
  | TCOr_l : P1  TCOr P1 P2
  | TCOr_r : P2  TCOr P1 P2.
Existing Class TCOr.
Existing Instance TCOr_l | 9.
Existing Instance TCOr_r | 10.
116
Hint Mode TCOr ! ! : typeclass_instances.
Robbert Krebbers's avatar
Robbert Krebbers committed
117

118
Inductive TCAnd (P1 P2 : Prop) : Prop := TCAnd_intro : P1  P2  TCAnd P1 P2.
119 120
Existing Class TCAnd.
Existing Instance TCAnd_intro.
121
Hint Mode TCAnd ! ! : typeclass_instances.
122

123 124 125
Inductive TCTrue : Prop := TCTrue_intro : TCTrue.
Existing Class TCTrue.
Existing Instance TCTrue_intro.
126

127 128 129 130 131 132
Inductive TCForall {A} (P : A  Prop) : list A  Prop :=
  | TCForall_nil : TCForall P []
  | TCForall_cons x xs : P x  TCForall P xs  TCForall P (x :: xs).
Existing Class TCForall.
Existing Instance TCForall_nil.
Existing Instance TCForall_cons.
133
Hint Mode TCForall ! ! ! : typeclass_instances.
134

135 136 137
(** The class [TCForall2 P l k] is commonly used to transform an input list [l]
into an output list [k], or the converse. Therefore there are two modes, either
[l] input and [k] output, or [k] input and [l] input. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
138 139 140 141 142 143 144
Inductive TCForall2 {A B} (P : A  B  Prop) : list A  list B  Prop :=
  | TCForall2_nil : TCForall2 P [] []
  | TCForall2_cons x y xs ys :
     P x y  TCForall2 P xs ys  TCForall2 P (x :: xs) (y :: ys).
Existing Class TCForall2.
Existing Instance TCForall2_nil.
Existing Instance TCForall2_cons.
145 146
Hint Mode TCForall2 ! ! ! ! - : typeclass_instances.
Hint Mode TCForall2 ! ! ! - ! : typeclass_instances.
Robbert Krebbers's avatar
Robbert Krebbers committed
147

148 149 150 151 152 153
Inductive TCElemOf {A} (x : A) : list A  Prop :=
  | TCElemOf_here xs : TCElemOf x (x :: xs)
  | TCElemOf_further y xs : TCElemOf x xs  TCElemOf x (y :: xs).
Existing Class TCElemOf.
Existing Instance TCElemOf_here.
Existing Instance TCElemOf_further.
154
Hint Mode TCElemOf ! ! ! : typeclass_instances.
155

Robbert Krebbers's avatar
Robbert Krebbers committed
156 157 158 159
(** We declare both arguments [x] and [y] of [TCEq x y] as outputs, which means
[TCEq] can also be used to unify evars. This is harmless: since the only
instance of [TCEq] is [TCEq_refl] below, it can never cause loops. See
https://gitlab.mpi-sws.org/iris/iris/merge_requests/391 for a use case. *)
160 161 162
Inductive TCEq {A} (x : A) : A  Prop := TCEq_refl : TCEq x x.
Existing Class TCEq.
Existing Instance TCEq_refl.
Robbert Krebbers's avatar
Robbert Krebbers committed
163
Hint Mode TCEq ! - - : typeclass_instances.
164

Michael Sammler's avatar
Michael Sammler committed
165 166 167
Lemma TCEq_eq {A} (x1 x2 : A) : TCEq x1 x2  x1 = x2.
Proof. split; destruct 1; reflexivity. Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
168 169 170 171
Inductive TCDiag {A} (C : A  Prop) : A  A  Prop :=
  | TCDiag_diag x : C x  TCDiag C x x.
Existing Class TCDiag.
Existing Instance TCDiag_diag.
172 173
Hint Mode TCDiag ! ! ! - : typeclass_instances.
Hint Mode TCDiag ! ! - ! : typeclass_instances.
Robbert Krebbers's avatar
Robbert Krebbers committed
174

175 176 177 178 179 180
(** Given a proposition [P] that is a type class, [tc_to_bool P] will return
[true] iff there is an instance of [P]. It is often useful in Ltac programming,
where one can do [lazymatch tc_to_bool P with true => .. | false => .. end]. *)
Definition tc_to_bool (P : Prop)
  {p : bool} `{TCIf P (TCEq p true) (TCEq p false)} : bool := p.

181
(** Throughout this development we use [stdpp_scope] for all general purpose
182
notations that do not belong to a more specific scope. *)
183 184
Delimit Scope stdpp_scope with stdpp.
Global Open Scope stdpp_scope.
185

186
(** Change [True] and [False] into notations in order to enable overloading.
187 188
We will use this to give [True] and [False] a different interpretation for
embedded logics. *)
189 190
Notation "'True'" := True (format "True") : type_scope.
Notation "'False'" := False (format "False") : type_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
191 192


193
(** * Equality *)
194
(** Introduce some Haskell style like notations. *)
195
Notation "(=)" := eq (only parsing) : stdpp_scope.
196 197
Notation "( x =.)" := (eq x) (only parsing) : stdpp_scope.
Notation "(.= x )" := (λ y, eq y x) (only parsing) : stdpp_scope.
198
Notation "(≠)" := (λ x y, x  y) (only parsing) : stdpp_scope.
199 200
Notation "( x ≠.)" := (λ y, x  y) (only parsing) : stdpp_scope.
Notation "(.≠ x )" := (λ y, y  x) (only parsing) : stdpp_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
201

202 203 204 205
Infix "=@{ A }" := (@eq A)
  (at level 70, only parsing, no associativity) : stdpp_scope.
Notation "(=@{ A } )" := (@eq A) (only parsing) : stdpp_scope.
Notation "(≠@{ A } )" := (λ X Y, ¬X =@{A} Y) (only parsing) : stdpp_scope.
206 207
Notation "X ≠@{ A } Y":= (¬X =@{ A } Y)
  (at level 70, only parsing, no associativity) : stdpp_scope.
208

Tej Chajed's avatar
Tej Chajed committed
209 210
Hint Extern 0 (_ = _) => reflexivity : core.
Hint Extern 100 (_  _) => discriminate : core.
Robbert Krebbers's avatar
Robbert Krebbers committed
211

212
Instance:  A, PreOrder (=@{A}).
213 214 215
Proof. split; repeat intro; congruence. Qed.

(** ** Setoid equality *)
Ralf Jung's avatar
Ralf Jung committed
216 217 218
(** We define an operational type class for setoid equality, i.e., the
"canonical" equivalence for a type. The typeclass is tied to the \equiv
symbol. This is based on (Spitters/van der Weegen, 2011). *)
219
Class Equiv A := equiv: relation A.
220 221 222
(* No Hint Mode set because of Coq bug #5735
Hint Mode Equiv ! : typeclass_instances. *)

223
Infix "≡" := equiv (at level 70, no associativity) : stdpp_scope.
224 225 226
Infix "≡@{ A }" := (@equiv A _)
  (at level 70, only parsing, no associativity) : stdpp_scope.

227
Notation "(≡)" := equiv (only parsing) : stdpp_scope.
228 229
Notation "( X ≡.)" := (equiv X) (only parsing) : stdpp_scope.
Notation "(.≡ X )" := (λ Y, Y  X) (only parsing) : stdpp_scope.
230 231
Notation "(≢)" := (λ X Y, ¬X  Y) (only parsing) : stdpp_scope.
Notation "X ≢ Y":= (¬X  Y) (at level 70, no associativity) : stdpp_scope.
232 233
Notation "( X ≢.)" := (λ Y, X  Y) (only parsing) : stdpp_scope.
Notation "(.≢ X )" := (λ Y, Y  X) (only parsing) : stdpp_scope.
234

235 236
Notation "(≡@{ A } )" := (@equiv A _) (only parsing) : stdpp_scope.
Notation "(≢@{ A } )" := (λ X Y, ¬X @{A} Y) (only parsing) : stdpp_scope.
237 238
Notation "X ≢@{ A } Y":= (¬X @{ A } Y)
  (at level 70, only parsing, no associativity) : stdpp_scope.
239

240 241 242 243 244
(** The type class [LeibnizEquiv] collects setoid equalities that coincide
with Leibniz equality. We provide the tactic [fold_leibniz] to transform such
setoid equalities into Leibniz equalities, and [unfold_leibniz] for the
reverse. *)
Class LeibnizEquiv A `{Equiv A} := leibniz_equiv x y : x  y  x = y.
245 246
Hint Mode LeibnizEquiv ! - : typeclass_instances.

247
Lemma leibniz_equiv_iff `{LeibnizEquiv A, !Reflexive (@{A})} (x y : A) :
248 249
  x  y  x = y.
Proof. split. apply leibniz_equiv. intros ->; reflexivity. Qed.
250

251 252
Ltac fold_leibniz := repeat
  match goal with
253
  | H : context [ _ @{?A} _ ] |- _ =>
254
    setoid_rewrite (leibniz_equiv_iff (A:=A)) in H
255
  | |- context [ _ @{?A} _ ] =>
256 257 258 259
    setoid_rewrite (leibniz_equiv_iff (A:=A))
  end.
Ltac unfold_leibniz := repeat
  match goal with
260
  | H : context [ _ =@{?A} _ ] |- _ =>
261
    setoid_rewrite <-(leibniz_equiv_iff (A:=A)) in H
262
  | |- context [ _ =@{?A} _ ] =>
263 264 265 266 267 268 269 270
    setoid_rewrite <-(leibniz_equiv_iff (A:=A))
  end.

Definition equivL {A} : Equiv A := (=).

(** A [Params f n] instance forces the setoid rewriting mechanism not to
rewrite in the first [n] arguments of the function [f]. We will declare such
instances for all operational type classes in this development. *)
271
Instance: Params (@equiv) 2 := {}.
272 273 274 275

(** The following instance forces [setoid_replace] to use setoid equality
(for types that have an [Equiv] instance) rather than the standard Leibniz
equality. *)
276
Instance equiv_default_relation `{Equiv A} : DefaultRelation () | 3 := {}.
Tej Chajed's avatar
Tej Chajed committed
277 278
Hint Extern 0 (_  _) => reflexivity : core.
Hint Extern 0 (_  _) => symmetry; assumption : core.
279 280 281 282 283


(** * Type classes *)
(** ** Decidable propositions *)
(** This type class by (Spitters/van der Weegen, 2011) collects decidable
284
propositions. *)
285
Class Decision (P : Prop) := decide : {P} + {¬P}.
286
Hint Mode Decision ! : typeclass_instances.
287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
Arguments decide _ {_} : simpl never, assert.

(** Although [RelDecision R] is just [∀ x y, Decision (R x y)], we make this
an explicit class instead of a notation for two reasons:

- It allows us to control [Hint Mode] more precisely. In particular, if it were
  defined as a notation, the above [Hint Mode] for [Decision] would not prevent
  diverging instance search when looking for [RelDecision (@eq ?A)], which would
  result in it looking for [Decision (@eq ?A x y)], i.e. an instance where the
  head position of [Decision] is not en evar.
- We use it to avoid inefficient computation due to eager evaluation of
  propositions by [vm_compute]. This inefficiency arises for example if
  [(x = y) := (f x = f y)]. Since [decide (x = y)] evaluates to
  [decide (f x = f y)], this would then lead to evaluation of [f x] and [f y].
  Using the [RelDecision], the [f] is hidden under a lambda, which prevents
  unnecessary evaluation. *)
Class RelDecision {A B} (R : A  B  Prop) :=
  decide_rel x y :> Decision (R x y).
Hint Mode RelDecision ! ! ! : typeclass_instances.
Arguments decide_rel {_ _} _ {_} _ _ : simpl never, assert.
307
Notation EqDecision A := (RelDecision (=@{A})).
308 309 310 311

(** ** Inhabited types *)
(** This type class collects types that are inhabited. *)
Class Inhabited (A : Type) : Type := populate { inhabitant : A }.
312
Hint Mode Inhabited ! : typeclass_instances.
313
Arguments populate {_} _ : assert.
314 315 316 317 318 319

(** ** Proof irrelevant types *)
(** This type class collects types that are proof irrelevant. That means, all
elements of the type are equal. We use this notion only used for propositions,
but by universe polymorphism we can generalize it. *)
Class ProofIrrel (A : Type) : Prop := proof_irrel (x y : A) : x = y.
320
Hint Mode ProofIrrel ! : typeclass_instances.
321 322 323

(** ** Common properties *)
(** These operational type classes allow us to refer to common mathematical
324 325
properties in a generic way. For example, for injectivity of [(k ++.)] it
allows us to write [inj (k ++.)] instead of [app_inv_head k]. *)
326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
Class Inj {A B} (R : relation A) (S : relation B) (f : A  B) : Prop :=
  inj x y : S (f x) (f y)  R x y.
Class Inj2 {A B C} (R1 : relation A) (R2 : relation B)
    (S : relation C) (f : A  B  C) : Prop :=
  inj2 x1 x2 y1 y2 : S (f x1 x2) (f y1 y2)  R1 x1 y1  R2 x2 y2.
Class Cancel {A B} (S : relation B) (f : A  B) (g : B  A) : Prop :=
  cancel :  x, S (f (g x)) x.
Class Surj {A B} (R : relation B) (f : A  B) :=
  surj y :  x, R (f x) y.
Class IdemP {A} (R : relation A) (f : A  A  A) : Prop :=
  idemp x : R (f x x) x.
Class Comm {A B} (R : relation A) (f : B  B  A) : Prop :=
  comm x y : R (f x y) (f y x).
Class LeftId {A} (R : relation A) (i : A) (f : A  A  A) : Prop :=
  left_id x : R (f i x) x.
Class RightId {A} (R : relation A) (i : A) (f : A  A  A) : Prop :=
  right_id x : R (f x i) x.
Class Assoc {A} (R : relation A) (f : A  A  A) : Prop :=
  assoc x y z : R (f x (f y z)) (f (f x y) z).
Class LeftAbsorb {A} (R : relation A) (i : A) (f : A  A  A) : Prop :=
  left_absorb x : R (f i x) i.
Class RightAbsorb {A} (R : relation A) (i : A) (f : A  A  A) : Prop :=
  right_absorb x : R (f x i) i.
Class AntiSymm {A} (R S : relation A) : Prop :=
  anti_symm x y : S x y  S y x  R x y.
Class Total {A} (R : relation A) := total x y : R x y  R y x.
Class Trichotomy {A} (R : relation A) :=
  trichotomy x y : R x y  x = y  R y x.
Class TrichotomyT {A} (R : relation A) :=
  trichotomyT x y : {R x y} + {x = y} + {R y x}.
356 357 358 359 360

Notation Involutive R f := (Cancel R f f).
Lemma involutive {A} {R : relation A} (f : A  A) `{Involutive R f} x :
  R (f (f x)) x.
Proof. auto. Qed.
361

362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377
Arguments irreflexivity {_} _ {_} _ _ : assert.
Arguments inj {_ _ _ _} _ {_} _ _ _ : assert.
Arguments inj2 {_ _ _ _ _ _} _ {_} _ _ _ _ _: assert.
Arguments cancel {_ _ _} _ _ {_} _ : assert.
Arguments surj {_ _ _} _ {_} _ : assert.
Arguments idemp {_ _} _ {_} _ : assert.
Arguments comm {_ _ _} _ {_} _ _ : assert.
Arguments left_id {_ _} _ _ {_} _ : assert.
Arguments right_id {_ _} _ _ {_} _ : assert.
Arguments assoc {_ _} _ {_} _ _ _ : assert.
Arguments left_absorb {_ _} _ _ {_} _ : assert.
Arguments right_absorb {_ _} _ _ {_} _ : assert.
Arguments anti_symm {_ _} _ {_} _ _ _ _ : assert.
Arguments total {_} _ {_} _ _ : assert.
Arguments trichotomy {_} _ {_} _ _ : assert.
Arguments trichotomyT {_} _ {_} _ _ : assert.
378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430

Lemma not_symmetry `{R : relation A, !Symmetric R} x y : ¬R x y  ¬R y x.
Proof. intuition. Qed.
Lemma symmetry_iff `(R : relation A) `{!Symmetric R} x y : R x y  R y x.
Proof. intuition. Qed.

Lemma not_inj `{Inj A B R R' f} x y : ¬R x y  ¬R' (f x) (f y).
Proof. intuition. Qed.
Lemma not_inj2_1 `{Inj2 A B C R R' R'' f} x1 x2 y1 y2 :
  ¬R x1 x2  ¬R'' (f x1 y1) (f x2 y2).
Proof. intros HR HR''. destruct (inj2 f x1 y1 x2 y2); auto. Qed.
Lemma not_inj2_2 `{Inj2 A B C R R' R'' f} x1 x2 y1 y2 :
  ¬R' y1 y2  ¬R'' (f x1 y1) (f x2 y2).
Proof. intros HR' HR''. destruct (inj2 f x1 y1 x2 y2); auto. Qed.

Lemma inj_iff {A B} {R : relation A} {S : relation B} (f : A  B)
  `{!Inj R S f} `{!Proper (R ==> S) f} x y : S (f x) (f y)  R x y.
Proof. firstorder. Qed.
Instance inj2_inj_1 `{Inj2 A B C R1 R2 R3 f} y : Inj R1 R3 (λ x, f x y).
Proof. repeat intro; edestruct (inj2 f); eauto. Qed.
Instance inj2_inj_2 `{Inj2 A B C R1 R2 R3 f} x : Inj R2 R3 (f x).
Proof. repeat intro; edestruct (inj2 f); eauto. Qed.

Lemma cancel_inj `{Cancel A B R1 f g, !Equivalence R1, !Proper (R2 ==> R1) f} :
  Inj R1 R2 g.
Proof.
  intros x y E. rewrite <-(cancel f g x), <-(cancel f g y), E. reflexivity.
Qed.
Lemma cancel_surj `{Cancel A B R1 f g} : Surj R1 f.
Proof. intros y. exists (g y). auto. Qed.

(** The following lemmas are specific versions of the projections of the above
type classes for Leibniz equality. These lemmas allow us to enforce Coq not to
use the setoid rewriting mechanism. *)
Lemma idemp_L {A} f `{!@IdemP A (=) f} x : f x x = x.
Proof. auto. Qed.
Lemma comm_L {A B} f `{!@Comm A B (=) f} x y : f x y = f y x.
Proof. auto. Qed.
Lemma left_id_L {A} i f `{!@LeftId A (=) i f} x : f i x = x.
Proof. auto. Qed.
Lemma right_id_L {A} i f `{!@RightId A (=) i f} x : f x i = x.
Proof. auto. Qed.
Lemma assoc_L {A} f `{!@Assoc A (=) f} x y z : f x (f y z) = f (f x y) z.
Proof. auto. Qed.
Lemma left_absorb_L {A} i f `{!@LeftAbsorb A (=) i f} x : f i x = i.
Proof. auto. Qed.
Lemma right_absorb_L {A} i f `{!@RightAbsorb A (=) i f} x : f x i = i.
Proof. auto. Qed.

(** ** Generic orders *)
(** The classes [PreOrder], [PartialOrder], and [TotalOrder] use an arbitrary
relation [R] instead of [⊆] to support multiple orders on the same type. *)
Definition strict {A} (R : relation A) : relation A := λ X Y, R X Y  ¬R Y X.
431
Instance: Params (@strict) 2 := {}.
432 433 434 435 436 437 438 439 440 441
Class PartialOrder {A} (R : relation A) : Prop := {
  partial_order_pre :> PreOrder R;
  partial_order_anti_symm :> AntiSymm (=) R
}.
Class TotalOrder {A} (R : relation A) : Prop := {
  total_order_partial :> PartialOrder R;
  total_order_trichotomy :> Trichotomy (strict R)
}.

(** * Logic *)
Robbert Krebbers's avatar
Robbert Krebbers committed
442 443
Instance prop_inhabited : Inhabited Prop := populate True.

444
Notation "(∧)" := and (only parsing) : stdpp_scope.
445 446
Notation "( A ∧.)" := (and A) (only parsing) : stdpp_scope.
Notation "(.∧ B )" := (λ A, A  B) (only parsing) : stdpp_scope.
447

448
Notation "(∨)" := or (only parsing) : stdpp_scope.
449 450
Notation "( A ∨.)" := (or A) (only parsing) : stdpp_scope.
Notation "(.∨ B )" := (λ A, A  B) (only parsing) : stdpp_scope.
451

452
Notation "(↔)" := iff (only parsing) : stdpp_scope.
453 454
Notation "( A ↔.)" := (iff A) (only parsing) : stdpp_scope.
Notation "(.↔ B )" := (λ A, A  B) (only parsing) : stdpp_scope.
455

Tej Chajed's avatar
Tej Chajed committed
456 457
Hint Extern 0 (_  _) => reflexivity : core.
Hint Extern 0 (_  _) => symmetry; assumption : core.
458 459 460 461 462 463 464 465 466 467 468

Lemma or_l P Q : ¬Q  P  Q  P.
Proof. tauto. Qed.
Lemma or_r P Q : ¬P  P  Q  Q.
Proof. tauto. Qed.
Lemma and_wlog_l (P Q : Prop) : (Q  P)  Q  (P  Q).
Proof. tauto. Qed.
Lemma and_wlog_r (P Q : Prop) : P  (P  Q)  (P  Q).
Proof. tauto. Qed.
Lemma impl_transitive (P Q R : Prop) : (P  Q)  (Q  R)  (P  R).
Proof. tauto. Qed.
469 470 471 472 473 474
Lemma forall_proper {A} (P Q : A  Prop) :
  ( x, P x  Q x)  ( x, P x)  ( x, Q x).
Proof. firstorder. Qed.
Lemma exist_proper {A} (P Q : A  Prop) :
  ( x, P x  Q x)  ( x, P x)  ( x, Q x).
Proof. firstorder. Qed.
475

476
Instance: Comm () (=@{A}).
477
Proof. red; intuition. Qed.
478
Instance: Comm () (λ x y, y =@{A} x).
479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517
Proof. red; intuition. Qed.
Instance: Comm () ().
Proof. red; intuition. Qed.
Instance: Comm () ().
Proof. red; intuition. Qed.
Instance: Assoc () ().
Proof. red; intuition. Qed.
Instance: IdemP () ().
Proof. red; intuition. Qed.
Instance: Comm () ().
Proof. red; intuition. Qed.
Instance: Assoc () ().
Proof. red; intuition. Qed.
Instance: IdemP () ().
Proof. red; intuition. Qed.
Instance: LeftId () True ().
Proof. red; intuition. Qed.
Instance: RightId () True ().
Proof. red; intuition. Qed.
Instance: LeftAbsorb () False ().
Proof. red; intuition. Qed.
Instance: RightAbsorb () False ().
Proof. red; intuition. Qed.
Instance: LeftId () False ().
Proof. red; intuition. Qed.
Instance: RightId () False ().
Proof. red; intuition. Qed.
Instance: LeftAbsorb () True ().
Proof. red; intuition. Qed.
Instance: RightAbsorb () True ().
Proof. red; intuition. Qed.
Instance: LeftId () True impl.
Proof. unfold impl. red; intuition. Qed.
Instance: RightAbsorb () True impl.
Proof. unfold impl. red; intuition. Qed.


(** * Common data types *)
(** ** Functions *)
518
Notation "(→)" := (λ A B, A  B) (only parsing) : stdpp_scope.
519 520
Notation "( A →.)" := (λ B, A  B) (only parsing) : stdpp_scope.
Notation "(.→ B )" := (λ A, A  B) (only parsing) : stdpp_scope.
521

522
Notation "t $ r" := (t r)
523 524
  (at level 65, right associativity, only parsing) : stdpp_scope.
Notation "($)" := (λ f x, f x) (only parsing) : stdpp_scope.
525
Notation "(.$ x )" := (λ f, f x) (only parsing) : stdpp_scope.
526

527 528
Infix "∘" := compose : stdpp_scope.
Notation "(∘)" := compose (only parsing) : stdpp_scope.
529 530
Notation "( f ∘.)" := (compose f) (only parsing) : stdpp_scope.
Notation "(.∘ f )" := (λ g, compose g f) (only parsing) : stdpp_scope.
531

Robbert Krebbers's avatar
Robbert Krebbers committed
532 533 534
Instance impl_inhabited {A} `{Inhabited B} : Inhabited (A  B) :=
  populate (λ _, inhabitant).

535 536
(** Ensure that [simpl] unfolds [id], [compose], and [flip] when fully
applied. *)
537 538 539 540
Arguments id _ _ / : assert.
Arguments compose _ _ _ _ _ _ / : assert.
Arguments flip _ _ _ _ _ _ / : assert.
Arguments const _ _ _ _ / : assert.
541
Typeclasses Transparent id compose flip const.
542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588

Definition fun_map {A A' B B'} (f: A'  A) (g: B  B') (h : A  B) : A'  B' :=
  g  h  f.

Instance const_proper `{R1 : relation A, R2 : relation B} (x : B) :
  Reflexive R2  Proper (R1 ==> R2) (λ _, x).
Proof. intros ? y1 y2; reflexivity. Qed.

Instance id_inj {A} : Inj (=) (=) (@id A).
Proof. intros ??; auto. Qed.
Instance compose_inj {A B C} R1 R2 R3 (f : A  B) (g : B  C) :
  Inj R1 R2 f  Inj R2 R3 g  Inj R1 R3 (g  f).
Proof. red; intuition. Qed.

Instance id_surj {A} : Surj (=) (@id A).
Proof. intros y; exists y; reflexivity. Qed.
Instance compose_surj {A B C} R (f : A  B) (g : B  C) :
  Surj (=) f  Surj R g  Surj R (g  f).
Proof.
  intros ?? x. unfold compose. destruct (surj g x) as [y ?].
  destruct (surj f y) as [z ?]. exists z. congruence.
Qed.

Instance id_comm {A B} (x : B) : Comm (=) (λ _ _ : A, x).
Proof. intros ?; reflexivity. Qed.
Instance id_assoc {A} (x : A) : Assoc (=) (λ _ _ : A, x).
Proof. intros ???; reflexivity. Qed.
Instance const1_assoc {A} : Assoc (=) (λ x _ : A, x).
Proof. intros ???; reflexivity. Qed.
Instance const2_assoc {A} : Assoc (=) (λ _ x : A, x).
Proof. intros ???; reflexivity. Qed.
Instance const1_idemp {A} : IdemP (=) (λ x _ : A, x).
Proof. intros ?; reflexivity. Qed.
Instance const2_idemp {A} : IdemP (=) (λ _ x : A, x).
Proof. intros ?; reflexivity. Qed.

(** ** Lists *)
Instance list_inhabited {A} : Inhabited (list A) := populate [].

Definition zip_with {A B C} (f : A  B  C) : list A  list B  list C :=
  fix go l1 l2 :=
  match l1, l2 with x1 :: l1, x2 :: l2 => f x1 x2 :: go l1 l2 | _ , _ => [] end.
Notation zip := (zip_with pair).

(** ** Booleans *)
(** The following coercion allows us to use Booleans as propositions. *)
Coercion Is_true : bool >-> Sortclass.
Tej Chajed's avatar
Tej Chajed committed
589 590 591
Hint Unfold Is_true : core.
Hint Immediate Is_true_eq_left : core.
Hint Resolve orb_prop_intro andb_prop_intro : core.
592 593 594 595 596 597
Notation "(&&)" := andb (only parsing).
Notation "(||)" := orb (only parsing).
Infix "&&*" := (zip_with (&&)) (at level 40).
Infix "||*" := (zip_with (||)) (at level 50).

Instance bool_inhabated : Inhabited bool := populate true.
598

599 600 601 602 603
Definition bool_le (β1 β2 : bool) : Prop := negb β1 || β2.
Infix "=.>" := bool_le (at level 70).
Infix "=.>*" := (Forall2 bool_le) (at level 70).
Instance: PartialOrder bool_le.
Proof. repeat split; repeat intros [|]; compute; tauto. Qed.
604

605 606 607 608 609 610 611 612
Lemma andb_True b1 b2 : b1 && b2  b1  b2.
Proof. destruct b1, b2; simpl; tauto. Qed.
Lemma orb_True b1 b2 : b1 || b2  b1  b2.
Proof. destruct b1, b2; simpl; tauto. Qed.
Lemma negb_True b : negb b  ¬b.
Proof. destruct b; simpl; tauto. Qed.
Lemma Is_true_false (b : bool) : b = false  ¬b.
Proof. now intros -> ?. Qed.
613

614 615
(** ** Unit *)
Instance unit_equiv : Equiv unit := λ _ _, True.
616
Instance unit_equivalence : Equivalence (@{unit}).
617
Proof. repeat split. Qed.
618 619
Instance unit_leibniz : LeibnizEquiv unit.
Proof. intros [] []; reflexivity. Qed.
620
Instance unit_inhabited: Inhabited unit := populate ().
621

Ralf Jung's avatar
Ralf Jung committed
622 623 624 625 626 627 628
(** ** Empty *)
Instance Empty_set_equiv : Equiv Empty_set := λ _ _, True.
Instance Empty_set_equivalence : Equivalence (@{Empty_set}).
Proof. repeat split. Qed.
Instance Empty_set_leibniz : LeibnizEquiv Empty_set.
Proof. intros [] []; reflexivity. Qed.

629
(** ** Products *)
630 631
Notation "( x ,.)" := (pair x) (only parsing) : stdpp_scope.
Notation "(., y )" := (λ x, (x,y)) (only parsing) : stdpp_scope.
632

633 634
Notation "p .1" := (fst p) (at level 2, left associativity, format "p .1").
Notation "p .2" := (snd p) (at level 2, left associativity, format "p .2").
635

636 637 638
Instance: Params (@pair) 2 := {}.
Instance: Params (@fst) 2 := {}.
Instance: Params (@snd) 2 := {}.
639

640 641 642 643 644 645 646
Notation curry := prod_curry.
Notation uncurry := prod_uncurry.
Definition curry3 {A B C D} (f : A  B  C  D) (p : A * B * C) : D :=
  let '(a,b,c) := p in f a b c.
Definition curry4 {A B C D E} (f : A  B  C  D  E) (p : A * B * C * D) : E :=
  let '(a,b,c,d) := p in f a b c d.

Robbert Krebbers's avatar
Robbert Krebbers committed
647 648 649 650 651
Definition uncurry3 {A B C D} (f : A * B * C  D) (a : A) (b : B) (c : C) : D :=
  f (a, b, c).
Definition uncurry4 {A B C D E} (f : A * B * C * D  E)
  (a : A) (b : B) (c : C) (d : D) : E := f (a, b, c, d).

652 653
Definition prod_map {A A' B B'} (f: A  A') (g: B  B') (p : A * B) : A' * B' :=
  (f (p.1), g (p.2)).
654
Arguments prod_map {_ _ _ _} _ _ !_ / : assert.
655

656 657
Definition prod_zip {A A' A'' B B' B''} (f : A  A'  A'') (g : B  B'  B'')
    (p : A * B) (q : A' * B') : A'' * B'' := (f (p.1) (q.1), g (p.2) (q.2)).
658
Arguments prod_zip {_ _ _ _ _ _} _ _ !_ !_ / : assert.
659

660 661 662
Instance prod_inhabited {A B} (iA : Inhabited A)
    (iB : Inhabited B) : Inhabited (A * B) :=
  match iA, iB with populate x, populate y => populate (x,y) end.
663

664 665 666 667 668 669 670 671
Instance pair_inj : Inj2 (=) (=) (=) (@pair A B).
Proof. injection 1; auto. Qed.
Instance prod_map_inj {A A' B B'} (f : A  A') (g : B  B') :
  Inj (=) (=) f  Inj (=) (=) g  Inj (=) (=) (prod_map f g).
Proof.
  intros ?? [??] [??] ?; simpl in *; f_equal;
    [apply (inj f)|apply (inj g)]; congruence.
Qed.
672

673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688
Definition prod_relation {A B} (R1 : relation A) (R2 : relation B) :
  relation (A * B) := λ x y, R1 (x.1) (y.1)  R2 (x.2) (y.2).
Section prod_relation.
  Context `{R1 : relation A, R2 : relation B}.
  Global Instance prod_relation_refl :
    Reflexive R1  Reflexive R2  Reflexive (prod_relation R1 R2).
  Proof. firstorder eauto. Qed.
  Global Instance prod_relation_sym :
    Symmetric R1  Symmetric R2  Symmetric (prod_relation R1 R2).
  Proof. firstorder eauto. Qed.
  Global Instance prod_relation_trans :
    Transitive R1  Transitive R2  Transitive (prod_relation R1 R2).
  Proof. firstorder eauto. Qed.
  Global Instance prod_relation_equiv :
    Equivalence R1  Equivalence R2  Equivalence (prod_relation R1 R2).
  Proof. split; apply _. Qed.
689

690 691
  Global Instance pair_proper' : Proper (R1 ==> R2 ==> prod_relation R1 R2) pair.
  Proof. firstorder eauto. Qed.
692 693
  Global Instance pair_inj' : Inj2 R1 R2 (prod_relation R1 R2) pair.
  Proof. inversion_clear 1; eauto. Qed.
694 695 696 697 698
  Global Instance fst_proper' : Proper (prod_relation R1 R2 ==> R1) fst.
  Proof. firstorder eauto. Qed.
  Global Instance snd_proper' : Proper (prod_relation R1 R2 ==> R2) snd.
  Proof. firstorder eauto. Qed.
End prod_relation.
Robbert Krebbers's avatar
Robbert Krebbers committed
699

700 701
Instance prod_equiv `{Equiv A,Equiv B} : Equiv (A * B) := prod_relation () ().
Instance pair_proper `{Equiv A, Equiv B} :
702 703
  Proper (() ==> () ==> ()) (@pair A B) := _.
Instance pair_equiv_inj `{Equiv A, Equiv B} : Inj2 () () () (@pair A B) := _.
704 705 706
Instance fst_proper `{Equiv A, Equiv B} : Proper (() ==> ()) (@fst A B) := _.
Instance snd_proper `{Equiv A, Equiv B} : Proper (() ==> ()) (@snd A B) := _.
Typeclasses Opaque prod_equiv.
707

Robbert Krebbers's avatar
Robbert Krebbers committed
708 709
Instance prod_leibniz `{LeibnizEquiv A, LeibnizEquiv B} : LeibnizEquiv (A * B).
Proof. intros [??] [??] [??]; f_equal; apply leibniz_equiv; auto. Qed.
710

711
(** ** Sums *)
712 713
Definition sum_map {A A' B B'} (f: A  A') (g: B  B') (xy : A + B) : A' + B' :=
  match xy with inl x => inl (f x) | inr y => inr (g y) end.
714
Arguments sum_map {_ _ _ _} _ _ !_ / : assert.
715

716
Instance sum_inhabited_l {A B} (iA : Inhabited A) : Inhabited (A + B) :=
717
  match iA with populate x => populate (inl x) end.
718
Instance sum_inhabited_r {A B} (iB : Inhabited A) : Inhabited (A + B) :=
719
  match iB with populate y => populate (inl y) end.
720

721 722 723 724
Instance inl_inj : Inj (=) (=) (@inl A B).
Proof. injection 1; auto. Qed.
Instance inr_inj : Inj (=) (=) (@inr A B).
Proof. injection 1; auto. Qed.
725

726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752
Instance sum_map_inj {A A' B B'} (f : A  A') (g : B  B') :
  Inj (=) (=) f  Inj (=) (=) g  Inj (=) (=) (sum_map f g).
Proof. intros ?? [?|?] [?|?] [=]; f_equal; apply (inj _); auto. Qed.

Inductive sum_relation {A B}
     (R1 : relation A) (R2 : relation B) : relation (A + B) :=
  | inl_related x1 x2 : R1 x1 x2  sum_relation R1 R2 (inl x1) (inl x2)
  | inr_related y1 y2 : R2 y1 y2  sum_relation R1 R2 (inr y1) (inr y2).

Section sum_relation.
  Context `{R1 : relation A, R2 : relation B}.
  Global Instance sum_relation_refl :
    Reflexive R1  Reflexive R2  Reflexive (sum_relation R1 R2).
  Proof. intros ?? [?|?]; constructor; reflexivity. Qed.
  Global Instance sum_relation_sym :
    Symmetric R1  Symmetric R2  Symmetric (sum_relation R1 R2).
  Proof. destruct 3; constructor; eauto. Qed.
  Global Instance sum_relation_trans :
    Transitive R1  Transitive R2  Transitive (sum_relation R1 R2).
  Proof. destruct 3; inversion_clear 1; constructor; eauto. Qed.
  Global Instance sum_relation_equiv :
    Equivalence R1  Equivalence R2  Equivalence (sum_relation R1 R2).
  Proof. split; apply _. Qed.
  Global Instance inl_proper' : Proper (R1 ==> sum_relation R1 R2) inl.
  Proof. constructor; auto. Qed.
  Global Instance inr_proper' : Proper (R2 ==> sum_relation R1 R2) inr.
  Proof. constructor; auto. Qed.
753 754 755 756
  Global Instance inl_inj' : Inj R1 (sum_relation R1 R2) inl.
  Proof. inversion_clear 1; auto. Qed.
  Global Instance inr_inj' : Inj R2 (sum_relation R1 R2) inr.
  Proof. inversion_clear 1; auto. Qed.
757 758 759 760 761
End sum_relation.

Instance sum_equiv `{Equiv A, Equiv B} : Equiv (A + B) := sum_relation () ().
Instance inl_proper `{Equiv A, Equiv B} : Proper (() ==> ()) (@inl A B) := _.
Instance inr_proper `{Equiv A, Equiv B} : Proper (() ==> ()) (@inr A B) := _.
762 763
Instance inl_equiv_inj `{Equiv A, Equiv B} : Inj () () (@inl A B) := _.
Instance inr_equiv_inj `{Equiv A, Equiv B} : Inj () () (@inr A B) := _.
764 765
Typeclasses Opaque sum_equiv.

766 767
(** ** Option *)
Instance option_inhabited {A} : Inhabited (option A) := populate None.
Robbert Krebbers's avatar
Robbert Krebbers committed
768

769
(** ** Sigma types *)
770 771 772
Arguments existT {_ _} _ _ : assert.
Arguments projT1 {_ _} _ : assert.
Arguments projT2 {_ _} _ : assert.
773

774 775 776
Arguments exist {_} _ _ _ : assert.
Arguments proj1_sig {_ _} _ : assert.
Arguments proj2_sig {_ _} _ : assert.
777 778
Notation "x ↾ p" := (exist _ x p) (at level 20) : stdpp_scope.
Notation "` x" := (proj1_sig x) (at level 10, format "` x") : stdpp_scope.
779

780 781 782
Lemma proj1_sig_inj {A} (P : A  Prop) x (Px : P x) y (Py : P y) :
  xPx = yPy  x = y.
Proof. injection 1; trivial. Qed.
783

784 785 786 787 788 789 790 791 792 793
Section sig_map.
  Context `{P : A  Prop} `{Q : B  Prop} (f : A  B) (Hf :  x, P x  Q (f x)).
  Definition sig_map (x : sig P) : sig Q := f (`x)  Hf _ (proj2_sig x).
  Global Instance sig_map_inj:
    ( x, ProofIrrel (P x))  Inj (=) (=) f  Inj (=) (=) sig_map.
  Proof.
    intros ?? [x Hx] [y Hy]. injection 1. intros Hxy.
    apply (inj f) in Hxy; subst. rewrite (proof_irrel _ Hy). auto.
  Qed.
End sig_map.
794
Arguments sig_map _ _ _ _ _ _ !_ / : assert.
795

796 797 798 799
Definition proj1_ex {P : Prop} {Q : P  Prop} (p :  x, Q x) : P :=
  let '(ex_intro _ x _) := p in x.
Definition proj2_ex {P : Prop} {Q : P  Prop} (p :  x, Q x) : Q (proj1_ex p) :=
  let '(ex_intro _ x H) := p in H.
Robbert Krebbers's avatar
Robbert Krebbers committed
800

801
(** * Operations on sets *)
802
(** We define operational type classes for the traditional operations and
803
relations on sets: the empty set [∅], the union [(∪)],
804
intersection [(∩)], and difference [(∖)], the singleton [{[_]}], the subset
805
[(⊆)] and element of [(∈)] relation, and disjointess [(##)]. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
806
Class Empty A := empty: A.
807
Hint Mode Empty ! : typeclass_instances.
808
Notation "∅" := empty (format "∅") : stdpp_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
809

810 811
Instance empty_inhabited `(Empty A) : Inhabited A := populate .

Robbert Krebbers's avatar
Robbert Krebbers committed
812
Class Union A := union: A  A  A.
813
Hint Mode Union ! : typeclass_instances.
814
Instance: Params (@union) 2 := {}.
815 816
Infix "∪" := union (at level 50, left associativity) : stdpp_scope.
Notation "(∪)" := union (only parsing) : stdpp_scope.
817 818
Notation "( x ∪.)" := (union x) (only parsing) : stdpp_scope.
Notation "(.∪ x )" := (λ y, union y x) (only parsing) : stdpp_scope.
819 820
Infix "∪*" := (zip_with ()) (at level 50, left associativity) : stdpp_scope.
Notation "(∪*)" := (zip_with ()) (only parsing) : stdpp_scope.
821
Infix "∪**" := (zip_with (zip_with ()))
822
  (at level 50, left associativity) : stdpp_scope.
823
Infix "∪*∪**" := (zip_with (prod_zip () (*)))
824
  (at level 50, left associativity) : stdpp_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
825

826
Definition union_list `{Empty A} `{Union A} : list A  A := fold_right () .
827
Arguments union_list _ _ _ !_ / : assert.
828
Notation "⋃ l" := (union_list l) (at level 20, format "⋃  l") : stdpp_scope.
829

830 831 832 833 834
Class DisjUnion A := disj_union: A  A  A.
Hint Mode DisjUnion ! : typeclass_instances.
Instance: Params (@disj_union) 2 := {}.
Infix "⊎" := disj_union (at level 50, left associativity) : stdpp_scope.
Notation "(⊎)" := disj_union (only parsing) : stdpp_scope.
835 836
Notation "( x ⊎.)" := (disj_union x) (only parsing) : stdpp_scope.
Notation "(.⊎ x )" := (λ y, disj_union y x) (only parsing) : stdpp_scope.
837

Robbert Krebbers's avatar
Robbert Krebbers committed
838
Class Intersection A := intersection: A  A  A.
839
Hint Mode Intersection ! : typeclass_instances.
840
Instance: Params (@intersection) 2 := {}.
841 842
Infix "∩" := intersection (at level 40) : stdpp_scope.
Notation "(∩)" := intersection (only parsing) : stdpp_scope.
843 844
Notation "( x ∩.)" := (intersection x) (only parsing) : stdpp_scope.
Notation "(.∩ x )" := (λ y, intersection y x) (only parsing) : stdpp_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
845 846

Class Difference A := difference: A  A  A.
847
Hint Mode Difference ! : typeclass_instances.
848
Instance: Params (@difference) 2 := {}.
849 850
Infix "∖" := difference (at level 40, left associativity) : stdpp_scope.
Notation "(∖)" := difference (only parsing) : stdpp_scope.
851 852
Notation "( x ∖.)" := (difference x) (only parsing) : stdpp_scope.
Notation "(.∖ x )" := (λ y, difference y x) (only parsing) : stdpp_scope.
853 854
Infix "∖*" := (zip_with ()) (at level 40, left associativity) : stdpp_scope.
Notation "(∖*)" := (zip_with ()) (only parsing) : stdpp_scope.
855
Infix "∖**" := (zip_with (zip_with ()))
856
  (at level 40, left associativity) : stdpp_scope.
857