collections.v 32.4 KB
Newer Older
Robbert Krebbers's avatar
Robbert Krebbers committed
1
(* Copyright (c) 2012-2015, Robbert Krebbers. *)
2
3
4
5
(* This file is distributed under the terms of the BSD license. *)
(** This file collects definitions and theorems on collections. Most
importantly, it implements some tactics to automatically solve goals involving
collections. *)
6
From stdpp Require Export base tactics orders.
7

Robbert Krebbers's avatar
Robbert Krebbers committed
8
9
Instance collection_disjoint `{ElemOf A C} : Disjoint C := λ X Y,
   x, x  X  x  Y  False.
10
11
Instance collection_subseteq `{ElemOf A C} : SubsetEq C := λ X Y,
   x, x  X  x  Y.
Robbert Krebbers's avatar
Robbert Krebbers committed
12
Typeclasses Opaque collection_disjoint collection_subseteq.
13

14
(** * Basic theorems *)
15
16
Section simple_collection.
  Context `{SimpleCollection A C}.
17
18
  Implicit Types x y : A.
  Implicit Types X Y : C.
Robbert Krebbers's avatar
Robbert Krebbers committed
19

20
  Lemma elem_of_empty x : x    False.
21
  Proof. split. apply not_elem_of_empty. done. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
22
23
24
25
  Lemma elem_of_union_l x X Y : x  X  x  X  Y.
  Proof. intros. apply elem_of_union. auto. Qed.
  Lemma elem_of_union_r x X Y : x  Y  x  X  Y.
  Proof. intros. apply elem_of_union. auto. Qed.
26
27
28
  Global Instance: EmptySpec C.
  Proof. firstorder auto. Qed.
  Global Instance: JoinSemiLattice C.
29
  Proof. firstorder auto. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
30
31
  Global Instance: AntiSymm () (@collection_subseteq A C _).
  Proof. done. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
32
  Lemma elem_of_subseteq X Y : X  Y   x, x  X  x  Y.
33
  Proof. done. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
34
35
  Lemma elem_of_equiv X Y : X  Y   x, x  X  x  Y.
  Proof. firstorder. Qed.
36
37
  Lemma elem_of_equiv_alt X Y :
    X  Y  ( x, x  X  x  Y)  ( x, x  Y  x  X).
Robbert Krebbers's avatar
Robbert Krebbers committed
38
  Proof. firstorder. Qed.
39
40
  Lemma elem_of_equiv_empty X : X     x, x  X.
  Proof. firstorder. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
41
42
43
  Lemma elem_of_disjoint X Y : X  Y   x, x  X  x  Y  False.
  Proof. done. Qed.

44
45
46
47
48
49
  Lemma collection_positive_l X Y : X  Y    X  .
  Proof.
    rewrite !elem_of_equiv_empty. setoid_rewrite elem_of_union. naive_solver.
  Qed.
  Lemma collection_positive_l_alt X Y : X    X  Y  .
  Proof. eauto using collection_positive_l. Qed.
50
51
52
53
  Lemma elem_of_singleton_1 x y : x  {[y]}  x = y.
  Proof. by rewrite elem_of_singleton. Qed.
  Lemma elem_of_singleton_2 x y : x = y  x  {[y]}.
  Proof. by rewrite elem_of_singleton. Qed.
54
55
56
  Lemma elem_of_subseteq_singleton x X : x  X  {[ x ]}  X.
  Proof.
    split.
57
58
    - intros ??. rewrite elem_of_singleton. by intros ->.
    - intros Ex. by apply (Ex x), elem_of_singleton.
59
  Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
60

61
  Global Instance singleton_proper : Proper ((=) ==> ()) (singleton (B:=C)).
62
  Proof. by repeat intro; subst. Qed.
63
  Global Instance elem_of_proper :
Robbert Krebbers's avatar
Robbert Krebbers committed
64
    Proper ((=) ==> () ==> iff) (@elem_of A C _) | 5.
65
  Proof. intros ???; subst. firstorder. Qed.
Ralf Jung's avatar
Ralf Jung committed
66
  Global Instance disjoint_proper: Proper (() ==> () ==> iff) (@disjoint C _).
Robbert Krebbers's avatar
Robbert Krebbers committed
67
  Proof. intros ??????. by rewrite !elem_of_disjoint; setoid_subst. Qed.
68
  Lemma elem_of_union_list Xs x : x   Xs   X, X  Xs  x  X.
69
70
  Proof.
    split.
71
    - induction Xs; simpl; intros HXs; [by apply elem_of_empty in HXs|].
72
      setoid_rewrite elem_of_cons. apply elem_of_union in HXs. naive_solver.
73
    - intros [X []]. induction 1; simpl; [by apply elem_of_union_l |].
74
      intros. apply elem_of_union_r; auto.
75
  Qed.
76
  Lemma non_empty_singleton x : ({[ x ]} : C)  .
77
78
79
80
81
82
  Proof. intros [E _]. by apply (elem_of_empty x), E, elem_of_singleton. Qed.
  Lemma not_elem_of_singleton x y : x  {[ y ]}  x  y.
  Proof. by rewrite elem_of_singleton. Qed.
  Lemma not_elem_of_union x X Y : x  X  Y  x  X  x  Y.
  Proof. rewrite elem_of_union. tauto. Qed.

83
84
85
86
87
88
89
90
91
  Section leibniz.
    Context `{!LeibnizEquiv C}.
    Lemma elem_of_equiv_L X Y : X = Y   x, x  X  x  Y.
    Proof. unfold_leibniz. apply elem_of_equiv. Qed.
    Lemma elem_of_equiv_alt_L X Y :
      X = Y  ( x, x  X  x  Y)  ( x, x  Y  x  X).
    Proof. unfold_leibniz. apply elem_of_equiv_alt. Qed.
    Lemma elem_of_equiv_empty_L X : X =    x, x  X.
    Proof. unfold_leibniz. apply elem_of_equiv_empty. Qed.
92
93
94
95
    Lemma collection_positive_l_L X Y : X  Y =   X = .
    Proof. unfold_leibniz. apply collection_positive_l. Qed.
    Lemma collection_positive_l_alt_L X Y : X    X  Y  .
    Proof. unfold_leibniz. apply collection_positive_l_alt. Qed.
96
97
98
99
100
101
102
103
104
105
106
107
    Lemma non_empty_singleton_L x : {[ x ]}  .
    Proof. unfold_leibniz. apply non_empty_singleton. Qed.
  End leibniz.

  Section dec.
    Context `{ X Y : C, Decision (X  Y)}.
    Global Instance elem_of_dec_slow (x : A) (X : C) : Decision (x  X) | 100.
    Proof.
      refine (cast_if (decide_rel () {[ x ]} X));
        by rewrite elem_of_subseteq_singleton.
    Defined.
  End dec.
108
109
End simple_collection.

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
(** * Tactics *)
(** The tactic [set_unfold] transforms all occurrences of [(∪)], [(∩)], [(∖)],
[(<$>)], [∅], [{[_]}], [(≡)], and [(⊆)] into logically equivalent propositions
involving just [∈]. For example, [A → x ∈ X ∪ ∅] becomes [A → x ∈ X ∨ False].

This transformation is implemented using type classes instead of [rewrite]ing
to ensure that we traverse each term at most once. *)
Class SetUnfold (P Q : Prop) := { set_unfold : P  Q }.
Arguments set_unfold _ _ {_}.
Hint Mode SetUnfold + - : typeclass_instances.

Class SetUnfoldSimpl (P Q : Prop) := { set_unfold_simpl : SetUnfold P Q }.
Hint Extern 0 (SetUnfoldSimpl _ _) => csimpl; constructor : typeclass_instances.

Instance set_unfold_fallthrough P : SetUnfold P P | 1000. done. Qed.
Definition set_unfold_1 `{SetUnfold P Q} : P  Q := proj1 (set_unfold P Q).
Definition set_unfold_2 `{SetUnfold P Q} : Q  P := proj2 (set_unfold P Q).

Lemma set_unfold_impl P Q P' Q' :
  SetUnfold P P'  SetUnfold Q Q'  SetUnfold (P  Q) (P'  Q').
Proof. constructor. by rewrite (set_unfold P P'), (set_unfold Q Q'). Qed.
Lemma set_unfold_and P Q P' Q' :
  SetUnfold P P'  SetUnfold Q Q'  SetUnfold (P  Q) (P'  Q').
Proof. constructor. by rewrite (set_unfold P P'), (set_unfold Q Q'). Qed.
Lemma set_unfold_or P Q P' Q' :
  SetUnfold P P'  SetUnfold Q Q'  SetUnfold (P  Q) (P'  Q').
Proof. constructor. by rewrite (set_unfold P P'), (set_unfold Q Q'). Qed.
Lemma set_unfold_iff P Q P' Q' :
  SetUnfold P P'  SetUnfold Q Q'  SetUnfold (P  Q) (P'  Q').
Proof. constructor. by rewrite (set_unfold P P'), (set_unfold Q Q'). Qed.
Lemma set_unfold_not P P' : SetUnfold P P'  SetUnfold (¬P) (¬P').
Proof. constructor. by rewrite (set_unfold P P'). Qed.
Lemma set_unfold_forall {A} (P P' : A  Prop) :
  ( x, SetUnfold (P x) (P' x))  SetUnfold ( x, P x) ( x, P' x).
Proof. constructor. naive_solver. Qed.
Lemma set_unfold_exist {A} (P P' : A  Prop) :
  ( x, SetUnfold (P x) (P' x))  SetUnfold ( x, P x) ( x, P' x).
Proof. constructor. naive_solver. Qed.

(* Avoid too eager application of the above instances (and thus too eager
unfolding of type class transparent definitions). *)
Hint Extern 0 (SetUnfold (_  _) _) =>
  class_apply set_unfold_impl : typeclass_instances.
Hint Extern 0 (SetUnfold (_  _) _) =>
  class_apply set_unfold_and : typeclass_instances.
Hint Extern 0 (SetUnfold (_  _) _) =>
  class_apply set_unfold_or : typeclass_instances.
Hint Extern 0 (SetUnfold (_  _) _) =>
  class_apply set_unfold_iff : typeclass_instances.
Hint Extern 0 (SetUnfold (¬ _) _) =>
  class_apply set_unfold_not : typeclass_instances.
Hint Extern 1 (SetUnfold ( _, _) _) =>
  class_apply set_unfold_forall : typeclass_instances.
Hint Extern 0 (SetUnfold ( _, _) _) =>
  class_apply set_unfold_exist : typeclass_instances.

Section set_unfold_simple.
  Context `{SimpleCollection A C}.
  Implicit Types x y : A.
  Implicit Types X Y : C.

  Global Instance set_unfold_empty x : SetUnfold (x  ) False.
  Proof. constructor; apply elem_of_empty. Qed.
  Global Instance set_unfold_singleton x y : SetUnfold (x  {[ y ]}) (x = y).
  Proof. constructor; apply elem_of_singleton. Qed.
  Global Instance set_unfold_union x X Y P Q :
    SetUnfold (x  X) P  SetUnfold (x  Y) Q  SetUnfold (x  X  Y) (P  Q).
  Proof.
    intros ??; constructor.
    by rewrite elem_of_union, (set_unfold (x  X) P), (set_unfold (x  Y) Q).
  Qed.
  Global Instance set_unfold_equiv_same X : SetUnfold (X  X) True | 1.
  Proof. done. Qed.
  Global Instance set_unfold_equiv_empty_l X (P : A  Prop) :
    ( x, SetUnfold (x  X) (P x))  SetUnfold (  X) ( x, ¬P x) | 5.
  Proof.
    intros ?; constructor.
    rewrite (symmetry_iff equiv), elem_of_equiv_empty; naive_solver.
  Qed.
  Global Instance set_unfold_equiv_empty_r (P : A  Prop) :
    ( x, SetUnfold (x  X) (P x))  SetUnfold (X  ) ( x, ¬P x) | 5.
  Proof. constructor. rewrite elem_of_equiv_empty; naive_solver. Qed.
  Global Instance set_unfold_equiv (P Q : A  Prop) :
    ( x, SetUnfold (x  X) (P x))  ( x, SetUnfold (x  Y) (Q x)) 
    SetUnfold (X  Y) ( x, P x  Q x) | 10.
  Proof. constructor. rewrite elem_of_equiv; naive_solver. Qed.
  Global Instance set_unfold_subseteq (P Q : A  Prop) :
    ( x, SetUnfold (x  X) (P x))  ( x, SetUnfold (x  Y) (Q x)) 
    SetUnfold (X  Y) ( x, P x  Q x).
  Proof. constructor. rewrite elem_of_subseteq; naive_solver. Qed.
  Global Instance set_unfold_subset (P Q : A  Prop) :
    ( x, SetUnfold (x  X) (P x))  ( x, SetUnfold (x  Y) (Q x)) 
    SetUnfold (X  Y) (( x, P x  Q x)  ¬∀ x, P x  Q x).
  Proof.
    constructor. rewrite subset_spec, elem_of_subseteq, elem_of_equiv.
    repeat f_equiv; naive_solver.
  Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
207
208
209
210
  Global Instance set_unfold_disjoint (P Q : A  Prop) :
    ( x, SetUnfold (x  X) (P x))  ( x, SetUnfold (x  Y) (Q x)) 
    SetUnfold (X  Y) ( x, P x  Q x  False).
  Proof. constructor. rewrite elem_of_disjoint. naive_solver. Qed.
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279

  Context `{!LeibnizEquiv C}.
  Global Instance set_unfold_equiv_same_L X : SetUnfold (X = X) True | 1.
  Proof. done. Qed.
  Global Instance set_unfold_equiv_empty_l_L X (P : A  Prop) :
    ( x, SetUnfold (x  X) (P x))  SetUnfold ( = X) ( x, ¬P x) | 5.
  Proof.
    constructor. rewrite (symmetry_iff eq), elem_of_equiv_empty_L; naive_solver.
  Qed.
  Global Instance set_unfold_equiv_empty_r_L (P : A  Prop) :
    ( x, SetUnfold (x  X) (P x))  SetUnfold (X = ) ( x, ¬P x) | 5.
  Proof. constructor. rewrite elem_of_equiv_empty_L; naive_solver. Qed.
  Global Instance set_unfold_equiv_L (P Q : A  Prop) :
    ( x, SetUnfold (x  X) (P x))  ( x, SetUnfold (x  Y) (Q x)) 
    SetUnfold (X = Y) ( x, P x  Q x) | 10.
  Proof. constructor. rewrite elem_of_equiv_L; naive_solver. Qed.
End set_unfold_simple.

Section set_unfold.
  Context `{Collection A C}.
  Implicit Types x y : A.
  Implicit Types X Y : C.

  Global Instance set_unfold_intersection x X Y P Q :
    SetUnfold (x  X) P  SetUnfold (x  Y) Q  SetUnfold (x  X  Y) (P  Q).
  Proof.
    intros ??; constructor. by rewrite elem_of_intersection,
      (set_unfold (x  X) P), (set_unfold (x  Y) Q).
  Qed.
  Global Instance set_unfold_difference x X Y P Q :
    SetUnfold (x  X) P  SetUnfold (x  Y) Q  SetUnfold (x  X  Y) (P  ¬Q).
  Proof.
    intros ??; constructor. by rewrite elem_of_difference,
      (set_unfold (x  X) P), (set_unfold (x  Y) Q).
  Qed.
End set_unfold.

Section set_unfold_monad.
  Context `{CollectionMonad M} {A : Type}.
  Implicit Types x y : A.

  Global Instance set_unfold_ret x y : SetUnfold (x  mret y) (x = y).
  Proof. constructor; apply elem_of_ret. Qed.
  Global Instance set_unfold_bind {B} (f : A  M B) X (P Q : A  Prop) :
    ( y, SetUnfold (y  X) (P y))  ( y, SetUnfold (x  f y) (Q y)) 
    SetUnfold (x  X = f) ( y, Q y  P y).
  Proof. constructor. rewrite elem_of_bind; naive_solver. Qed.
  Global Instance set_unfold_fmap {B} (f : A  B) X (P : A  Prop) :
    ( y, SetUnfold (y  X) (P y)) 
    SetUnfold (x  f <$> X) ( y, x = f y  P y).
  Proof. constructor. rewrite elem_of_fmap; naive_solver. Qed.
  Global Instance set_unfold_join (X : M (M A)) (P : M A  Prop) :
    ( Y, SetUnfold (Y  X) (P Y))  SetUnfold (x  mjoin X) ( Y, x  Y  P Y).
  Proof. constructor. rewrite elem_of_join; naive_solver. Qed.
End set_unfold_monad.

Ltac set_unfold :=
  let rec unfold_hyps :=
    try match goal with
    | H : _ |- _ =>
       apply set_unfold_1 in H; revert H;
       first [unfold_hyps; intros H | intros H; fail 1]
    end in
  apply set_unfold_2; unfold_hyps; csimpl in *.

(** Since [firstorder] fails or loops on very small goals generated by
[set_solver] already. We use the [naive_solver] tactic as a substitute.
This tactic either fails or proves the goal. *)
Tactic Notation "set_solver" "by" tactic3(tac) :=
280
  try fast_done;
281
282
283
284
285
286
287
288
289
290
291
292
293
  intros; setoid_subst;
  set_unfold;
  intros; setoid_subst;
  try match goal with |- _  _ => apply dec_stable end;
  naive_solver tac.
Tactic Notation "set_solver" "-" hyp_list(Hs) "by" tactic3(tac) :=
  clear Hs; set_solver by tac.
Tactic Notation "set_solver" "+" hyp_list(Hs) "by" tactic3(tac) :=
  clear -Hs; set_solver by tac.
Tactic Notation "set_solver" := set_solver by idtac.
Tactic Notation "set_solver" "-" hyp_list(Hs) := clear Hs; set_solver.
Tactic Notation "set_solver" "+" hyp_list(Hs) := clear -Hs; set_solver.

294
295
296
297
Hint Extern 1000 (_  _) => set_solver : set_solver.
Hint Extern 1000 (_  _) => set_solver : set_solver.
Hint Extern 1000 (_  _) => set_solver : set_solver.

298
299
300
(** * Conversion of option and list *)
Definition of_option `{Singleton A C, Empty C} (mx : option A) : C :=
  match mx with None =>  | Some x => {[ x ]} end.
301
302
Fixpoint of_list `{Singleton A C, Empty C, Union C} (l : list A) : C :=
  match l with [] =>  | x :: l => {[ x ]}  of_list l end.
303

304
305
Section of_option_list.
  Context `{SimpleCollection A C}.
306
307
  Lemma elem_of_of_option (x : A) mx: x  of_option mx  mx = Some x.
  Proof. destruct mx; set_solver. Qed.
308
309
310
  Lemma elem_of_of_list (x : A) l : x  of_list l  x  l.
  Proof.
    split.
311
    - induction l; simpl; [by rewrite elem_of_empty|].
Robbert Krebbers's avatar
Robbert Krebbers committed
312
      rewrite elem_of_union,elem_of_singleton; intros [->|?]; constructor; auto.
313
    - induction 1; simpl; rewrite elem_of_union, elem_of_singleton; auto.
314
  Qed.
315
316
317
  Global Instance set_unfold_of_option (mx : option A) x :
    SetUnfold (x  of_option mx) (mx = Some x).
  Proof. constructor; apply elem_of_of_option. Qed.
318
319
320
  Global Instance set_unfold_of_list (l : list A) x P :
    SetUnfold (x  l) P  SetUnfold (x  of_list l) P.
  Proof. constructor. by rewrite elem_of_of_list, (set_unfold (x  l) P). Qed.
321
End of_option_list.
322

323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
Section list_unfold.
  Context {A : Type}.
  Implicit Types x : A.
  Implicit Types l : list A.

  Global Instance set_unfold_nil x : SetUnfold (x  []) False.
  Proof. constructor; apply elem_of_nil. Qed.
  Global Instance set_unfold_cons x y l P :
    SetUnfold (x  l) P  SetUnfold (x  y :: l) (x = y  P).
  Proof. constructor. by rewrite elem_of_cons, (set_unfold (x  l) P). Qed.
  Global Instance set_unfold_app x l k P Q :
    SetUnfold (x  l) P  SetUnfold (x  k) Q  SetUnfold (x  l ++ k) (P  Q).
  Proof.
    intros ??; constructor.
    by rewrite elem_of_app, (set_unfold (x  l) P), (set_unfold (x  k) Q).
  Qed.
339
340
341
342
  Global Instance set_unfold_included l k (P Q : A  Prop) :
    ( x, SetUnfold (x  l) (P x))  ( x, SetUnfold (x  k) (Q x)) 
    SetUnfold (l `included` k) ( x, P x  Q x).
  Proof. by constructor; unfold included; set_unfold. Qed.
343
344
End list_unfold.

345
(** * Guard *)
346
347
Global Instance collection_guard `{CollectionMonad M} : MGuard M :=
  λ P dec A x, match dec with left H => x H | _ =>  end.
348
349
350
351
352
353
354
355
356

Section collection_monad_base.
  Context `{CollectionMonad M}.
  Lemma elem_of_guard `{Decision P} {A} (x : A) (X : M A) :
    x  guard P; X  P  x  X.
  Proof.
    unfold mguard, collection_guard; simpl; case_match;
      rewrite ?elem_of_empty; naive_solver.
  Qed.
357
358
359
  Lemma elem_of_guard_2 `{Decision P} {A} (x : A) (X : M A) :
    P  x  X  x  guard P; X.
  Proof. by rewrite elem_of_guard. Qed.
360
361
362
363
364
  Lemma guard_empty `{Decision P} {A} (X : M A) : guard P; X    ¬P  X  .
  Proof.
    rewrite !elem_of_equiv_empty; setoid_rewrite elem_of_guard.
    destruct (decide P); naive_solver.
  Qed.
365
366
367
  Global Instance set_unfold_guard `{Decision P} {A} (x : A) X Q :
    SetUnfold (x  X) Q  SetUnfold (x  guard P; X) (P  Q).
  Proof. constructor. by rewrite elem_of_guard, (set_unfold (x  X) Q). Qed.
368
369
  Lemma bind_empty {A B} (f : A  M B) X :
    X = f    X     x, x  X  f x  .
370
  Proof. set_solver. Qed.
371
End collection_monad_base.
372

373
(** * More theorems *)
Robbert Krebbers's avatar
Robbert Krebbers committed
374
375
Section collection.
  Context `{Collection A C}.
376
  Implicit Types X Y : C.
Robbert Krebbers's avatar
Robbert Krebbers committed
377

378
  Global Instance: Lattice C.
379
  Proof. split. apply _. firstorder auto. set_solver. Qed.
380
381
  Global Instance difference_proper :
     Proper (() ==> () ==> ()) (@difference C _).
Robbert Krebbers's avatar
Robbert Krebbers committed
382
383
384
385
  Proof.
    intros X1 X2 HX Y1 Y2 HY; apply elem_of_equiv; intros x.
    by rewrite !elem_of_difference, HX, HY.
  Qed.
386
  Lemma non_empty_inhabited x X : x  X  X  .
387
  Proof. set_solver. Qed.
388
  Lemma intersection_singletons x : ({[x]} : C)  {[x]}  {[x]}.
389
  Proof. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
390
  Lemma difference_twice X Y : (X  Y)  Y  X  Y.
391
  Proof. set_solver. Qed.
392
  Lemma subseteq_empty_difference X Y : X  Y  X  Y  .
393
  Proof. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
394
  Lemma difference_diag X : X  X  .
395
  Proof. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
396
  Lemma difference_union_distr_l X Y Z : (X  Y)  Z  X  Z  Y  Z.
397
  Proof. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
398
  Lemma difference_union_distr_r X Y Z : Z  (X  Y)  (Z  X)  (Z  Y).
399
  Proof. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
400
  Lemma difference_intersection_distr_l X Y Z : (X  Y)  Z  X  Z  Y  Z.
401
  Proof. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
402
  Lemma disjoint_union_difference X Y : X  Y  (X  Y)  X  Y.
403
  Proof. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
404

405
406
407
408
409
410
  Section leibniz.
    Context `{!LeibnizEquiv C}.
    Lemma intersection_singletons_L x : {[x]}  {[x]} = {[x]}.
    Proof. unfold_leibniz. apply intersection_singletons. Qed.
    Lemma difference_twice_L X Y : (X  Y)  Y = X  Y.
    Proof. unfold_leibniz. apply difference_twice. Qed.
411
412
    Lemma subseteq_empty_difference_L X Y : X  Y  X  Y = .
    Proof. unfold_leibniz. apply subseteq_empty_difference. Qed.
413
414
415
416
    Lemma difference_diag_L X : X  X = .
    Proof. unfold_leibniz. apply difference_diag. Qed.
    Lemma difference_union_distr_l_L X Y Z : (X  Y)  Z = X  Z  Y  Z.
    Proof. unfold_leibniz. apply difference_union_distr_l. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
417
418
    Lemma difference_union_distr_r_L X Y Z : Z  (X  Y) = (Z  X)  (Z  Y).
    Proof. unfold_leibniz. apply difference_union_distr_r. Qed.
419
420
421
    Lemma difference_intersection_distr_l_L X Y Z :
      (X  Y)  Z = X  Z  Y  Z.
    Proof. unfold_leibniz. apply difference_intersection_distr_l. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
422
    Lemma disjoint_union_difference_L X Y : X  Y  (X  Y)  X = Y.
Robbert Krebbers's avatar
Robbert Krebbers committed
423
    Proof. unfold_leibniz. apply disjoint_union_difference. Qed.
424
425
426
  End leibniz.

  Section dec.
Robbert Krebbers's avatar
Robbert Krebbers committed
427
    Context `{ (x : A) (X : C), Decision (x  X)}.
428
    Lemma not_elem_of_intersection x X Y : x  X  Y  x  X  x  Y.
429
    Proof. rewrite elem_of_intersection. destruct (decide (x  X)); tauto. Qed.
430
    Lemma not_elem_of_difference x X Y : x  X  Y  x  X  x  Y.
431
    Proof. rewrite elem_of_difference. destruct (decide (x  Y)); tauto. Qed.
432
433
    Lemma union_difference X Y : X  Y  Y  X  Y  X.
    Proof.
434
435
      split; intros x; rewrite !elem_of_union, elem_of_difference; [|intuition].
      destruct (decide (x  X)); intuition.
436
437
    Qed.
    Lemma non_empty_difference X Y : X  Y  Y  X  .
438
    Proof. intros [HXY1 HXY2] Hdiff. destruct HXY2. set_solver. Qed.
439
    Lemma empty_difference_subseteq X Y : X  Y    X  Y.
440
    Proof. set_solver. Qed.
441
442
443
444
445
    Context `{!LeibnizEquiv C}.
    Lemma union_difference_L X Y : X  Y  Y = X  Y  X.
    Proof. unfold_leibniz. apply union_difference. Qed.
    Lemma non_empty_difference_L X Y : X  Y  Y  X  .
    Proof. unfold_leibniz. apply non_empty_difference. Qed.
446
447
    Lemma empty_difference_subseteq_L X Y : X  Y =   X  Y.
    Proof. unfold_leibniz. apply empty_difference_subseteq. Qed.
448
449
450
451
452
453
  End dec.
End collection.

Section collection_ops.
  Context `{CollectionOps A C}.

Robbert Krebbers's avatar
Robbert Krebbers committed
454
455
456
457
458
  Lemma elem_of_intersection_with_list (f : A  A  option A) Xs Y x :
    x  intersection_with_list f Y Xs   xs y,
      Forall2 () xs Xs  y  Y  foldr (λ x, (= f x)) (Some y) xs = Some x.
  Proof.
    split.
459
    - revert x. induction Xs; simpl; intros x HXs; [eexists [], x; intuition|].
460
461
      rewrite elem_of_intersection_with in HXs; destruct HXs as (x1&x2&?&?&?).
      destruct (IHXs x2) as (xs & y & hy & ? & ?); trivial.
462
      eexists (x1 :: xs), y. intuition (simplify_option_eq; auto).
463
    - intros (xs & y & Hxs & ? & Hx). revert x Hx.
464
      induction Hxs; intros; simplify_option_eq; [done |].
Robbert Krebbers's avatar
Robbert Krebbers committed
465
466
467
468
469
470
471
472
473
      rewrite elem_of_intersection_with. naive_solver.
  Qed.

  Lemma intersection_with_list_ind (P Q : A  Prop) f Xs Y :
    ( y, y  Y  P y) 
    Forall (λ X,  x, x  X  Q x) Xs 
    ( x y z, Q x  P y  f x y = Some z  P z) 
     x, x  intersection_with_list f Y Xs  P x.
  Proof.
474
    intros HY HXs Hf. induction Xs; simplify_option_eq; [done |].
Robbert Krebbers's avatar
Robbert Krebbers committed
475
476
477
    intros x Hx. rewrite elem_of_intersection_with in Hx.
    decompose_Forall. destruct Hx as (? & ? & ? & ? & ?). eauto.
  Qed.
478
End collection_ops.
Robbert Krebbers's avatar
Robbert Krebbers committed
479

480
(** * Sets without duplicates up to an equivalence *)
481
Section NoDup.
482
  Context `{SimpleCollection A B} (R : relation A) `{!Equivalence R}.
Robbert Krebbers's avatar
Robbert Krebbers committed
483
484

  Definition elem_of_upto (x : A) (X : B) :=  y, y  X  R x y.
485
  Definition set_NoDup (X : B) :=  x y, x  X  y  X  R x y  x = y.
Robbert Krebbers's avatar
Robbert Krebbers committed
486
487

  Global Instance: Proper (() ==> iff) (elem_of_upto x).
Robbert Krebbers's avatar
Robbert Krebbers committed
488
  Proof. intros ??? E. unfold elem_of_upto. by setoid_rewrite E. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
489
490
491
  Global Instance: Proper (R ==> () ==> iff) elem_of_upto.
  Proof.
    intros ?? E1 ?? E2. split; intros [z [??]]; exists z.
492
493
    - rewrite <-E1, <-E2; intuition.
    - rewrite E1, E2; intuition.
Robbert Krebbers's avatar
Robbert Krebbers committed
494
  Qed.
495
  Global Instance: Proper (() ==> iff) set_NoDup.
Robbert Krebbers's avatar
Robbert Krebbers committed
496
497
498
  Proof. firstorder. Qed.

  Lemma elem_of_upto_elem_of x X : x  X  elem_of_upto x X.
499
  Proof. unfold elem_of_upto. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
500
  Lemma elem_of_upto_empty x : ¬elem_of_upto x .
501
  Proof. unfold elem_of_upto. set_solver. Qed.
502
  Lemma elem_of_upto_singleton x y : elem_of_upto x {[ y ]}  R x y.
503
  Proof. unfold elem_of_upto. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
504

505
506
  Lemma elem_of_upto_union X Y x :
    elem_of_upto x (X  Y)  elem_of_upto x X  elem_of_upto x Y.
507
  Proof. unfold elem_of_upto. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
508
  Lemma not_elem_of_upto x X : ¬elem_of_upto x X   y, y  X  ¬R x y.
509
  Proof. unfold elem_of_upto. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
510

511
  Lemma set_NoDup_empty: set_NoDup .
512
  Proof. unfold set_NoDup. set_solver. Qed.
513
514
  Lemma set_NoDup_add x X :
    ¬elem_of_upto x X  set_NoDup X  set_NoDup ({[ x ]}  X).
515
  Proof. unfold set_NoDup, elem_of_upto. set_solver. Qed.
516
517
  Lemma set_NoDup_inv_add x X :
    x  X  set_NoDup ({[ x ]}  X)  ¬elem_of_upto x X.
518
519
  Proof.
    intros Hin Hnodup [y [??]].
520
    rewrite (Hnodup x y) in Hin; set_solver.
521
  Qed.
522
  Lemma set_NoDup_inv_union_l X Y : set_NoDup (X  Y)  set_NoDup X.
523
  Proof. unfold set_NoDup. set_solver. Qed.
524
  Lemma set_NoDup_inv_union_r X Y : set_NoDup (X  Y)  set_NoDup Y.
525
  Proof. unfold set_NoDup. set_solver. Qed.
526
End NoDup.
Robbert Krebbers's avatar
Robbert Krebbers committed
527

528
(** * Quantifiers *)
Robbert Krebbers's avatar
Robbert Krebbers committed
529
Section quantifiers.
530
  Context `{SimpleCollection A B} (P : A  Prop).
Robbert Krebbers's avatar
Robbert Krebbers committed
531

532
533
534
535
  Definition set_Forall X :=  x, x  X  P x.
  Definition set_Exists X :=  x, x  X  P x.

  Lemma set_Forall_empty : set_Forall .
536
  Proof. unfold set_Forall. set_solver. Qed.
537
  Lemma set_Forall_singleton x : set_Forall {[ x ]}  P x.
538
  Proof. unfold set_Forall. set_solver. Qed.
539
  Lemma set_Forall_union X Y : set_Forall X  set_Forall Y  set_Forall (X  Y).
540
  Proof. unfold set_Forall. set_solver. Qed.
541
  Lemma set_Forall_union_inv_1 X Y : set_Forall (X  Y)  set_Forall X.
542
  Proof. unfold set_Forall. set_solver. Qed.
543
  Lemma set_Forall_union_inv_2 X Y : set_Forall (X  Y)  set_Forall Y.
544
  Proof. unfold set_Forall. set_solver. Qed.
545
546

  Lemma set_Exists_empty : ¬set_Exists .
547
  Proof. unfold set_Exists. set_solver. Qed.
548
  Lemma set_Exists_singleton x : set_Exists {[ x ]}  P x.
549
  Proof. unfold set_Exists. set_solver. Qed.
550
  Lemma set_Exists_union_1 X Y : set_Exists X  set_Exists (X  Y).
551
  Proof. unfold set_Exists. set_solver. Qed.
552
  Lemma set_Exists_union_2 X Y : set_Exists Y  set_Exists (X  Y).
553
  Proof. unfold set_Exists. set_solver. Qed.
554
555
  Lemma set_Exists_union_inv X Y :
    set_Exists (X  Y)  set_Exists X  set_Exists Y.
556
  Proof. unfold set_Exists. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
557
558
End quantifiers.

559
Section more_quantifiers.
560
  Context `{SimpleCollection A B}.
561

562
563
564
565
566
567
  Lemma set_Forall_weaken (P Q : A  Prop) (Hweaken :  x, P x  Q x) X :
    set_Forall P X  set_Forall Q X.
  Proof. unfold set_Forall. naive_solver. Qed.
  Lemma set_Exists_weaken (P Q : A  Prop) (Hweaken :  x, P x  Q x) X :
    set_Exists P X  set_Exists Q X.
  Proof. unfold set_Exists. naive_solver. Qed.
568
569
End more_quantifiers.

570
571
572
(** * Fresh elements *)
(** We collect some properties on the [fresh] operation. In particular we
generalize [fresh] to generate lists of fresh elements. *)
573
574
575
576
577
578
579
580
581
582
Fixpoint fresh_list `{Fresh A C, Union C, Singleton A C}
    (n : nat) (X : C) : list A :=
  match n with
  | 0 => []
  | S n => let x := fresh X in x :: fresh_list n ({[ x ]}  X)
  end.
Inductive Forall_fresh `{ElemOf A C} (X : C) : list A  Prop :=
  | Forall_fresh_nil : Forall_fresh X []
  | Forall_fresh_cons x xs :
     x  xs  x  X  Forall_fresh X xs  Forall_fresh X (x :: xs).
583

584
585
Section fresh.
  Context `{FreshSpec A C}.
586
  Implicit Types X Y : C.
587

588
  Global Instance fresh_proper: Proper (() ==> (=)) (fresh (C:=C)).
589
  Proof. intros ???. by apply fresh_proper_alt, elem_of_equiv. Qed.
590
591
  Global Instance fresh_list_proper:
    Proper ((=) ==> () ==> (=)) (fresh_list (C:=C)).
592
  Proof.
593
    intros ? n ->. induction n as [|n IH]; intros ?? E; f_equal/=; [by rewrite E|].
594
    apply IH. by rewrite E.
595
  Qed.
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610

  Lemma Forall_fresh_NoDup X xs : Forall_fresh X xs  NoDup xs.
  Proof. induction 1; by constructor. Qed.
  Lemma Forall_fresh_elem_of X xs x : Forall_fresh X xs  x  xs  x  X.
  Proof.
    intros HX; revert x; rewrite <-Forall_forall.
    by induction HX; constructor.
  Qed.
  Lemma Forall_fresh_alt X xs :
    Forall_fresh X xs  NoDup xs   x, x  xs  x  X.
  Proof.
    split; eauto using Forall_fresh_NoDup, Forall_fresh_elem_of.
    rewrite <-Forall_forall.
    intros [Hxs Hxs']. induction Hxs; decompose_Forall_hyps; constructor; auto.
  Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
611
612
  Lemma Forall_fresh_subseteq X Y xs :
    Forall_fresh X xs  Y  X  Forall_fresh Y xs.
613
  Proof. rewrite !Forall_fresh_alt; set_solver. Qed.
614

615
616
  Lemma fresh_list_length n X : length (fresh_list n X) = n.
  Proof. revert X. induction n; simpl; auto. Qed.
617
  Lemma fresh_list_is_fresh n X x : x  fresh_list n X  x  X.
618
  Proof.
619
    revert X. induction n as [|n IH]; intros X; simpl;[by rewrite elem_of_nil|].
620
    rewrite elem_of_cons; intros [->| Hin]; [apply is_fresh|].
621
    apply IH in Hin; set_solver.
622
  Qed.
623
  Lemma NoDup_fresh_list n X : NoDup (fresh_list n X).
624
  Proof.
625
    revert X. induction n; simpl; constructor; auto.
626
    intros Hin; apply fresh_list_is_fresh in Hin; set_solver.
627
628
629
630
  Qed.
  Lemma Forall_fresh_list X n : Forall_fresh X (fresh_list n X).
  Proof.
    rewrite Forall_fresh_alt; eauto using NoDup_fresh_list, fresh_list_is_fresh.
631
632
  Qed.
End fresh.
633

634
(** * Properties of implementations of collections that form a monad *)
635
636
637
Section collection_monad.
  Context `{CollectionMonad M}.

638
639
  Global Instance collection_fmap_mono {A B} :
    Proper (pointwise_relation _ (=) ==> () ==> ()) (@fmap M _ A B).
640
  Proof. intros f g ? X Y ?; set_solver by eauto. Qed.
641
642
  Global Instance collection_fmap_proper {A B} :
    Proper (pointwise_relation _ (=) ==> () ==> ()) (@fmap M _ A B).
643
  Proof. intros f g ? X Y [??]; split; set_solver by eauto. Qed.
644
645
  Global Instance collection_bind_mono {A B} :
    Proper (((=) ==> ()) ==> () ==> ()) (@mbind M _ A B).
646
  Proof. unfold respectful; intros f g Hfg X Y ?; set_solver. Qed.
647
648
  Global Instance collection_bind_proper {A B} :
    Proper (((=) ==> ()) ==> () ==> ()) (@mbind M _ A B).
649
  Proof. unfold respectful; intros f g Hfg X Y [??]; split; set_solver. Qed.
650
651
  Global Instance collection_join_mono {A} :
    Proper (() ==> ()) (@mjoin M _ A).
652
  Proof. intros X Y ?; set_solver. Qed.
653
654
  Global Instance collection_join_proper {A} :
    Proper (() ==> ()) (@mjoin M _ A).
655
  Proof. intros X Y [??]; split; set_solver. Qed.
656

657
  Lemma collection_bind_singleton {A B} (f : A  M B) x : {[ x ]} = f  f x.
658
  Proof. set_solver. Qed.
659
  Lemma collection_guard_True {A} `{Decision P} (X : M A) : P  guard P; X  X.
660
  Proof. set_solver. Qed.
661
  Lemma collection_fmap_compose {A B C} (f : A  B) (g : B  C) (X : M A) :
662
    g  f <$> X  g <$> (f <$> X).
663
  Proof. set_solver. Qed.
664
665
  Lemma elem_of_fmap_1 {A B} (f : A  B) (X : M A) (y : B) :
    y  f <$> X   x, y = f x  x  X.
666
  Proof. set_solver. Qed.
667
668
  Lemma elem_of_fmap_2 {A B} (f : A  B) (X : M A) (x : A) :
    x  X  f x  f <$> X.
669
  Proof. set_solver. Qed.
670
671
  Lemma elem_of_fmap_2_alt {A B} (f : A  B) (X : M A) (x : A) (y : B) :
    x  X  y = f x  y  f <$> X.
672
  Proof. set_solver. Qed.
673
674
675
676
677

  Lemma elem_of_mapM {A B} (f : A  M B) l k :
    l  mapM f k  Forall2 (λ x y, x  f y) l k.
  Proof.
    split.
678
    - revert l. induction k; set_solver by eauto.
679
    - induction 1; set_solver.
680
  Qed.
681
  Lemma collection_mapM_length {A B} (f : A  M B) l k :
682
    l  mapM f k  length l = length k.
683
  Proof. revert l; induction k; set_solver by eauto. Qed.
684
  Lemma elem_of_mapM_fmap {A B} (f : A  B) (g : B  M A) l k :
685
    Forall (λ x,  y, y  g x  f y = x) l  k  mapM g l  fmap f k = l.
686
  Proof. intros Hl. revert k. induction Hl; set_solver. Qed.
687
  Lemma elem_of_mapM_Forall {A B} (f : A  M B) (P : B  Prop) l k :
688
    l  mapM f k  Forall (λ x,  y, y  f x  P y) k  Forall P l.
Robbert Krebbers's avatar
Robbert Krebbers committed
689
  Proof. rewrite elem_of_mapM. apply Forall2_Forall_l. Qed.
690
691
  Lemma elem_of_mapM_Forall2_l {A B C} (f : A  M B) (P: B  C  Prop) l1 l2 k :
    l1  mapM f k  Forall2 (λ x y,  z, z  f x  P z y) k l2 
Robbert Krebbers's avatar
Robbert Krebbers committed
692
693
694
695
696
    Forall2 P l1 l2.
  Proof.
    rewrite elem_of_mapM. intros Hl1. revert l2.
    induction Hl1; inversion_clear 1; constructor; auto.
  Qed.
697
End collection_monad.
698
699
700
701
702
703

(** Finite collections *)
Definition set_finite `{ElemOf A B} (X : B) :=  l : list A,  x, x  X  x  l.

Section finite.
  Context `{SimpleCollection A B}.
704
705
  Global Instance set_finite_subseteq :
     Proper (flip () ==> impl) (@set_finite A B _).
706
  Proof. intros X Y HX [l Hl]; exists l; set_solver. Qed.
707
708
  Global Instance set_finite_proper : Proper (() ==> iff) (@set_finite A B _).
  Proof. by intros X Y [??]; split; apply set_finite_subseteq. Qed.
709
710
711
  Lemma empty_finite : set_finite .
  Proof. by exists []; intros ?; rewrite elem_of_empty. Qed.
  Lemma singleton_finite (x : A) : set_finite {[ x ]}.
Ralf Jung's avatar
Ralf Jung committed
712
  Proof. exists [x]; intros y ->%elem_of_singleton; left. Qed.
713
714
715
716
717
718
  Lemma union_finite X Y : set_finite X  set_finite Y  set_finite (X  Y).
  Proof.
    intros [lX ?] [lY ?]; exists (lX ++ lY); intros x.
    rewrite elem_of_union, elem_of_app; naive_solver.
  Qed.
  Lemma union_finite_inv_l X Y : set_finite (X  Y)  set_finite X.
719
  Proof. intros [l ?]; exists l; set_solver. Qed.
720
  Lemma union_finite_inv_r X Y : set_finite (X  Y)  set_finite Y.
721
  Proof. intros [l ?]; exists l; set_solver. Qed.
722
723
724
725
726
End finite.

Section more_finite.
  Context `{Collection A B}.
  Lemma intersection_finite_l X Y : set_finite X  set_finite (X  Y).
Ralf Jung's avatar
Ralf Jung committed
727
  Proof. intros [l ?]; exists l; intros x [??]%elem_of_intersection; auto. Qed.
728
  Lemma intersection_finite_r X Y : set_finite Y  set_finite (X  Y).
Ralf Jung's avatar
Ralf Jung committed
729
  Proof. intros [l ?]; exists l; intros x [??]%elem_of_intersection; auto. Qed.
730
  Lemma difference_finite X Y : set_finite X  set_finite (X  Y).
Ralf Jung's avatar
Ralf Jung committed
731
  Proof. intros [l ?]; exists l; intros x [??]%elem_of_difference; auto. Qed.
732
733
734
735
  Lemma difference_finite_inv X Y `{ x, Decision (x  Y)} :
    set_finite Y  set_finite (X  Y)  set_finite X.
  Proof.
    intros [l ?] [k ?]; exists (l ++ k).
736
    intros x ?; destruct (decide (x  Y)); rewrite elem_of_app; set_solver.
737
  Qed.
738
End more_finite.