base.v 37.1 KB
Newer Older
1
(* Copyright (c) 2012-2013, Robbert Krebbers. *)
2 3 4 5 6
(* This file is distributed under the terms of the BSD license. *)
(** This file collects type class interfaces, notations, and general theorems
that are used throughout the whole development. Most importantly it contains
abstract interfaces for ordered structures, collections, and various other data
structures. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
7 8
Global Generalizable All Variables.
Global Set Automatic Coercions Import.
9
Require Export Morphisms RelationClasses List Bool Utf8 Program Setoid.
Robbert Krebbers's avatar
Robbert Krebbers committed
10

11 12 13 14
(** * General *)
(** The following coercion allows us to use Booleans as propositions. *)
Coercion Is_true : bool >-> Sortclass.

15 16
(** Ensure that [simpl] unfolds [id], [compose], and [flip] when fully
applied. *)
17
Arguments id _ _ /.
18
Arguments compose _ _ _ _ _ _ /.
19
Arguments flip _ _ _ _ _ _ /.
20
Typeclasses Transparent id compose flip.
21

22 23 24 25
(** Change [True] and [False] into notations in order to enable overloading.
We will use this in the file [assertions] to give [True] and [False] a
different interpretation in [assert_scope] used for assertions of our axiomatic
semantics. *)
26 27
Notation "'True'" := True : type_scope.
Notation "'False'" := False : type_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
28

29 30 31
Notation curry := prod_curry.
Notation uncurry := prod_uncurry.

32 33
(** Throughout this development we use [C_scope] for all general purpose
notations that do not belong to a more specific scope. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
34 35 36
Delimit Scope C_scope with C.
Global Open Scope C_scope.

37
(** Introduce some Haskell style like notations. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
38 39 40 41 42 43 44 45 46
Notation "(=)" := eq (only parsing) : C_scope.
Notation "( x =)" := (eq x) (only parsing) : C_scope.
Notation "(= x )" := (λ y, eq y x) (only parsing) : C_scope.
Notation "(≠)" := (λ x y, x  y) (only parsing) : C_scope.
Notation "( x ≠)" := (λ y, x  y) (only parsing) : C_scope.
Notation "(≠ x )" := (λ y, y  x) (only parsing) : C_scope.

Hint Extern 0 (?x = ?x) => reflexivity.

47 48 49 50
Notation "(→)" := (λ A B, A  B) (only parsing) : C_scope.
Notation "( A →)" := (λ B, A  B) (only parsing) : C_scope.
Notation "(→ B )" := (λ A, A  B) (only parsing) : C_scope.

51
Notation "t $ r" := (t r)
52
  (at level 65, right associativity, only parsing) : C_scope.
53 54 55
Notation "($)" := (λ f x, f x) (only parsing) : C_scope.
Notation "($ x )" := (λ f, f x) (only parsing) : C_scope.

Robbert Krebbers's avatar
Robbert Krebbers committed
56 57 58 59
Infix "∘" := compose : C_scope.
Notation "(∘)" := compose (only parsing) : C_scope.
Notation "( f ∘)" := (compose f) (only parsing) : C_scope.
Notation "(∘ f )" := (λ g, compose g f) (only parsing) : C_scope.
60

61 62 63 64 65 66 67 68 69 70 71 72
Notation "(∧)" := and (only parsing) : C_scope.
Notation "( A ∧)" := (and A) (only parsing) : C_scope.
Notation "(∧ B )" := (λ A, A  B) (only parsing) : C_scope.

Notation "(∨)" := or (only parsing) : C_scope.
Notation "( A ∨)" := (or A) (only parsing) : C_scope.
Notation "(∨ B )" := (λ A, A  B) (only parsing) : C_scope.

Notation "(↔)" := iff (only parsing) : C_scope.
Notation "( A ↔)" := (iff A) (only parsing) : C_scope.
Notation "(↔ B )" := (λ A, A  B) (only parsing) : C_scope.

73 74
(** Set convenient implicit arguments for [existT] and introduce notations. *)
Arguments existT {_ _} _ _.
75
Arguments proj1_sig {_ _} _.
Robbert Krebbers's avatar
Robbert Krebbers committed
76
Notation "x ↾ p" := (exist _ x p) (at level 20) : C_scope.
77
Notation "` x" := (proj1_sig x) (at level 10, format "` x") : C_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
78

79 80 81 82
(** * Type classes *)
(** ** Provable propositions *)
(** This type class collects provable propositions. It is useful to constraint
type classes by arbitrary propositions. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
83 84
Class PropHolds (P : Prop) := prop_holds: P.

85 86
Hint Extern 0 (PropHolds _) => assumption : typeclass_instances.
Instance: Proper (iff ==> iff) PropHolds.
87
Proof. repeat intro; trivial. Qed.
88 89 90

Ltac solve_propholds :=
  match goal with
91 92
  | |- PropHolds (?P) => apply _
  | |- ?P => change (PropHolds P); apply _
93 94 95 96 97 98 99
  end.

(** ** Decidable propositions *)
(** This type class by (Spitters/van der Weegen, 2011) collects decidable
propositions. For example to declare a parameter expressing decidable equality
on a type [A] we write [`{∀ x y : A, Decision (x = y)}] and use it by writing
[decide (x = y)]. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
100 101 102
Class Decision (P : Prop) := decide : {P} + {¬P}.
Arguments decide _ {_}.

103 104 105 106 107 108 109 110 111
(** ** Inhabited types *)
(** This type class collects types that are inhabited. *)
Class Inhabited (A : Type) : Prop := populate { _ : A }.
Arguments populate {_} _.

Instance unit_inhabited: Inhabited unit := populate ().
Instance list_inhabited {A} : Inhabited (list A) := populate [].
Instance prod_inhabited {A B} (iA : Inhabited A)
    (iB : Inhabited B) : Inhabited (A * B) :=
112
  match iA, iB with populate x, populate y => populate (x,y) end.
113
Instance sum_inhabited_l {A B} (iA : Inhabited A) : Inhabited (A + B) :=
114
  match iA with populate x => populate (inl x) end.
115
Instance sum_inhabited_r {A B} (iB : Inhabited A) : Inhabited (A + B) :=
116
  match iB with populate y => populate (inl y) end.
117 118
Instance option_inhabited {A} : Inhabited (option A) := populate None.

119 120 121 122 123 124
(** ** Proof irrelevant types *)
(** This type class collects types that are proof irrelevant. That means, all
elements of the type are equal. We use this notion only used for propositions,
but by universe polymorphism we can generalize it. *)
Class ProofIrrel (A : Type) : Prop := proof_irrel (x y : A) : x = y.

125 126 127
(** ** Setoid equality *)
(** We define an operational type class for setoid equality. This is based on
(Spitters/van der Weegen, 2011). *)
Robbert Krebbers's avatar
Robbert Krebbers committed
128 129 130 131 132 133 134 135 136 137
Class Equiv A := equiv: relation A.
Infix "≡" := equiv (at level 70, no associativity) : C_scope.
Notation "(≡)" := equiv (only parsing) : C_scope.
Notation "( x ≡)" := (equiv x) (only parsing) : C_scope.
Notation "(≡ x )" := (λ y, y  x) (only parsing) : C_scope.
Notation "(≢)" := (λ x y, ¬x  y) (only parsing) : C_scope.
Notation "x ≢ y":= (¬x  y) (at level 70, no associativity) : C_scope.
Notation "( x ≢)" := (λ y, x  y) (only parsing) : C_scope.
Notation "(≢ x )" := (λ y, y  x) (only parsing) : C_scope.

138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
(** The type class [LeibnizEquiv] collects setoid equalities that coincide
with Leibniz equality. We provide the tactic [fold_leibniz] to transform such
setoid equalities into Leibniz equalities, and [unfold_leibniz] for the
reverse. *)
Class LeibnizEquiv A `{Equiv A} := leibniz_equiv x y : x  y  x = y.

Ltac fold_leibniz := repeat
  match goal with
  | H : context [ @equiv ?A _ _ _ ] |- _ =>
    setoid_rewrite (leibniz_equiv (A:=A)) in H
  | |- context [ @equiv ?A _ _ _ ] =>
    setoid_rewrite (leibniz_equiv (A:=A))
  end.
Ltac unfold_leibniz := repeat
  match goal with
  | H : context [ @eq ?A _ _ ] |- _ =>
    setoid_rewrite <-(leibniz_equiv (A:=A)) in H
  | |- context [ @eq ?A _ _ ] =>
    setoid_rewrite <-(leibniz_equiv (A:=A))
  end.

159 160 161 162 163 164 165 166
(** A [Params f n] instance forces the setoid rewriting mechanism not to
rewrite in the first [n] arguments of the function [f]. We will declare such
instances for all operational type classes in this development. *)
Instance: Params (@equiv) 2.

(** The following instance forces [setoid_replace] to use setoid equality
(for types that have an [Equiv] instance) rather than the standard Leibniz
equality. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
167
Instance equiv_default_relation `{Equiv A} : DefaultRelation () | 3.
168 169
Hint Extern 0 (_  _) => reflexivity.
Hint Extern 0 (_  _) => symmetry; assumption.
Robbert Krebbers's avatar
Robbert Krebbers committed
170

171
(** ** Operations on collections *)
172
(** We define operational type classes for the traditional operations and
173
relations on collections: the empty collection [∅], the union [(∪)],
174 175
intersection [(∩)], and difference [(∖)], the singleton [{[_]}], the subset
[(⊆)] and element of [(∈)] relation, and disjointess [(⊥)]. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
176 177 178 179
Class Empty A := empty: A.
Notation "∅" := empty : C_scope.

Class Union A := union: A  A  A.
180
Instance: Params (@union) 2.
Robbert Krebbers's avatar
Robbert Krebbers committed
181 182 183 184 185
Infix "∪" := union (at level 50, left associativity) : C_scope.
Notation "(∪)" := union (only parsing) : C_scope.
Notation "( x ∪)" := (union x) (only parsing) : C_scope.
Notation "(∪ x )" := (λ y, union y x) (only parsing) : C_scope.

186
Definition union_list `{Empty A} `{Union A} : list A  A := fold_right () .
187 188 189
Arguments union_list _ _ _ !_ /.
Notation "⋃ l" := (union_list l) (at level 20, format "⋃  l") : C_scope.

Robbert Krebbers's avatar
Robbert Krebbers committed
190
Class Intersection A := intersection: A  A  A.
191
Instance: Params (@intersection) 2.
Robbert Krebbers's avatar
Robbert Krebbers committed
192 193 194 195 196 197
Infix "∩" := intersection (at level 40) : C_scope.
Notation "(∩)" := intersection (only parsing) : C_scope.
Notation "( x ∩)" := (intersection x) (only parsing) : C_scope.
Notation "(∩ x )" := (λ y, intersection y x) (only parsing) : C_scope.

Class Difference A := difference: A  A  A.
198
Instance: Params (@difference) 2.
Robbert Krebbers's avatar
Robbert Krebbers committed
199 200 201 202 203
Infix "∖" := difference (at level 40) : C_scope.
Notation "(∖)" := difference (only parsing) : C_scope.
Notation "( x ∖)" := (difference x) (only parsing) : C_scope.
Notation "(∖ x )" := (λ y, difference y x) (only parsing) : C_scope.

204 205
Class Singleton A B := singleton: A  B.
Instance: Params (@singleton) 3.
206
Notation "{[ x ]}" := (singleton x) (at level 1) : C_scope.
207
Notation "{[ x ; y ; .. ; z ]}" :=
208 209 210 211 212 213
  (union .. (union (singleton x) (singleton y)) .. (singleton z))
  (at level 1) : C_scope.
Notation "{[ x , y ]}" := (singleton (x,y))
  (at level 1, y at next level) : C_scope.
Notation "{[ x , y , z ]}" := (singleton (x,y,z))
  (at level 1, y at next level, z at next level) : C_scope.
214

215
Class SubsetEq A := subseteq: relation A.
216
Instance: Params (@subseteq) 2.
Robbert Krebbers's avatar
Robbert Krebbers committed
217 218 219 220 221 222 223 224
Infix "⊆" := subseteq (at level 70) : C_scope.
Notation "(⊆)" := subseteq (only parsing) : C_scope.
Notation "( X ⊆ )" := (subseteq X) (only parsing) : C_scope.
Notation "( ⊆ X )" := (λ Y, subseteq Y X) (only parsing) : C_scope.
Notation "X ⊈ Y" := (¬X  Y) (at level 70) : C_scope.
Notation "(⊈)" := (λ X Y, X  Y) (only parsing) : C_scope.
Notation "( X ⊈ )" := (λ Y, X  Y) (only parsing) : C_scope.
Notation "( ⊈ X )" := (λ Y, Y  X) (only parsing) : C_scope.
225 226
Infix "⊆*" := (Forall2 subseteq) (at level 70) : C_scope.
Notation "(⊆*)" := (Forall2 subseteq) (only parsing) : C_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
227

228 229
Hint Extern 0 (_  _) => reflexivity.

230 231 232 233 234 235
Definition strict {A} (R : relation A) : relation A := λ X Y, R X Y  ¬R Y X.
Instance: Params (@strict) 2.
Infix "⊂" := (strict subseteq) (at level 70) : C_scope.
Notation "(⊂)" := (strict subseteq) (only parsing) : C_scope.
Notation "( X ⊂ )" := (strict subseteq X) (only parsing) : C_scope.
Notation "( ⊂ X )" := (λ Y, strict subseteq Y X) (only parsing) : C_scope.
236 237 238 239
Notation "X ⊄  Y" := (¬X  Y) (at level 70) : C_scope.
Notation "(⊄)" := (λ X Y, X  Y) (only parsing) : C_scope.
Notation "( X ⊄ )" := (λ Y, X  Y) (only parsing) : C_scope.
Notation "( ⊄ X )" := (λ Y, Y  X) (only parsing) : C_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
240

241 242 243 244 245
(** The class [Lexico A] is used for the lexicographic order on [A]. This order
is used to create finite maps, finite sets, etc, and is typically different from
the order [(⊆)]. *)
Class Lexico A := lexico: relation A.

Robbert Krebbers's avatar
Robbert Krebbers committed
246
Class ElemOf A B := elem_of: A  B  Prop.
247
Instance: Params (@elem_of) 3.
Robbert Krebbers's avatar
Robbert Krebbers committed
248 249 250 251 252 253 254 255 256
Infix "∈" := elem_of (at level 70) : C_scope.
Notation "(∈)" := elem_of (only parsing) : C_scope.
Notation "( x ∈)" := (elem_of x) (only parsing) : C_scope.
Notation "(∈ X )" := (λ x, elem_of x X) (only parsing) : C_scope.
Notation "x ∉ X" := (¬x  X) (at level 80) : C_scope.
Notation "(∉)" := (λ x X, x  X) (only parsing) : C_scope.
Notation "( x ∉)" := (λ X, x  X) (only parsing) : C_scope.
Notation "(∉ X )" := (λ x, x  X) (only parsing) : C_scope.

Robbert Krebbers's avatar
Robbert Krebbers committed
257 258 259 260
Class Disjoint A := disjoint : A  A  Prop.
Instance: Params (@disjoint) 2.
Infix "⊥" := disjoint (at level 70) : C_scope.
Notation "(⊥)" := disjoint (only parsing) : C_scope.
261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
Notation "( X ⊥.)" := (disjoint X) (only parsing) : C_scope.
Notation "(.⊥ X )" := (λ Y, disjoint Y X) (only parsing) : C_scope.

Class DisjointList A := disjoint_list : list A  Prop.
Instance: Params (@disjoint_list) 2.
Notation "⊥ l" := (disjoint_list l) (at level 20, format "⊥  l") : C_scope.

Section default_disjoint_list.
  Context `{Empty A} `{Union A} `{Disjoint A}.
  Inductive default_disjoint_list : DisjointList A :=
    | disjoint_nil_2 :  []
    | disjoint_cons_2 X Xs : X   Xs   Xs   (X :: Xs).
  Global Existing Instance default_disjoint_list.

  Lemma disjoint_list_nil :  @nil A  True.
  Proof. split; constructor. Qed.
  Lemma disjoint_list_cons X Xs :  (X :: Xs)  X   Xs   Xs.
  Proof. split. inversion_clear 1; auto. intros [??]. constructor; auto. Qed.
End default_disjoint_list.

Class Filter A B := filter:  (P : A  Prop) `{ x, Decision (P x)}, B  B.
282

283 284 285 286 287
(** We define variants of the relations [(≡)] and [(⊆)] that are indexed by
an environment. *)
Class EquivEnv A B := equiv_env : A  relation B.
Notation "X ≡@{ E } Y" := (equiv_env E X Y)
  (at level 70, format "X  ≡@{ E }  Y") : C_scope.
288
Notation "(≡@{ E } )" := (equiv_env E) (E at level 1, only parsing) : C_scope.
289 290 291
Instance: Params (@equiv_env) 4.

Class SubsetEqEnv A B := subseteq_env : A  relation B.
292 293 294 295 296 297 298 299
Instance: Params (@subseteq_env) 4.
Notation "X ⊑@{ E } Y" := (subseteq_env E X Y)
  (at level 70, format "X  ⊑@{ E }  Y") : C_scope.
Notation "(⊑@{ E } )" := (subseteq_env E)
  (E at level 1, only parsing) : C_scope.
Notation "X ⊑@{ E }* Y" := (Forall2 (subseteq_env E) X Y)
  (at level 70, format "X  ⊑@{ E }*  Y") : C_scope.
Notation "(⊑@{ E }*)" := (Forall2 (subseteq_env E))
300 301 302
  (E at level 1, only parsing) : C_scope.
Instance: Params (@subseteq_env) 4.

303 304 305
Hint Extern 0 (_ @{_} _) => reflexivity.
Hint Extern 0 (_ @{_} _) => reflexivity.

306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
(** ** Monadic operations *)
(** We define operational type classes for the monadic operations bind, join 
and fmap. These type classes are defined in a non-standard way by taking the
function as a parameter of the class. For example, we define
<<
  Class FMapD := fmap: ∀ {A B}, (A → B) → M A → M B.
>>
instead of
<<
  Class FMap {A B} (f : A → B) := fmap: M A → M B.
>>
This approach allows us to define [fmap] on lists such that [simpl] unfolds it
in the appropriate way, and so that it can be used for mutual recursion
(the mapped function [f] is not part of the fixpoint) as well. This is a hack,
and should be replaced by something more appropriate in future versions. *)

322
(** We use these type classes merely for convenient overloading of notations and
323 324 325 326 327 328 329 330 331
do not formalize any theory on monads (we do not even define a class with the
monad laws). *)
Class MRet (M : Type  Type) := mret:  {A}, A  M A.
Instance: Params (@mret) 3.
Arguments mret {_ _ _} _.

Class MBindD (M : Type  Type) {A B} (f : A  M B) := mbind: M A  M B.
Notation MBind M := ( {A B} (f : A  M B), MBindD M f)%type.
Instance: Params (@mbind) 5.
332
Arguments mbind {_ _ _} _ {_} !_ /.
333 334 335

Class MJoin (M : Type  Type) := mjoin:  {A}, M (M A)  M A.
Instance: Params (@mjoin) 3.
336
Arguments mjoin {_ _ _} !_ /.
337 338 339 340

Class FMapD (M : Type  Type) {A B} (f : A  B) := fmap: M A  M B.
Notation FMap M := ( {A B} (f : A  B), FMapD M f)%type.
Instance: Params (@fmap) 6.
341
Arguments fmap {_ _ _} _ {_} !_ /.
342 343 344 345 346 347 348

Notation "m ≫= f" := (mbind f m) (at level 60, right associativity) : C_scope.
Notation "( m ≫=)" := (λ f, mbind f m) (only parsing) : C_scope.
Notation "(≫= f )" := (mbind f) (only parsing) : C_scope.
Notation "(≫=)" := (λ m f, mbind f m) (only parsing) : C_scope.

Notation "x ← y ; z" := (y = (λ x : _, z))
349
  (at level 65, next at level 35, only parsing, right associativity) : C_scope.
350
Infix "<$>" := fmap (at level 60, right associativity) : C_scope.
351 352

Class MGuard (M : Type  Type) :=
353 354 355 356 357 358
  mguard:  P {dec : Decision P} {A}, (P  M A)  M A.
Arguments mguard _ _ _ !_ _ _ /.
Notation "'guard' P ; o" := (mguard P (λ _, o))
  (at level 65, next at level 35, only parsing, right associativity) : C_scope.
Notation "'guard' P 'as' H ; o" := (mguard P (λ H, o))
  (at level 65, next at level 35, only parsing, right associativity) : C_scope.
359

360
(** ** Operations on maps *)
361 362
(** In this section we define operational type classes for the operations
on maps. In the file [fin_maps] we will axiomatize finite maps.
363
The function look up [m !! k] should yield the element at key [k] in [m]. *)
364
Class Lookup (K A M : Type) := lookup: K  M  option A.
365 366 367 368 369 370
Instance: Params (@lookup) 4.

Notation "m !! i" := (lookup i m) (at level 20) : C_scope.
Notation "(!!)" := lookup (only parsing) : C_scope.
Notation "( m !!)" := (λ i, lookup i m) (only parsing) : C_scope.
Notation "(!! i )" := (lookup i) (only parsing) : C_scope.
371
Arguments lookup _ _ _ _ !_ !_ / : simpl nomatch.
372 373 374

(** The function insert [<[k:=a]>m] should update the element at key [k] with
value [a] in [m]. *)
375
Class Insert (K A M : Type) := insert: K  A  M  M.
376 377 378
Instance: Params (@insert) 4.
Notation "<[ k := a ]>" := (insert k a)
  (at level 5, right associativity, format "<[ k := a ]>") : C_scope.
379
Arguments insert _ _ _ _ !_ _ !_ / : simpl nomatch.
380

381 382 383
(** The function delete [delete k m] should delete the value at key [k] in
[m]. If the key [k] is not a member of [m], the original map should be
returned. *)
384
Class Delete (K M : Type) := delete: K  M  M.
385 386
Instance: Params (@delete) 3.
Arguments delete _ _ _ !_ !_ / : simpl nomatch.
387 388

(** The function [alter f k m] should update the value at key [k] using the
389
function [f], which is called with the original value. *)
390
Class AlterD (K A M : Type) (f : A  A) := alter: K  M  M.
391 392 393
Notation Alter K A M := ( (f : A  A), AlterD K A M f)%type.
Instance: Params (@alter) 5.
Arguments alter {_ _ _} _ {_} !_ !_ / : simpl nomatch.
394 395

(** The function [alter f k m] should update the value at key [k] using the
396 397 398
function [f], which is called with the original value at key [k] or [None]
if [k] is not a member of [m]. The value at [k] should be deleted if [f] 
yields [None]. *)
399 400
Class PartialAlter (K A M : Type) :=
  partial_alter: (option A  option A)  K  M  M.
401
Instance: Params (@partial_alter) 4.
402
Arguments partial_alter _ _ _ _ _ !_ !_ / : simpl nomatch.
403 404 405

(** The function [dom C m] should yield the domain of [m]. That is a finite
collection of type [C] that contains the keys that are a member of [m]. *)
406 407 408
Class Dom (M C : Type) := dom: M  C.
Instance: Params (@dom) 3.
Arguments dom {_} _ {_} !_ / : simpl nomatch, clear implicits.
409 410

(** The function [merge f m1 m2] should merge the maps [m1] and [m2] by
411 412 413 414 415
constructing a new map whose value at key [k] is [f (m1 !! k) (m2 !! k)].*)
Class Merge (M : Type  Type) :=
  merge:  {A B C}, (option A  option B  option C)  M A  M B  M C.
Instance: Params (@merge) 4.
Arguments merge _ _ _ _ _ _ !_ !_ / : simpl nomatch.
416 417

(** We lift the insert and delete operation to lists of elements. *)
418
Definition insert_list `{Insert K A M} (l : list (K * A)) (m : M) : M :=
419 420
  fold_right (λ p, <[ fst p := snd p ]>) m l.
Instance: Params (@insert_list) 4.
421
Definition delete_list `{Delete K M} (l : list K) (m : M) : M :=
422
  fold_right delete m l.
423 424 425 426 427 428 429
Instance: Params (@delete_list) 3.

(** The function [union_with f m1 m2] is supposed to yield the union of [m1]
and [m2] using the function [f] to combine values of members that are in
both [m1] and [m2]. *)
Class UnionWith (A M : Type) :=
  union_with: (A  A  option A)  M  M  M.
430
Instance: Params (@union_with) 3.
431
Arguments union_with {_ _ _} _ !_ !_ / : simpl nomatch.
432

433 434 435
(** Similarly for intersection and difference. *)
Class IntersectionWith (A M : Type) :=
  intersection_with: (A  A  option A)  M  M  M.
436
Instance: Params (@intersection_with) 3.
437 438
Arguments intersection_with {_ _ _} _ !_ !_ / : simpl nomatch.

439 440
Class DifferenceWith (A M : Type) :=
  difference_with: (A  A  option A)  M  M  M.
441
Instance: Params (@difference_with) 3.
442
Arguments difference_with {_ _ _} _ !_ !_ / : simpl nomatch.
Robbert Krebbers's avatar
Robbert Krebbers committed
443

444 445 446 447
Definition intersection_with_list `{IntersectionWith A M}
  (f : A  A  option A) : M  list M  M := fold_right (intersection_with f).
Arguments intersection_with_list _ _ _ _ _ !_ /.

448 449 450 451
(** ** Common properties *)
(** These operational type classes allow us to refer to common mathematical
properties in a generic way. For example, for injectivity of [(k ++)] it
allows us to write [injective (k ++)] instead of [app_inv_head k]. *)
452 453 454 455 456
Class Injective {A B} (R : relation A) (S : relation B) (f : A  B) : Prop :=
  injective:  x y, S (f x) (f y)  R x y.
Class Injective2 {A B C} (R1 : relation A) (R2 : relation B)
    (S : relation C) (f : A  B  C) : Prop :=
  injective2:  x1 x2  y1 y2, S (f x1 x2) (f y1 y2)  R1 x1 y1  R2 x2 y2.
457 458 459 460
Class Cancel {A B} (S : relation B) (f : A  B) (g : B  A) : Prop :=
  cancel:  x, S (f (g x)) x.
Class Surjective {A B} (R : relation B) (f : A  B) :=
  surjective :  y,  x, R (f x) y.
461
Class Idempotent {A} (R : relation A) (f : A  A  A) : Prop :=
462
  idempotent:  x, R (f x x) x.
463
Class Commutative {A B} (R : relation A) (f : B  B  A) : Prop :=
464
  commutative:  x y, R (f x y) (f y x).
465
Class LeftId {A} (R : relation A) (i : A) (f : A  A  A) : Prop :=
466
  left_id:  x, R (f i x) x.
467
Class RightId {A} (R : relation A) (i : A) (f : A  A  A) : Prop :=
468
  right_id:  x, R (f x i) x.
469
Class Associative {A} (R : relation A) (f : A  A  A) : Prop :=
470
  associative:  x y z, R (f x (f y z)) (f (f x y) z).
471
Class LeftAbsorb {A} (R : relation A) (i : A) (f : A  A  A) : Prop :=
472
  left_absorb:  x, R (f i x) i.
473
Class RightAbsorb {A} (R : relation A) (i : A) (f : A  A  A) : Prop :=
474
  right_absorb:  x, R (f x i) i.
475 476 477 478
Class LeftDistr {A} (R : relation A) (f g : A  A  A) : Prop :=
  left_distr:  x y z, R (f x (g y z)) (g (f x y) (f x z)).
Class RightDistr {A} (R : relation A) (f g : A  A  A) : Prop :=
  right_distr:  y z x, R (f (g y z) x) (g (f y x) (f z x)).
479 480
Class AntiSymmetric {A} (R S : relation A) : Prop :=
  anti_symmetric:  x y, S x y  S y x  R x y.
481 482
Class Total {A} (R : relation A) := total x y : R x y  R y x.
Class Trichotomy {A} (R : relation A) :=
483
  trichotomy :  x y, R x y  x = y  R y x.
484
Class TrichotomyT {A} (R : relation A) :=
485
  trichotomyT :  x y, {R x y} + {x = y} + {R y x}.
Robbert Krebbers's avatar
Robbert Krebbers committed
486

487
Arguments irreflexivity {_} _ {_} _ _.
Robbert Krebbers's avatar
Robbert Krebbers committed
488
Arguments injective {_ _ _ _} _ {_} _ _ _.
489
Arguments injective2 {_ _ _ _ _ _} _ {_} _ _ _ _ _.
490 491
Arguments cancel {_ _ _} _ _ {_} _.
Arguments surjective {_ _ _} _ {_} _.
Robbert Krebbers's avatar
Robbert Krebbers committed
492 493 494 495 496
Arguments idempotent {_ _} _ {_} _.
Arguments commutative {_ _ _} _ {_} _ _.
Arguments left_id {_ _} _ _ {_} _.
Arguments right_id {_ _} _ _ {_} _.
Arguments associative {_ _} _ {_} _ _ _.
497 498
Arguments left_absorb {_ _} _ _ {_} _.
Arguments right_absorb {_ _} _ _ {_} _.
499 500
Arguments left_distr {_ _} _ _ {_} _ _ _.
Arguments right_distr {_ _} _ _ {_} _ _ _.
501
Arguments anti_symmetric {_ _} _ {_} _ _ _ _.
502 503 504
Arguments total {_} _ {_} _ _.
Arguments trichotomy {_} _ {_} _ _.
Arguments trichotomyT {_} _ {_} _ _.
505

506 507 508 509
(** The following lemmas are specific versions of the projections of the above
type classes for Leibniz equality. These lemmas allow us to enforce Coq not to
use the setoid rewriting mechanism. *)
Lemma idempotent_L {A} (f : A  A  A) `{!Idempotent (=) f} x : f x x = x.
510
Proof. auto. Qed.
511
Lemma commutative_L {A B} (f : B  B  A) `{!Commutative (=) f} x y :
512
  f x y = f y x.
513
Proof. auto. Qed.
514
Lemma left_id_L {A} (i : A) (f : A  A  A) `{!LeftId (=) i f} x : f i x = x.
515
Proof. auto. Qed.
516
Lemma right_id_L {A} (i : A) (f : A  A  A) `{!RightId (=) i f} x : f x i = x.
517
Proof. auto. Qed.
518
Lemma associative_L {A} (f : A  A  A) `{!Associative (=) f} x y z :
519
  f x (f y z) = f (f x y) z.
520
Proof. auto. Qed.
521
Lemma left_absorb_L {A} (i : A) (f : A  A  A) `{!LeftAbsorb (=) i f} x :
522 523
  f i x = i.
Proof. auto. Qed.
524
Lemma right_absorb_L {A} (i : A) (f : A  A  A) `{!RightAbsorb (=) i f} x :
525 526
  f x i = i.
Proof. auto. Qed.
527
Lemma left_distr_L {A} (f g : A  A  A) `{!LeftDistr (=) f g} x y z :
528 529
  f x (g y z) = g (f x y) (f x z).
Proof. auto. Qed.
530
Lemma right_distr_L {A} (f g : A  A  A) `{!RightDistr (=) f g} y z x :
531 532
  f (g y z) x = g (f y x) (f z x).
Proof. auto. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
533

534
(** ** Axiomatization of ordered structures *)
535 536 537 538 539 540 541 542 543 544 545
(** The classes [PreOrder], [PartialOrder], and [TotalOrder] do not use the
relation [⊆] because we often have multiple orders on the same structure. *)
Class PartialOrder {A} (R : relation A) : Prop := {
  po_preorder :> PreOrder R;
  po_anti_symmetric :> AntiSymmetric (=) R
}.
Class TotalOrder {A} (R : relation A) : Prop := {
  to_po :> PartialOrder R;
  to_trichotomy :> Trichotomy R
}.

546 547
(** A pre-order equipped with a smallest element. *)
Class BoundedPreOrder A `{Empty A} `{SubsetEq A} : Prop := {
Robbert Krebbers's avatar
Robbert Krebbers committed
548 549 550 551
  bounded_preorder :>> PreOrder ();
  subseteq_empty x :   x
}.

552
(** We do not include equality in the following interfaces so as to avoid the
553
need for proofs that the relations and operations respect setoid equality.
554 555
Instead, we will define setoid equality in a generic way as
[λ X Y, X ⊆ Y ∧ Y ⊆ X]. *)
556
Class BoundedJoinSemiLattice A `{Empty A} `{SubsetEq A} `{Union A} : Prop := {
557
  bjsl_preorder :>> BoundedPreOrder A;
558 559
  union_subseteq_l x y : x  x  y;
  union_subseteq_r x y : y  x  y;
Robbert Krebbers's avatar
Robbert Krebbers committed
560 561
  union_least x y z : x  z  y  z  x  y  z
}.
562
Class MeetSemiLattice A `{Empty A} `{SubsetEq A} `{Intersection A} : Prop := {
Robbert Krebbers's avatar
Robbert Krebbers committed
563
  msl_preorder :>> BoundedPreOrder A;
564 565
  intersection_subseteq_l x y : x  y  x;
  intersection_subseteq_r x y : x  y  y;
Robbert Krebbers's avatar
Robbert Krebbers committed
566 567
  intersection_greatest x y z : z  x  z  y  z  x  y
}.
568 569 570 571

(** A join distributive lattice with distributivity stated in the order
theoretic way. We will prove that distributivity of join, and distributivity
as an equality can be derived. *)
572
Class LowerBoundedLattice A `{Empty A} `{SubsetEq A}
573
    `{Union A} `{Intersection A} : Prop := {
574
  lbl_bjsl :>> BoundedJoinSemiLattice A;
575 576
  lbl_msl :>> MeetSemiLattice A;
  lbl_distr x y z : (x  y)  (x  z)  x  (y  z)
577
}.
578

579
(** ** Axiomatization of collections *)
580 581
(** The class [SimpleCollection A C] axiomatizes a collection of type [C] with
elements of type [A]. *)
582
Instance: Params (@map) 3.
583
Class SimpleCollection A C `{ElemOf A C}
584
    `{Empty C} `{Singleton A C} `{Union C} : Prop := {
585
  not_elem_of_empty (x : A) : x  ;
586
  elem_of_singleton (x y : A) : x  {[ y ]}  x = y;
587 588 589
  elem_of_union X Y (x : A) : x  X  Y  x  X  x  Y
}.
Class Collection A C `{ElemOf A C} `{Empty C} `{Singleton A C}
590
    `{Union C} `{Intersection C} `{Difference C} : Prop := {
591
  collection_simple :>> SimpleCollection A C;
Robbert Krebbers's avatar
Robbert Krebbers committed
592
  elem_of_intersection X Y (x : A) : x  X  Y  x  X  x  Y;
593 594 595 596 597 598 599
  elem_of_difference X Y (x : A) : x  X  Y  x  X  x  Y
}.
Class CollectionOps A C
    `{ElemOf A C} `{Empty C} `{Singleton A C}
    `{Union C} `{Intersection C} `{Difference C}
    `{IntersectionWith A C} `{Filter A C} : Prop := {
  collection_ops :>> Collection A C;
600
  elem_of_intersection_with (f : A  A  option A) X Y (x : A) :
601 602 603
    x  intersection_with f X Y   x1 x2, x1  X  x2  Y  f x1 x2 = Some x;
  elem_of_filter X P `{ x, Decision (P x)} x :
    x  filter P X  P x  x  X
Robbert Krebbers's avatar
Robbert Krebbers committed
604 605
}.

606 607 608
(** We axiomative a finite collection as a collection whose elements can be
enumerated as a list. These elements, given by the [elements] function, may be
in any order and should not contain duplicates. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
609
Class Elements A C := elements: C  list A.
610
Instance: Params (@elements) 3.
611 612 613 614 615 616 617 618 619 620 621 622 623 624

(** We redefine the standard library's [In] and [NoDup] using type classes. *)
Inductive elem_of_list {A} : ElemOf A (list A) :=
  | elem_of_list_here (x : A) l : x  x :: l
  | elem_of_list_further (x y : A) l : x  l  x  y :: l.
Existing Instance elem_of_list.

Inductive NoDup {A} : list A  Prop :=
  | NoDup_nil_2 : NoDup []
  | NoDup_cons_2 x l : x  l  NoDup l  NoDup (x :: l).

(** Decidability of equality of the carrier set is admissible, but we add it
anyway so as to avoid cycles in type class search. *)
Class FinCollection A C `{ElemOf A C} `{Empty C} `{Singleton A C}
625 626
    `{Union C} `{Intersection C} `{Difference C}
    `{Elements A C} `{ x y : A, Decision (x = y)} : Prop := {
Robbert Krebbers's avatar
Robbert Krebbers committed
627
  fin_collection :>> Collection A C;
628
  elements_spec X x : x  X  x  elements X;
Robbert Krebbers's avatar
Robbert Krebbers committed
629
  elements_nodup X : NoDup (elements X)
630 631
}.
Class Size C := size: C  nat.
632
Arguments size {_ _} !_ / : simpl nomatch.
633
Instance: Params (@size) 2.
Robbert Krebbers's avatar
Robbert Krebbers committed
634

635 636 637 638 639 640 641 642 643 644
(** The class [Collection M] axiomatizes a type constructor [M] that can be
used to construct a collection [M A] with elements of type [A]. The advantage
of this class, compared to [Collection], is that it also axiomatizes the
the monadic operations. The disadvantage, is that not many inhabits are
possible (we will only provide an inhabitant using unordered lists without
duplicates removed). More interesting implementations typically need
decidability of equality, or a total order on the elements, which do not fit
in a type constructor of type [Type → Type]. *)
Class CollectionMonad M `{ A, ElemOf A (M A)}
    `{ A, Empty (M A)} `{ A, Singleton A (M A)} `{ A, Union (M A)}
645
    `{!MBind M} `{!MRet M} `{!FMap M} `{!MJoin M} : Prop := {
646 647 648
  collection_monad_simple A :> SimpleCollection A (M A);
  elem_of_bind {A B} (f : A  M B) (X : M A) (x : B) :
    x  X = f   y, x  f y  y  X;
649
  elem_of_ret {A} (x y : A) : x  mret y  x = y;
650 651
  elem_of_fmap {A B} (f : A  B) (X : M A) (x : B) :
    x  f <$> X   y, x = f y  y  X;
652
  elem_of_join {A} (X : M (M A)) (x : A) : x  mjoin X   Y, x  Y  Y  X
653 654
}.

655 656 657
(** The function [fresh X] yields an element that is not contained in [X]. We
will later prove that [fresh] is [Proper] with respect to the induced setoid
equality on collections. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
658
Class Fresh A C := fresh: C  A.
659
Instance: Params (@fresh) 3.
660
Class FreshSpec A C `{ElemOf A C}
661
    `{Empty C} `{Singleton A C} `{Union C} `{Fresh A C} : Prop := {
662
  fresh_collection_simple :>> SimpleCollection A C;
663
  fresh_proper_alt X Y : ( x, x  X  x  Y)  fresh X = fresh Y;
Robbert Krebbers's avatar
Robbert Krebbers committed
664 665 666
  is_fresh (X : C) : fresh X  X
}.

667
(** * Miscellaneous *)
668 669 670
Class Half A := half: A  A.
Notation "x .½" := (half x) (at level 20, format "x .½") : C_scope.

671 672
Lemma proj1_sig_inj {A} (P : A  Prop) x (Px : P x) y (Py : P y) :
  xPx = yPy  x = y.
673
Proof. injection 1; trivial. Qed.
674
Lemma not_symmetry `{R : relation A} `{!Symmetric R} x y : ¬R x y  ¬R y x.
675
Proof. intuition. Qed.
676
Lemma symmetry_iff `(R : relation A) `{!Symmetric R} x y : R x y  R y x.
677 678
Proof. intuition. Qed.

679 680 681
(** ** Pointwise relations *)
(** These instances are in Coq trunk since revision 15455, but are not in Coq
8.4 yet. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
682 683 684 685 686 687 688 689 690 691
Instance pointwise_reflexive {A} `{R : relation B} :
  Reflexive R  Reflexive (pointwise_relation A R) | 9.
Proof. firstorder. Qed.
Instance pointwise_symmetric {A} `{R : relation B} :
  Symmetric R  Symmetric (pointwise_relation A R) | 9.
Proof. firstorder. Qed.
Instance pointwise_transitive {A} `{R : relation B} :
  Transitive R  Transitive (pointwise_relation A R) | 9.
Proof. firstorder. Qed.

692
(** ** Products *)
693 694 695 696
Definition fst_map {A A' B} (f : A  A') (p : A * B) : A' * B :=
  (f (fst p), snd p).
Definition snd_map {A B B'} (f : B  B') (p : A * B) : A * B' :=
  (fst p, f (snd p)).
697 698 699 700 701
Arguments fst_map {_ _ _} _ !_ /.
Arguments snd_map {_ _ _} _ !_ /.

Instance:  {A A' B} (f : A  A'),
  Injective (=) (=) f  Injective (=) (=) (@fst_map A A' B f).
702
Proof. intros ????? [??] [??]; injection 1; firstorder congruence. Qed.
703 704
Instance:  {A B B'} (f : B  B'),
  Injective (=) (=) f  Injective (=) (=) (@snd_map A B B' f).
705
Proof. intros ????? [??] [??]; injection 1; firstorder congruence. Qed.
706

707 708
Definition prod_relation {A B} (R1 : relation A) (R2 : relation B) :
  relation (A * B) := λ x y, R1 (fst x) (fst y)  R2 (snd x) (snd y).
Robbert Krebbers's avatar
Robbert Krebbers committed
709 710 711

Section prod_relation.
  Context `{R1 : relation A} `{R2 : relation B}.
712 713
  Global Instance:
    Reflexive R1  Reflexive R2  Reflexive (prod_relation R1 R2).
Robbert Krebbers's avatar
Robbert Krebbers committed
714
  Proof. firstorder eauto. Qed.
715 716
  Global Instance:
    Symmetric R1  Symmetric R2  Symmetric (prod_relation R1 R2).
Robbert Krebbers's avatar
Robbert Krebbers committed
717
  Proof. firstorder eauto. Qed.
718 719
  Global Instance:
    Transitive R1  Transitive R2  Transitive (prod_relation R1 R2).
Robbert Krebbers's avatar
Robbert Krebbers committed
720
  Proof. firstorder eauto. Qed.
721 722
  Global Instance:
    Equivalence R1  Equivalence R2  Equivalence (prod_relation R1 R2).
Robbert Krebbers's avatar
Robbert Krebbers committed
723 724 725 726 727 728 729 730 731
  Proof. split; apply _. Qed.
  Global Instance: Proper (R1 ==> R2 ==> prod_relation R1 R2) pair.
  Proof. firstorder eauto. Qed.
  Global Instance: Proper (prod_relation R1 R2 ==> R1) fst.
  Proof. firstorder eauto. Qed.
  Global Instance: Proper (prod_relation R1 R2 ==> R2) snd.
  Proof. firstorder eauto. Qed.
End prod_relation.

732
(** ** Other *)
733 734 735 736 737 738 739 740 741
Definition proj_eq {A B} (f : B  A) : relation B := λ x y, f x = f y.
Global Instance proj_eq_equivalence `(f : B  A) : Equivalence (proj_eq f).
Proof. unfold proj_eq. repeat split; red; intuition congruence. Qed.
Notation "x ~{ f } y" := (proj_eq f x y)
  (at level 70, format "x  ~{ f }  y") : C_scope.
Notation "(~{ f } )" := (proj_eq f) (f at level 10, only parsing) : C_scope.

Hint Extern 0 (_ ~{_} _) => reflexivity.
Hint Extern 0 (_ ~{_} _) => symmetry; assumption.
Robbert Krebbers's avatar
Robbert Krebbers committed
742 743

Instance:  A B (x : B), Commutative (=) (λ _ _ : A, x).
744
Proof. red. trivial. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
745
Instance:  A (x : A), Associative (=) (λ _ _ : A, x).
746
Proof. red. trivial. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
747
Instance:  A, Associative (=) (λ x _ : A, x).
748
Proof. red. trivial. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
749
Instance:  A, Associative (=) (λ _ x : A, x).
750
Proof. red. trivial. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
751
Instance:  A, Idempotent (=) (λ x _ : A, x).
752
Proof. red. trivial. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
753
Instance:  A, Idempotent (=) (λ _ x : A, x).
754
Proof. red. trivial. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
755

756 757
Instance left_id_propholds {A} (R : relation A) i f :
  LeftId R i f   x, PropHolds (R (f i x) x).
758
Proof. red. trivial. Qed.
759 760
Instance right_id_propholds {A} (R : relation A) i f :
  RightId R i f   x, PropHolds (R (f x i) x).
761
Proof. red. trivial. Qed.
762 763 764 765 766 767
Instance left_absorb_propholds {A} (R : relation A) i f :
  LeftAbsorb R i f   x, PropHolds (R (f i x) i).
Proof. red. trivial. Qed.
Instance right_absorb_propholds {A} (R : relation A) i f :
  RightAbsorb R i f   x, PropHolds (R (f x i) i).
Proof. red. trivial. Qed.
768 769
Instance idem_propholds {A} (R : relation A) f :
  Idempotent R f   x, PropHolds (R (f x x) x).
770
Proof. red. trivial. Qed.
771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796

Lemma injective_iff {A B} {R : relation A} {S : relation B} (f : A  B)
  `{!Injective R S f} `{!Proper (R ==> S) f} x y : S (f x) (f y)