list.v 200 KB
Newer Older
1 2
(** This file collects general purpose definitions and theorems on lists that
are not in the Coq standard library. *)
3
From Coq Require Export Permutation.
4
From stdpp Require Export numbers base option.
5
Set Default Proof Using "Type*".
Robbert Krebbers's avatar
Robbert Krebbers committed
6

7 8 9
Arguments length {_} _ : assert.
Arguments cons {_} _ _ : assert.
Arguments app {_} _ _ : assert.
10

11 12 13
Instance: Params (@length) 1 := {}.
Instance: Params (@cons) 1 := {}.
Instance: Params (@app) 1 := {}.
Robbert Krebbers's avatar
Robbert Krebbers committed
14

15 16 17
Notation tail := tl.
Notation take := firstn.
Notation drop := skipn.
18

19
Arguments head {_} _ : assert.
20 21 22
Arguments tail {_} _ : assert.
Arguments take {_} !_ !_ / : assert.
Arguments drop {_} !_ !_ / : assert.
23

24
Instance: Params (@head) 1 := {}.
25 26 27
Instance: Params (@tail) 1 := {}.
Instance: Params (@take) 1 := {}.
Instance: Params (@drop) 1 := {}.
28

29 30
Arguments Permutation {_} _ _ : assert.
Arguments Forall_cons {_} _ _ _ _ _ : assert.
31
Remove Hints Permutation_cons : typeclass_instances.
32

33
Notation "(::)" := cons (only parsing) : list_scope.
34 35
Notation "( x ::.)" := (cons x) (only parsing) : list_scope.
Notation "(.:: l )" := (λ x, cons x l) (only parsing) : list_scope.
36
Notation "(++)" := app (only parsing) : list_scope.
37 38
Notation "( l ++.)" := (app l) (only parsing) : list_scope.
Notation "(.++ k )" := (λ l, app l k) (only parsing) : list_scope.
39 40 41

Infix "≡ₚ" := Permutation (at level 70, no associativity) : stdpp_scope.
Notation "(≡ₚ)" := Permutation (only parsing) : stdpp_scope.
42 43
Notation "( x ≡ₚ.)" := (Permutation x) (only parsing) : stdpp_scope.
Notation "(.≡ₚ x )" := (λ y, y ≡ₚ x) (only parsing) : stdpp_scope.
44 45
Notation "(≢ₚ)" := (λ x y, ¬x ≡ₚ y) (only parsing) : stdpp_scope.
Notation "x ≢ₚ y":= (¬x ≡ₚ y) (at level 70, no associativity) : stdpp_scope.
46 47
Notation "( x ≢ₚ.)" := (λ y, x ≢ₚ y) (only parsing) : stdpp_scope.
Notation "(.≢ₚ x )" := (λ y, y ≢ₚ x) (only parsing) : stdpp_scope.
48

Robbert Krebbers's avatar
Robbert Krebbers committed
49 50 51 52
Infix "≡ₚ@{ A }" :=
  (@Permutation A) (at level 70, no associativity, only parsing) : stdpp_scope.
Notation "(≡ₚ@{ A } )" := (@Permutation A) (only parsing) : stdpp_scope.

Robbert Krebbers's avatar
Robbert Krebbers committed
53 54 55
Instance maybe_cons {A} : Maybe2 (@cons A) := λ l,
  match l with x :: l => Some (x,l) | _ => None end.

56
(** * Definitions *)
57 58 59 60 61 62
(** Setoid equality lifted to lists *)
Inductive list_equiv `{Equiv A} : Equiv (list A) :=
  | nil_equiv : [] ≡ []
  | cons_equiv x y l k : x ≡ y → l ≡ k → x :: l ≡ y :: k.
Existing Instance list_equiv.

63 64
(** The operation [l !! i] gives the [i]th element of the list [l], or [None]
in case [i] is out of bounds. *)
65 66
Instance list_lookup {A} : Lookup nat A (list A) :=
  fix go i l {struct l} : option A := let _ : Lookup _ _ _ := @go in
67
  match l with
68
  | [] => None | x :: l => match i with 0 => Some x | S i => l !! i end
69
  end.
70

Dan Frumin's avatar
Dan Frumin committed
71 72 73 74 75 76 77 78 79
(** The operation [l !!! i] is a total version of the lookup operation
[l !! i]. *)
Instance list_lookup_total `{!Inhabited A} : LookupTotal nat A (list A) :=
  fix go i l {struct l} : A := let _ : LookupTotal _ _ _ := @go in
  match l with
  | [] => inhabitant
  | x :: l => match i with 0 => x | S i => l !!! i end
  end.

80 81
(** The operation [alter f i l] applies the function [f] to the [i]th element
of [l]. In case [i] is out of bounds, the list is returned unchanged. *)
82
Instance list_alter {A} : Alter nat A (list A) := λ f,
83
  fix go i l {struct l} :=
84 85
  match l with
  | [] => []
86
  | x :: l => match i with 0 => f x :: l | S i => x :: go i l end
87
  end.
88

89 90
(** The operation [<[i:=x]> l] overwrites the element at position [i] with the
value [x]. In case [i] is out of bounds, the list is returned unchanged. *)
91 92
Instance list_insert {A} : Insert nat A (list A) :=
  fix go i y l {struct l} := let _ : Insert _ _ _ := @go in
93 94 95 96
  match l with
  | [] => []
  | x :: l => match i with 0 => y :: l | S i => x :: <[i:=y]>l end
  end.
97 98 99 100 101
Fixpoint list_inserts {A} (i : nat) (k l : list A) : list A :=
  match k with
  | [] => l
  | y :: k => <[i:=y]>(list_inserts (S i) k l)
  end.
102
Instance: Params (@list_inserts) 1 := {}.
103

104 105 106
(** The operation [delete i l] removes the [i]th element of [l] and moves
all consecutive elements one position ahead. In case [i] is out of bounds,
the list is returned unchanged. *)
107 108
Instance list_delete {A} : Delete nat (list A) :=
  fix go (i : nat) (l : list A) {struct l} : list A :=
109 110
  match l with
  | [] => []
111
  | x :: l => match i with 0 => l | S i => x :: @delete _ _ go i l end
112
  end.
113 114 115

(** The function [option_list o] converts an element [Some x] into the
singleton list [[x]], and [None] into the empty list [[]]. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
116
Definition option_list {A} : option A → list A := option_rect _ (λ x, [x]) [].
117
Instance: Params (@option_list) 1 := {}.
118
Instance maybe_list_singleton {A} : Maybe (λ x : A, [x]) := λ l,
119
  match l with [x] => Some x | _ => None end.
Robbert Krebbers's avatar
Robbert Krebbers committed
120 121 122 123

(** The function [filter P l] returns the list of elements of [l] that
satisfies [P]. The order remains unchanged. *)
Instance list_filter {A} : Filter A (list A) :=
124
  fix go P _ l := let _ : Filter _ _ := @go in
Robbert Krebbers's avatar
Robbert Krebbers committed
125 126
  match l with
  | [] => []
127
  | x :: l => if decide (P x) then x :: filter P l else filter P l
128 129 130 131
  end.

(** The function [list_find P l] returns the first index [i] whose element
satisfies the predicate [P]. *)
132
Definition list_find {A} P `{∀ x, Decision (P x)} : list A → option (nat * A) :=
133 134
  fix go l :=
  match l with
135 136
  | [] => None
  | x :: l => if decide (P x) then Some (0,x) else prod_map S id <$> go l
137
  end.
138
Instance: Params (@list_find) 3 := {}.
Robbert Krebbers's avatar
Robbert Krebbers committed
139 140 141 142

(** The function [replicate n x] generates a list with length [n] of elements
with value [x]. *)
Fixpoint replicate {A} (n : nat) (x : A) : list A :=
143
  match n with 0 => [] | S n => x :: replicate n x end.
144
Instance: Params (@replicate) 2 := {}.
Robbert Krebbers's avatar
Robbert Krebbers committed
145

146 147 148 149 150 151 152 153 154 155 156 157 158 159
(** The function [rotate n l] rotates the list [l] by [n], e.g., [rotate 1
[x0; x1; ...; xm]] becomes [x1; ...; xm; x0]. Rotating by a multiple of
[length l] is the identity function. **)
Definition rotate {A} (n : nat) (l : list A) : list A :=
  drop (Z.to_nat (n `mod` length l)%Z) l ++ take (Z.to_nat (n `mod` length l)%Z) l.
Instance: Params (@rotate) 2 := {}.

(** The function [rotate_take s e l] returns the range between the
indices [s] (inclusive) and [e] (exclusive) of [l]. If [e ≤ s], all
elements after [s] and before [e] are returned. *)
Definition rotate_take {A} (s e : nat) (l : list A) : list A :=
  take (rotate_nat_sub s e (length l)) (rotate s l).
Instance: Params (@rotate_take) 3 := {}.

Robbert Krebbers's avatar
Robbert Krebbers committed
160 161
(** The function [reverse l] returns the elements of [l] in reverse order. *)
Definition reverse {A} (l : list A) : list A := rev_append l [].
162
Instance: Params (@reverse) 1 := {}.
Robbert Krebbers's avatar
Robbert Krebbers committed
163

164 165 166 167
(** The function [last l] returns the last element of the list [l], or [None]
if the list [l] is empty. *)
Fixpoint last {A} (l : list A) : option A :=
  match l with [] => None | [x] => Some x | _ :: l => last l end.
168
Instance: Params (@last) 1 := {}.
169

Robbert Krebbers's avatar
Robbert Krebbers committed
170 171 172 173 174 175
(** The function [resize n y l] takes the first [n] elements of [l] in case
[length l ≤ n], and otherwise appends elements with value [x] to [l] to obtain
a list of length [n]. *)
Fixpoint resize {A} (n : nat) (y : A) (l : list A) : list A :=
  match l with
  | [] => replicate n y
176
  | x :: l => match n with 0 => [] | S n => x :: resize n y l end
Robbert Krebbers's avatar
Robbert Krebbers committed
177
  end.
178
Arguments resize {_} !_ _ !_ : assert.
179
Instance: Params (@resize) 2 := {}.
Robbert Krebbers's avatar
Robbert Krebbers committed
180

181 182 183
(** The function [reshape k l] transforms [l] into a list of lists whose sizes
are specified by [k]. In case [l] is too short, the resulting list will be
padded with empty lists. In case [l] is too long, it will be truncated. *)
184 185
Fixpoint reshape {A} (szs : list nat) (l : list A) : list (list A) :=
  match szs with
186
  | [] => [] | sz :: szs => take sz l :: reshape szs (drop sz l)
187
  end.
188
Instance: Params (@reshape) 2 := {}.
189

190
Definition sublist_lookup {A} (i n : nat) (l : list A) : option (list A) :=
191 192 193 194
  guard (i + n ≤ length l); Some (take n (drop i l)).
Definition sublist_alter {A} (f : list A → list A)
    (i n : nat) (l : list A) : list A :=
  take i l ++ f (take n (drop i l)) ++ drop (i + n) l.
195

196 197 198 199
(** Functions to fold over a list. We redefine [foldl] with the arguments in
the same order as in Haskell. *)
Notation foldr := fold_right.
Definition foldl {A B} (f : A → B → A) : A → list B → A :=
200
  fix go a l := match l with [] => a | x :: l => go (f a x) l end.
201 202 203

(** The monadic operations. *)
Instance list_ret: MRet list := λ A x, x :: @nil A.
204 205
Instance list_fmap : FMap list := λ A B f,
  fix go (l : list A) := match l with [] => [] | x :: l => f x :: go l end.
206 207 208 209 210 211
Instance list_omap : OMap list := λ A B f,
  fix go (l : list A) :=
  match l with
  | [] => []
  | x :: l => match f x with Some y => y :: go l | None => go l end
  end.
212 213
Instance list_bind : MBind list := λ A B f,
  fix go (l : list A) := match l with [] => [] | x :: l => f x ++ go l end.
214 215
Instance list_join: MJoin list :=
  fix go A (ls : list (list A)) : list A :=
216
  match ls with [] => [] | l :: ls => l ++ @mjoin _ go _ ls end.
217
Definition mapM `{MBind M, MRet M} {A B} (f : A → M B) : list A → M (list B) :=
218
  fix go l :=
219
  match l with [] => mret [] | x :: l => y ← f x; k ← go l; mret (y :: k) end.
220 221 222

(** We define stronger variants of map and fold that allow the mapped
function to use the index of the elements. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
223 224 225 226 227
Fixpoint imap {A B} (f : nat → A → B) (l : list A) : list B :=
  match l with
  | [] => []
  | x :: l => f 0 x :: imap (f ∘ S) l
  end.
228

229
Definition zipped_map {A B} (f : list A → list A → A → B) :
Robbert Krebbers's avatar
Robbert Krebbers committed
230 231 232 233 234
    list A → list A → list B := fix go l k :=
  match k with
  | [] => []
  | x :: k => f l k x :: go (x :: l) k
  end.
235

Robbert Krebbers's avatar
Robbert Krebbers committed
236
Fixpoint imap2 {A B C} (f : nat → A → B → C) (l : list A) (k : list B) : list C :=
Robbert Krebbers's avatar
Robbert Krebbers committed
237
  match l, k with
Robbert Krebbers's avatar
Robbert Krebbers committed
238 239
  | [], _ | _, [] => []
  | x :: l, y :: k => f 0 x y :: imap2 (f ∘ S) l k
Robbert Krebbers's avatar
Robbert Krebbers committed
240 241
  end.

242 243 244 245 246
Inductive zipped_Forall {A} (P : list A → list A → A → Prop) :
    list A → list A → Prop :=
  | zipped_Forall_nil l : zipped_Forall P l []
  | zipped_Forall_cons l k x :
     P l k x → zipped_Forall P (x :: l) k → zipped_Forall P l (x :: k).
247 248
Arguments zipped_Forall_nil {_ _} _ : assert.
Arguments zipped_Forall_cons {_ _} _ _ _ _ _ : assert.
249

250 251 252 253 254 255 256
(** The function [mask f βs l] applies the function [f] to elements in [l] at
positions that are [true] in [βs]. *)
Fixpoint mask {A} (f : A → A) (βs : list bool) (l : list A) : list A :=
  match βs, l with
  | β :: βs, x :: l => (if β then f x else x) :: mask f βs l
  | _, _ => l
  end.
257 258 259 260

(** The function [permutations l] yields all permutations of [l]. *)
Fixpoint interleave {A} (x : A) (l : list A) : list (list A) :=
  match l with
261
  | [] => [[x]]| y :: l => (x :: y :: l) :: ((y ::.) <$> interleave x l)
262 263
  end.
Fixpoint permutations {A} (l : list A) : list (list A) :=
264
  match l with [] => [[]] | x :: l => permutations l ≫= interleave x end.
265

Robbert Krebbers's avatar
Robbert Krebbers committed
266 267 268 269
(** The predicate [suffix] holds if the first list is a suffix of the second.
The predicate [prefix] holds if the first list is a prefix of the second. *)
Definition suffix {A} : relation (list A) := λ l1 l2, ∃ k, l2 = k ++ l1.
Definition prefix {A} : relation (list A) := λ l1 l2, ∃ k, l2 = l1 ++ k.
270 271
Infix "`suffix_of`" := suffix (at level 70) : stdpp_scope.
Infix "`prefix_of`" := prefix (at level 70) : stdpp_scope.
Tej Chajed's avatar
Tej Chajed committed
272 273
Hint Extern 0 (_ `prefix_of` _) => reflexivity : core.
Hint Extern 0 (_ `suffix_of` _) => reflexivity : core.
Robbert Krebbers's avatar
Robbert Krebbers committed
274

275
Section prefix_suffix_ops.
276 277
  Context `{EqDecision A}.

Robbert Krebbers's avatar
Robbert Krebbers committed
278
  Definition max_prefix : list A → list A → list A * list A * list A :=
279 280 281 282 283
    fix go l1 l2 :=
    match l1, l2 with
    | [], l2 => ([], l2, [])
    | l1, [] => (l1, [], [])
    | x1 :: l1, x2 :: l2 =>
284
      if decide_rel (=) x1 x2
285
      then prod_map id (x1 ::.) (go l1 l2) else (x1 :: l1, x2 :: l2, [])
286
    end.
Robbert Krebbers's avatar
Robbert Krebbers committed
287 288
  Definition max_suffix (l1 l2 : list A) : list A * list A * list A :=
    match max_prefix (reverse l1) (reverse l2) with
289 290
    | (k1, k2, k3) => (reverse k1, reverse k2, reverse k3)
    end.
Robbert Krebbers's avatar
Robbert Krebbers committed
291 292
  Definition strip_prefix (l1 l2 : list A) := (max_prefix l1 l2).1.2.
  Definition strip_suffix (l1 l2 : list A) := (max_suffix l1 l2).1.2.
293
End prefix_suffix_ops.
Robbert Krebbers's avatar
Robbert Krebbers committed
294

295
(** A list [l1] is a sublist of [l2] if [l2] is obtained by removing elements
296 297 298
from [l1] without changing the order. *)
Inductive sublist {A} : relation (list A) :=
  | sublist_nil : sublist [] []
299
  | sublist_skip x l1 l2 : sublist l1 l2 → sublist (x :: l1) (x :: l2)
300
  | sublist_cons x l1 l2 : sublist l1 l2 → sublist l1 (x :: l2).
301
Infix "`sublist_of`" := sublist (at level 70) : stdpp_scope.
Tej Chajed's avatar
Tej Chajed committed
302
Hint Extern 0 (_ `sublist_of` _) => reflexivity : core.
303

Robbert Krebbers's avatar
Robbert Krebbers committed
304
(** A list [l2] submseteq a list [l1] if [l2] is obtained by removing elements
305
from [l1] while possiblity changing the order. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
306 307 308 309 310 311
Inductive submseteq {A} : relation (list A) :=
  | submseteq_nil : submseteq [] []
  | submseteq_skip x l1 l2 : submseteq l1 l2 → submseteq (x :: l1) (x :: l2)
  | submseteq_swap x y l : submseteq (y :: x :: l) (x :: y :: l)
  | submseteq_cons x l1 l2 : submseteq l1 l2 → submseteq l1 (x :: l2)
  | submseteq_trans l1 l2 l3 : submseteq l1 l2 → submseteq l2 l3 → submseteq l1 l3.
312
Infix "⊆+" := submseteq (at level 70) : stdpp_scope.
Tej Chajed's avatar
Tej Chajed committed
313
Hint Extern 0 (_ ⊆+ _) => reflexivity : core.
314

315 316 317 318 319
(** Removes [x] from the list [l]. The function returns a [Some] when the
+removal succeeds and [None] when [x] is not in [l]. *)
Fixpoint list_remove `{EqDecision A} (x : A) (l : list A) : option (list A) :=
  match l with
  | [] => None
320
  | y :: l => if decide (x = y) then Some l else (y ::.) <$> list_remove x l
321 322 323 324 325 326 327 328
  end.

(** Removes all elements in the list [k] from the list [l]. The function returns
a [Some] when the removal succeeds and [None] some element of [k] is not in [l]. *)
Fixpoint list_remove_list `{EqDecision A} (k : list A) (l : list A) : option (list A) :=
  match k with
  | [] => Some l | x :: k => list_remove x l ≫= list_remove_list k
  end.
329

330 331 332 333 334
Inductive Forall3 {A B C} (P : A → B → C → Prop) :
     list A → list B → list C → Prop :=
  | Forall3_nil : Forall3 P [] [] []
  | Forall3_cons x y z l k k' :
     P x y z → Forall3 P l k k' → Forall3 P (x :: l) (y :: k) (z :: k').
335

336 337
(** Set operations on lists *)
Instance list_subseteq {A} : SubsetEq (list A) := λ l1 l2, ∀ x, x ∈ l1 → x ∈ l2.
338

339
Section list_set.
340
  Context `{dec : EqDecision A}.
Robbert Krebbers's avatar
Robbert Krebbers committed
341
  Global Instance elem_of_list_dec : RelDecision (∈@{list A}).
342 343
  Proof.
   refine (
344
    fix go x l :=
345 346
    match l return Decision (x ∈ l) with
    | [] => right _
347
    | y :: l => cast_if_or (decide (x = y)) (go x l)
348 349 350 351 352 353 354 355 356 357 358 359 360
    end); clear go dec; subst; try (by constructor); abstract by inversion 1.
  Defined.
  Fixpoint remove_dups (l : list A) : list A :=
    match l with
    | [] => []
    | x :: l =>
      if decide_rel (∈) x l then remove_dups l else x :: remove_dups l
    end.
  Fixpoint list_difference (l k : list A) : list A :=
    match l with
    | [] => []
    | x :: l =>
      if decide_rel (∈) x k
361
      then list_difference l k else x :: list_difference l k
362
    end.
363
  Definition list_union (l k : list A) : list A := list_difference l k ++ k.
364 365 366 367 368
  Fixpoint list_intersection (l k : list A) : list A :=
    match l with
    | [] => []
    | x :: l =>
      if decide_rel (∈) x k
369
      then x :: list_intersection l k else list_intersection l k
370 371 372 373 374 375
    end.
  Definition list_intersection_with (f : A → A → option A) :
    list A → list A → list A := fix go l k :=
    match l with
    | [] => []
    | x :: l => foldr (λ y,
376
        match f x y with None => id | Some z => (z ::.) end) (go l k) k
377 378
    end.
End list_set.
379

380 381 382 383
(** These next functions allow to efficiently encode lists of positives (bit
strings) into a single positive and go in the other direction as well. This is
for example used for the countable instance of lists and in namespaces.
 The main functions are [positives_flatten] and [positives_unflatten]. *)
384 385 386 387 388 389
Fixpoint positives_flatten_go (xs : list positive) (acc : positive) : positive :=
  match xs with
  | [] => acc
  | x :: xs => positives_flatten_go xs (acc~1~0 ++ Preverse (Pdup x))
  end.

390 391 392 393 394 395 396
(** Flatten a list of positives into a single positive by duplicating the bits
of each element, so that:

- [0 -> 00]
- [1 -> 11]

and then separating each element with [10]. *)
397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413
Definition positives_flatten (xs : list positive) : positive :=
  positives_flatten_go xs 1.

Fixpoint positives_unflatten_go
        (p : positive)
        (acc_xs : list positive)
        (acc_elm : positive)
  : option (list positive) :=
  match p with
  | 1 => Some acc_xs
  | p'~0~0 => positives_unflatten_go p' acc_xs (acc_elm~0)
  | p'~1~1 => positives_unflatten_go p' acc_xs (acc_elm~1)
  | p'~1~0 => positives_unflatten_go p' (acc_elm :: acc_xs) 1
  | _ => None
  end%positive.

(** Unflatten a positive into a list of positives, assuming the encoding
414
used by [positives_flatten]. *)
415 416 417
Definition positives_unflatten (p : positive) : option (list positive) :=
  positives_unflatten_go p [] 1.

418
(** * Basic tactics on lists *)
Robbert Krebbers's avatar
Robbert Krebbers committed
419
(** The tactic [discriminate_list] discharges a goal if it submseteq
420 421
a list equality involving [(::)] and [(++)] of two lists that have a different
length as one of its hypotheses. *)
422
Tactic Notation "discriminate_list" hyp(H) :=
423
  apply (f_equal length) in H;
424
  repeat (csimpl in H || rewrite app_length in H); exfalso; lia.
425
Tactic Notation "discriminate_list" :=
426
  match goal with H : _ =@{list _} _ |- _ => discriminate_list H end.
427

428
(** The tactic [simplify_list_eq] simplifies hypotheses involving
429 430
equalities on lists using injectivity of [(::)] and [(++)]. Also, it simplifies
lookups in singleton lists. *)
431
Lemma app_inj_1 {A} (l1 k1 l2 k2 : list A) :
432 433
  length l1 = length k1 → l1 ++ l2 = k1 ++ k2 → l1 = k1 ∧ l2 = k2.
Proof. revert k1. induction l1; intros [|??]; naive_solver. Qed.
434
Lemma app_inj_2 {A} (l1 k1 l2 k2 : list A) :
435 436
  length l2 = length k2 → l1 ++ l2 = k1 ++ k2 → l1 = k1 ∧ l2 = k2.
Proof.
437
  intros ? Hl. apply app_inj_1; auto.
438 439
  apply (f_equal length) in Hl. rewrite !app_length in Hl. lia.
Qed.
440
Ltac simplify_list_eq :=
441
  repeat match goal with
442
  | _ => progress simplify_eq/=
443
  | H : _ ++ _ = _ ++ _ |- _ => first
444
    [ apply app_inv_head in H | apply app_inv_tail in H
445 446
    | apply app_inj_1 in H; [destruct H|done]
    | apply app_inj_2 in H; [destruct H|done] ]
Robbert Krebbers's avatar
Robbert Krebbers committed
447
  | H : [?x] !! ?i = Some ?y |- _ =>
448
    destruct i; [change (Some x = Some y) in H | discriminate]
449
  end.
450

451 452
(** * General theorems *)
Section general_properties.
Robbert Krebbers's avatar
Robbert Krebbers committed
453
Context {A : Type}.
454 455
Implicit Types x y z : A.
Implicit Types l k : list A.
Robbert Krebbers's avatar
Robbert Krebbers committed
456

457
Global Instance: Inj2 (=) (=) (=) (@cons A).
458
Proof. by injection 1. Qed.
459
Global Instance: ∀ k, Inj (=) (=) (k ++.).
460
Proof. intros ???. apply app_inv_head. Qed.
461
Global Instance: ∀ k, Inj (=) (=) (.++ k).
462
Proof. intros ???. apply app_inv_tail. Qed.
463
Global Instance: Assoc (=) (@app A).
464 465 466 467 468
Proof. intros ???. apply app_assoc. Qed.
Global Instance: LeftId (=) [] (@app A).
Proof. done. Qed.
Global Instance: RightId (=) [] (@app A).
Proof. intro. apply app_nil_r. Qed.
469

470
Lemma app_nil l1 l2 : l1 ++ l2 = [] ↔ l1 = [] ∧ l2 = [].
471
Proof. split. apply app_eq_nil. by intros [-> ->]. Qed.
472 473
Lemma app_singleton l1 l2 x :
  l1 ++ l2 = [x] ↔ l1 = [] ∧ l2 = [x] ∨ l1 = [x] ∧ l2 = [].
474
Proof. split. apply app_eq_unit. by intros [[-> ->]|[-> ->]]. Qed.
475 476 477
Lemma cons_middle x l1 l2 : l1 ++ x :: l2 = l1 ++ [x] ++ l2.
Proof. done. Qed.
Lemma list_eq l1 l2 : (∀ i, l1 !! i = l2 !! i) → l1 = l2.
478
Proof.
479
  revert l2. induction l1 as [|x l1 IH]; intros [|y l2] H.
480 481 482
  - done.
  - discriminate (H 0).
  - discriminate (H 0).
483
  - f_equal; [by injection (H 0)|]. apply (IH _ $ λ i, H (S i)).
484
Qed.
485 486
Global Instance list_eq_dec {dec : EqDecision A} : EqDecision (list A) :=
  list_eq_dec dec.
487 488 489
Global Instance list_eq_nil_dec l : Decision (l = []).
Proof. by refine match l with [] => left _ | _ => right _ end. Defined.
Lemma list_singleton_reflect l :
490
  option_reflect (λ x, l = [x]) (length l ≠ 1) (maybe (λ x, [x]) l).
491 492 493 494
Proof. by destruct l as [|? []]; constructor. Defined.

Definition nil_length : length (@nil A) = 0 := eq_refl.
Definition cons_length x l : length (x :: l) = S (length l) := eq_refl.
495
Lemma nil_or_length_pos l : l = [] ∨ length l ≠ 0.
496
Proof. destruct l; simpl; auto with lia. Qed.
497
Lemma nil_length_inv l : length l = 0 → l = [].
498
Proof. by destruct l. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
499 500
Lemma lookup_cons_ne_0 l x i : i ≠ 0 → (x :: l) !! i = l !! pred i.
Proof. by destruct i. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
501 502 503
Lemma lookup_total_cons_ne_0 `{!Inhabited A} l x i :
  i ≠ 0 → (x :: l) !!! i = l !!! pred i.
Proof. by destruct i. Qed.
504
Lemma lookup_nil i : @nil A !! i = None.
505
Proof. by destruct i. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
506 507
Lemma lookup_total_nil `{!Inhabited A} i : @nil A !!! i = inhabitant.
Proof. by destruct i. Qed.
508
Lemma lookup_tail l i : tail l !! i = l !! S i.
509
Proof. by destruct l. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
510 511
Lemma lookup_total_tail `{!Inhabited A} l i : tail l !!! i = l !!! S i.
Proof. by destruct l. Qed.
512
Lemma lookup_lt_Some l i x : l !! i = Some x → i < length l.
513
Proof. revert i. induction l; intros [|?] ?; naive_solver auto with arith. Qed.
514 515 516
Lemma lookup_lt_is_Some_1 l i : is_Some (l !! i) → i < length l.
Proof. intros [??]; eauto using lookup_lt_Some. Qed.
Lemma lookup_lt_is_Some_2 l i : i < length l → is_Some (l !! i).
517
Proof. revert i. induction l; intros [|?] ?; naive_solver eauto with lia. Qed.
518 519 520 521 522 523 524 525
Lemma lookup_lt_is_Some l i : is_Some (l !! i) ↔ i < length l.
Proof. split; auto using lookup_lt_is_Some_1, lookup_lt_is_Some_2. Qed.
Lemma lookup_ge_None l i : l !! i = None ↔ length l ≤ i.
Proof. rewrite eq_None_not_Some, lookup_lt_is_Some. lia. Qed.
Lemma lookup_ge_None_1 l i : l !! i = None → length l ≤ i.
Proof. by rewrite lookup_ge_None. Qed.
Lemma lookup_ge_None_2 l i : length l ≤ i → l !! i = None.
Proof. by rewrite lookup_ge_None. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
526

527 528 529
Lemma list_eq_same_length l1 l2 n :
  length l2 = n → length l1 = n →
  (∀ i x y, i < n → l1 !! i = Some x → l2 !! i = Some y → x = y) → l1 = l2.
Robbert Krebbers's avatar
Robbert Krebbers committed
530
Proof.
531
  intros <- Hlen Hl; apply list_eq; intros i. destruct (l2 !! i) as [x|] eqn:Hx.
532
  - destruct (lookup_lt_is_Some_2 l1 i) as [y Hy].
533 534
    { rewrite Hlen; eauto using lookup_lt_Some. }
    rewrite Hy; f_equal; apply (Hl i); eauto using lookup_lt_Some.
535
  - by rewrite lookup_ge_None, Hlen, <-lookup_ge_None.
Robbert Krebbers's avatar
Robbert Krebbers committed
536
Qed.
537

538
Lemma nth_lookup l i d : nth i l d = default d (l !! i).
539 540 541 542
Proof. revert i. induction l as [|x l IH]; intros [|i]; simpl; auto. Qed.
Lemma nth_lookup_Some l i d x : l !! i = Some x → nth i l d = x.
Proof. rewrite nth_lookup. by intros ->. Qed.
Lemma nth_lookup_or_length l i d : {l !! i = Some (nth i l d)} + {length l ≤ i}.
Ralf Jung's avatar
Ralf Jung committed
543
Proof.
544
  rewrite nth_lookup. destruct (l !! i) eqn:?; eauto using lookup_ge_None_1.
Ralf Jung's avatar
Ralf Jung committed
545 546
Qed.

Dan Frumin's avatar
Dan Frumin committed
547 548 549 550 551 552 553 554 555 556 557 558
Lemma list_lookup_total_alt `{!Inhabited A} l i :
  l !!! i = default inhabitant (l !! i).
Proof. revert i. induction l; intros []; naive_solver. Qed.
Lemma list_lookup_total_correct `{!Inhabited A} l i x :
  l !! i = Some x → l !!! i = x.
Proof. rewrite list_lookup_total_alt. by intros ->. Qed.
Lemma list_lookup_lookup_total `{!Inhabited A} l i :
  is_Some (l !! i) → l !! i = Some (l !!! i).
Proof. rewrite list_lookup_total_alt; by intros [x ->]. Qed.
Lemma list_lookup_lookup_total_lt `{!Inhabited A} l i :
  i < length l → l !! i = Some (l !!! i).
Proof. intros ?. by apply list_lookup_lookup_total, lookup_lt_is_Some_2. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594
Lemma list_lookup_alt `{!Inhabited A} l i x :
  l !! i = Some x ↔ i < length l ∧ l !!! i = x.
Proof.
  naive_solver eauto using list_lookup_lookup_total_lt,
    list_lookup_total_correct, lookup_lt_Some.
Qed.

Lemma lookup_app_l l1 l2 i : i < length l1 → (l1 ++ l2) !! i = l1 !! i.
Proof. revert i. induction l1; intros [|?]; naive_solver auto with lia. Qed.
Lemma lookup_total_app_l `{!Inhabited A} l1 l2 i :
  i < length l1 → (l1 ++ l2) !!! i = l1 !!! i.
Proof. intros. by rewrite !list_lookup_total_alt, lookup_app_l. Qed.
Lemma lookup_app_l_Some l1 l2 i x : l1 !! i = Some x → (l1 ++ l2) !! i = Some x.
Proof. intros. rewrite lookup_app_l; eauto using lookup_lt_Some. Qed.
Lemma lookup_app_r l1 l2 i :
  length l1 ≤ i → (l1 ++ l2) !! i = l2 !! (i - length l1).
Proof. revert i. induction l1; intros [|?]; simpl; auto with lia. Qed.
Lemma lookup_total_app_r `{!Inhabited A} l1 l2 i :
  length l1 ≤ i → (l1 ++ l2) !!! i = l2 !!! (i - length l1).
Proof. intros. by rewrite !list_lookup_total_alt, lookup_app_r. Qed.
Lemma lookup_app_Some l1 l2 i x :
  (l1 ++ l2) !! i = Some x ↔
    l1 !! i = Some x ∨ length l1 ≤ i ∧ l2 !! (i - length l1) = Some x.
Proof.
  split.
  - revert i. induction l1 as [|y l1 IH]; intros [|i] ?;
      simplify_eq/=; auto with lia.
    destruct (IH i) as [?|[??]]; auto with lia.
  - intros [?|[??]]; auto using lookup_app_l_Some. by rewrite lookup_app_r.
Qed.
Lemma list_lookup_middle l1 l2 x n :
  n = length l1 → (l1 ++ x :: l2) !! n = Some x.
Proof. intros ->. by induction l1. Qed.
Lemma list_lookup_total_middle `{!Inhabited A} l1 l2 x n :
  n = length l1 → (l1 ++ x :: l2) !!! n = x.
Proof. intros. by rewrite !list_lookup_total_alt, list_lookup_middle. Qed.
Dan Frumin's avatar
Dan Frumin committed
595

596
Lemma list_insert_alter l i x : <[i:=x]>l = alter (λ _, x) i l.
597
Proof. by revert i; induction l; intros []; intros; f_equal/=. Qed.
598
Lemma alter_length f l i : length (alter f i l) = length l.
599
Proof. revert i. by induction l; intros [|?]; f_equal/=. Qed.
600
Lemma insert_length l i x : length (<[i:=x]>l) = length l.
601
Proof. revert i. by induction l; intros [|?]; f_equal/=. Qed.
602
Lemma list_lookup_alter f l i : alter f i l !! i = f <$> l !! i.
603
Proof. revert i. induction l. done. intros [|i]. done. apply (IHl i). Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
604 605 606 607 608 609
Lemma list_lookup_total_alter `{!Inhabited A} f l i :
  i < length l → alter f i l !!! i = f (l !!! i).
Proof.
  intros [x Hx]%lookup_lt_is_Some_2.
  by rewrite !list_lookup_total_alt, list_lookup_alter, Hx.
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
610
Lemma list_lookup_alter_ne f l i j : i ≠ j → alter f i l !! j = l !! j.
611
Proof. revert i j. induction l; [done|]. intros [] []; naive_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
612 613 614 615
Lemma list_lookup_total_alter_ne `{!Inhabited A} f l i j :
  i ≠ j → alter f i l !!! j = l !!! j.
Proof. intros. by rewrite !list_lookup_total_alt, list_lookup_alter_ne. Qed.

616
Lemma list_lookup_insert l i x : i < length l → <[i:=x]>l !! i = Some x.
617
Proof. revert i. induction l; intros [|?] ?; f_equal/=; auto with lia. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
618 619 620
Lemma list_lookup_total_insert `{!Inhabited A} l i x :
  i < length l → <[i:=x]>l !!! i = x.
Proof. intros. by rewrite !list_lookup_total_alt, list_lookup_insert. Qed.
621
Lemma list_lookup_insert_ne l i j x : i ≠ j → <[i:=x]>l !! j = l !! j.
622
Proof. revert i j. induction l; [done|]. intros [] []; naive_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
623 624 625
Lemma list_lookup_total_insert_ne `{!Inhabited A} l i j x :
  i ≠ j → <[i:=x]>l !!! j = l !!! j.
Proof. intros. by rewrite !list_lookup_total_alt, list_lookup_insert_ne. Qed.
626 627 628 629 630 631
Lemma list_lookup_insert_Some l i x j y :
  <[i:=x]>l !! j = Some y ↔
    i = j ∧ x = y ∧ j < length l ∨ i ≠ j ∧ l !! j = Some y.
Proof.
  destruct (decide (i = j)) as [->|];
    [split|rewrite list_lookup_insert_ne by done; tauto].
632
  - intros Hy. assert (j < length l).
633 634
    { rewrite <-(insert_length l j x); eauto using lookup_lt_Some. }
    rewrite list_lookup_insert in Hy by done; naive_solver.
635
  - intros [(?&?&?)|[??]]; rewrite ?list_lookup_insert; naive_solver.
636 637 638
Qed.
Lemma list_insert_commute l i j x y :
  i ≠ j → <[i:=x]>(<[j:=y]>l) = <[j:=y]>(<[i:=x]>l).
639
Proof. revert i j. by induction l; intros [|?] [|?] ?; f_equal/=; auto. Qed.
Michael Sammler's avatar
Michael Sammler committed
640 641
Lemma list_insert_id' l i x : (i < length l → l !! i = Some x) → <[i:=x]>l = l.
Proof. revert i. induction l; intros [|i] ?; f_equal/=; naive_solver lia. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
642
Lemma list_insert_id l i x : l !! i = Some x → <[i:=x]>l = l.
Michael Sammler's avatar
Michael Sammler committed
643
Proof. intros ?. by apply list_insert_id'. Qed.
644 645
Lemma list_insert_ge l i x : length l ≤ i → <[i:=x]>l = l.
Proof. revert i. induction l; intros [|i] ?; f_equal/=; auto with lia. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
646
Lemma list_insert_insert l i x y : <[i:=x]> (<[i:=y]> l) = <[i:=x]> l.
Michael Sammler's avatar
Michael Sammler committed
647
Proof. revert i. induction l; intros [|i]; f_equal/=; auto. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
648

649 650
Lemma list_lookup_other l i x :
  length l ≠ 1 → l !! i = Some x → ∃ j y, j ≠ i ∧ l !! j = Some y.
Robbert Krebbers's avatar
Robbert Krebbers committed
651
Proof.
652
  intros. destruct i, l as [|x0 [|x1 l]]; simplify_eq/=.
653 654
  - by exists 1, x1.
  - by exists 0, x0.
Robbert Krebbers's avatar
Robbert Krebbers committed
655
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
656

657 658
Lemma alter_app_l f l1 l2 i :
  i < length l1 → alter f i (l1 ++ l2) = alter f i l1 ++ l2.
659
Proof. revert i. induction l1; intros [|?] ?; f_equal/=; auto with lia. Qed.
660
Lemma alter_app_r f l1 l2 i :
661
  alter f (length l1 + i) (l1 ++ l2) = l1 ++ alter f i l2.
662
Proof. revert i. induction l1; intros [|?]; f_equal/=; auto. Qed.
663 664
Lemma alter_app_r_alt f l1 l2 i :
  length l1 ≤ i → alter f i (l1 ++ l2) = l1 ++ alter f (i - length l1) l2.
665 666 667 668
Proof.
  intros. assert (i = length l1 + (i - length l1)) as Hi by lia.
  rewrite Hi at 1. by apply alter_app_r.
Qed.
669
Lemma list_alter_id f l i : (∀ x, f x = x) → alter f i l = l.
670
Proof. intros ?. revert i. induction l; intros [|?]; f_equal/=; auto. Qed.
671 672
Lemma list_alter_ext f g l k i :
  (∀ x, l !! i = Some x → f x = g x) → l = k → alter f i l = alter g i k.
673
Proof. intros H ->. revert i H. induction k; intros [|?] ?; f_equal/=; auto. Qed.
674 675
Lemma list_alter_compose f g l i :
  alter (f ∘ g) i l = alter f i (alter g i l).
676
Proof. revert i. induction l; intros [|?]; f_equal/=; auto. Qed.
677 678
Lemma list_alter_commute f g l i j :
  i ≠ j → alter f i (alter g j l) = alter g j (alter f i l).
679
Proof. revert i j. induction l; intros [|?][|?] ?; f_equal/=; auto with lia. Qed.
680 681
Lemma insert_app_l l1 l2 i x :
  i < length l1 → <[i:=x]>(l1 ++ l2) = <[i:=x]>l1 ++ l2.
682
Proof. revert i. induction l1; intros [|?] ?; f_equal/=; auto with lia. Qed.
683
Lemma insert_app_r l1 l2 i x : <[length l1+i:=x]>(l1 ++ l2) = l1 ++ <[i:=x]>l2.
684
Proof. revert i. induction l1; intros [|?]; f_equal/=; auto. Qed.
685 686
Lemma insert_app_r_alt l1 l2 i x :
  length l1 ≤ i → <[i:=x]>(l1 ++ l2) = l1 ++ <[i - length l1:=x]>l2.
687 688 689 690
Proof.
  intros. assert (i = length l1 + (i - length l1)) as Hi by lia.
  rewrite Hi at 1. by apply insert_app_r.
Qed.
691
Lemma delete_middle l1 l2 x : delete (length l1) (l1 ++ x :: l2) = l1 ++ l2.
692
Proof. induction l1; f_equal/=; auto. Qed.
693

694 695 696 697 698 699 700 701 702 703 704 705 706 707 708
Lemma inserts_length l i k : length (list_inserts i k l) = length l.
Proof.
  revert i. induction k; intros ?; csimpl; rewrite ?insert_length; auto.
Qed.
Lemma list_lookup_inserts l i k j :
  i ≤ j < i + length k → j < length l →
  list_inserts i k l !! j = k !! (j - i).
Proof.
  revert i j. induction k as [|y k IH]; csimpl; intros i j ??; [lia|].
  destruct (decide (i = j)) as [->|].
  { by rewrite list_lookup_insert, Nat.sub_diag
      by (rewrite inserts_length; lia). }
  rewrite list_lookup_insert_ne, IH by lia.
  by replace (j - i) with (S (j - S i)) by lia.
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
709 710 711 712
Lemma list_lookup_total_inserts `{!Inhabited A} l i k j :
  i ≤ j < i + length k → j < length l →
  list_inserts i k l !!! j = k !!! (j - i).
Proof. intros. by rewrite !list_lookup_total_alt, list_lookup_inserts. Qed.
713 714 715 716 717 718
Lemma list_lookup_inserts_lt l i k j :
  j < i → list_inserts i k l !! j = l !! j.
Proof.
  revert i j. induction k; intros i j ?; csimpl;
    rewrite ?list_lookup_insert_ne by lia; auto with lia.
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
719 720 721
Lemma list_lookup_total_inserts_lt `{!Inhabited A}l i k j :
  j < i → list_inserts i k l !!! j = l !!! j.
Proof. intros. by rewrite !list_lookup_total_alt, list_lookup_inserts_lt. Qed.
722 723 724 725 726 727
Lemma list_lookup_inserts_ge l i k j :
  i + length k ≤ j → list_inserts i k l !! j = l !! j.
Proof.
  revert i j. induction k; csimpl; intros i j ?;
    rewrite ?list_lookup_insert_ne by lia; auto with lia.
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
728 729 730
Lemma list_lookup_total_inserts_ge `{!Inhabited A} l i k j :
  i + length k ≤ j → list_inserts i k l !!! j = l !!! j.
Proof. intros. by rewrite !list_lookup_total_alt, list_lookup_inserts_ge. Qed.
731 732 733 734 735 736 737 738 739 740
Lemma list_lookup_inserts_Some l i k j y :
  list_inserts i k l !! j = Some y ↔
    (j < i ∨ i + length k ≤ j) ∧ l !! j = Some y ∨
    i ≤ j < i + length k ∧ j < length l ∧ k !! (j - i) = Some y.
Proof.
  destruct (decide (j < i)).
  { rewrite list_lookup_inserts_lt by done; intuition lia. }
  destruct (decide (i + length k ≤ j)).
  { rewrite list_lookup_inserts_ge by done; intuition lia. }
  split.
741
  - intros Hy. assert (j < length l).
742 743
    { rewrite <-(inserts_length l i k); eauto using lookup_lt_Some. }
    rewrite list_lookup_inserts in Hy by lia. intuition lia.
744
  - intuition. by rewrite list_lookup_inserts by lia.
745 746 747 748 749 750 751
Qed.
Lemma list_insert_inserts_lt l i j x k :
  i < j → <[i:=x]>(list_inserts j k l) = list_inserts j k (<[i:=x]>l).
Proof.
  revert i j. induction k; intros i j ?; simpl;
    rewrite 1?list_insert_commute by lia; auto with f_equal.
Qed.
752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787
Lemma list_inserts_app_l l1 l2 l3 i :
  list_inserts i (l1 ++ l2) l3 = list_inserts (length l1 + i) l2 (list_inserts i l1 l3).
Proof.
  revert l1 i; induction l1 as [|x l1 IH]; [done|].
  intro i. simpl. rewrite IH, Nat.add_succ_r. apply list_insert_inserts_lt. lia.
Qed.
Lemma list_inserts_app_r l1 l2 l3 i :
  list_inserts (length l2 + i) l1 (l2 ++ l3) = l2 ++ list_inserts i l1 l3.
Proof.
  revert l1 i; induction l1 as [|x l1 IH]; [done|].
  intros i. simpl. by rewrite plus_n_Sm, IH, insert_app_r.
Qed.
Lemma list_inserts_nil l1 i : list_inserts i l1 [] = [].
Proof.
  revert i; induction l1 as [|x l1 IH]; [done|].
  intro i. simpl. by rewrite IH.
Qed.
Lemma list_inserts_cons l1 l2 i x :
  list_inserts (S i) l1 (x :: l2) = x :: list_inserts i l1 l2.
Proof.
  revert i; induction l1 as [|y l1 IH]; [done|].
  intro i. simpl. by rewrite IH.
Qed.
Lemma list_inserts_0_r l1 l2 l3 :
  length l1 = length l2 → list_inserts 0 l1 (l2 ++ l3) = l1 ++ l3.
Proof.
  revert l2. induction l1 as [|x l1 IH]; intros [|y l2] ?; simplify_eq/=; [done|].
  rewrite list_inserts_cons. simpl. by rewrite IH.
Qed.
Lemma list_inserts_0_l l1 l2 l3 :
  length l1 = length l3 → list_inserts 0 (l1 ++ l2) l3 = l1.
Proof.
  revert l3. induction l1 as [|x l1 IH]; intros [|z l3] ?; simplify_eq/=.
  { by rewrite list_inserts_nil. }
  rewrite list_inserts_cons. simpl. by rewrite IH.
Qed.
788

789
(** ** Properties of the [elem_of] predicate *)
790
Lemma not_elem_of_nil x : x ∉ [].
791
Proof. by inversion 1. Qed.
792
Lemma elem_of_nil x : x ∈ [] ↔ False.
793
Proof. intuition. by destruct (not_elem_of_nil x). Qed.
794
Lemma elem_of_nil_inv l : (∀ x, x ∉ l) → l = [].
795
Proof. destruct l. done. by edestruct 1; constructor. Qed.
796 797
Lemma elem_of_not_nil x l : x ∈ l → l ≠ [].
Proof. intros ? ->. by apply (elem_of_nil x). Qed.
798
Lemma elem_of_cons l x y : x ∈ y :: l ↔ x = y ∨ x ∈ l.
Robbert Krebbers's avatar
Robbert Krebbers committed
799
Proof. by split; [inversion 1; subst|intros [->|?]]; constructor. Qed.
800
Lemma not_elem_of_cons l x y : x ∉ y :: l ↔ x ≠ y ∧ x ∉ l.
Robbert Krebbers's avatar
Robbert Krebbers committed
801
Proof. rewrite elem_of_cons. tauto. Qed.
802
Lemma elem_of_app l1 l2 x : x ∈ l1 ++ l2 ↔ x ∈ l1 ∨ x ∈ l2.
803
Proof.
804 805 806
  induction l1 as [|y l1 IH]; simpl.
  - rewrite elem_of_nil. naive_solver.
  - rewrite !elem_of_cons, IH. naive_solver.
807
Qed.
808
Lemma not_elem_of_app l1 l2 x : x ∉ l1 ++ l2 ↔ x ∉ l1 ∧ x ∉ l2.
Robbert Krebbers's avatar
Robbert Krebbers committed
809
Proof. rewrite elem_of_app. tauto. Qed.
810
Lemma elem_of_list_singleton x y : x ∈ [y] ↔ x = y.
811
Proof. rewrite elem_of_cons, elem_of_nil. tauto. Qed.
812
Global Instance elem_of_list_permutation_proper x : Proper ((≡ₚ) ==> iff) (x ∈.).
813
Proof. induction 1; rewrite ?elem_of_nil, ?elem_of_cons; intuition. Qed.
Amin Timany's avatar
Amin Timany committed
814 815 816 817 818
Lemma elem_of_list_lookup_1 l x : x ∈ l → ∃ i, l !! i = Some x.
Proof.
  induction 1 as [|???? IH]; [by exists 0 |].
  destruct IH as [i ?]; auto. by exists (S i).
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
819 820 821 822 823 824
Lemma elem_of_list_lookup_total_1 `{!Inhabited A} l x :
  x ∈ l → ∃ i, i < length l ∧ l !!! i = x.
Proof.
  intros [i Hi]%elem_of_list_lookup_1.
  eauto using lookup_lt_Some, list_lookup_total_correct.
Qed.
Amin Timany's avatar
Amin Timany committed
825 826 827 828
Lemma elem_of_list_lookup_2 l i x : l !! i = Some x → x ∈ l.
Proof.
  revert i. induction l; intros [|i] ?; simplify_eq/=; constructor; eauto.
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
829 830 831
Lemma elem_of_list_lookup_total_2 `{!Inhabited A} l i :
  i < length l → l !!! i ∈ l.
Proof. intros. by eapply elem_of_list_lookup_2, list_lookup_lookup_total_lt. Qed.
Amin Timany's avatar
Amin Timany committed
832 833
Lemma elem_of_list_lookup l x : x ∈ l ↔ ∃ i, l !! i = Some x.
Proof. firstorder eauto using elem_of_list_lookup_1, elem_of_list_lookup_2. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
834 835 836 837 838
Lemma elem_of_list_lookup_total `{!Inhabited A} l x :
  x ∈ l ↔ ∃ i, i < length l ∧ l !!! i = x.
Proof.
  naive_solver eauto using elem_of_list_lookup_total_1, elem_of_list_lookup_total_2.
Qed.
Amin Timany's avatar
Amin Timany committed
839 840 841 842 843 844 845 846
Lemma elem_of_list_split_length l i x :
  l !! i = Some x → ∃ l1 l2, l = l1 ++ x :: l2 ∧ i = length l1.
Proof.
  revert i; induction l as [|y l IH]; intros [|i] Hl; simplify_eq/=.
  - exists []; eauto.
  - destruct (IH _ Hl) as (?&?&?&?); simplify_eq/=.
    eexists (y :: _); eauto.
Qed.
847
Lemma elem_of_list_split l x : x ∈ l → ∃ l1 l2, l = l1 ++ x :: l2.
848
Proof.
Amin Timany's avatar
Amin Timany committed
849
  intros [? (?&?&?&_)%elem_of_list_split_length]%elem_of_list_lookup_1; eauto.
850
Qed.
851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872
Lemma elem_of_list_split_l `{EqDecision A} l x :
  x ∈ l → ∃ l1 l2, l = l1 ++ x :: l2 ∧ x ∉ l1.
Proof.
  induction 1 as [x l|x y l ? IH].
  { exists [], l. rewrite elem_of_nil. naive_solver. }
  destruct (decide (x = y)) as [->|?].
  - exists [], l. rewrite elem_of_nil. naive_solver.
  - destruct IH as (l1 & l2 & -> & ?).
    exists (y :: l1), l2. rewrite elem_of_cons. naive_solver.
Qed.
Lemma elem_of_list_split_r `{EqDecision A} l x :
  x ∈ l → ∃ l1 l2, l = l1 ++ x :: l2 ∧ x ∉ l2.
Proof.
  induction l as [|y l IH] using rev_ind.
  { by rewrite elem_of_nil. }
  destruct (decide (x = y)) as [->|].
  - exists l, []. rewrite elem_of_nil. naive_solver.
  - rewrite elem_of_app, elem_of_list_singleton. intros [?| ->]; try done.
    destruct IH as (l1 & l2 & -> & ?); auto.
    exists l1, (l2 ++ [y]).
    rewrite elem_of_app, elem_of_list_singleton, <-(assoc_L (++)). naive_solver.
Qed.
873 874 875 876 877 878 879
Lemma list_elem_of_insert l i x : i < length l → x ∈ <[i:=x]>l.
Proof. intros. by eapply elem_of_list_lookup_2, list_lookup_insert. Qed.
Lemma nth_elem_of l i d : i < length l → nth i l d ∈ l.
Proof.
  intros; eapply elem_of_list_lookup_2.
  destruct (nth_lookup_or_length l i d); [done | by lia].
Qed.
880

881
(** ** Properties of the [NoDup] predicate *)
882 883
Lemma NoDup_nil : NoDup (@nil A) ↔ True.
Proof. split; constructor. Qed.
884
Lemma NoDup_cons x l : NoDup (x :: l) ↔ x ∉ l ∧ NoDup l.
885
Proof. split. by inversion 1. intros [??]. by constructor. Qed.
886
Lemma NoDup_cons_11 x l : NoDup (x :: l) → x ∉ l.
887
Proof. rewrite NoDup_cons. by intros [??]. Qed.
888
Lemma NoDup_cons_12 x l : NoDup (x :: l) → NoDup l.
889
Proof. rewrite NoDup_cons. by intros [??]. Qed.
890
Lemma NoDup_singleton x : NoDup [x].
891
Proof. constructor. apply not_elem_of_nil. constructor. Qed.
892
Lemma NoDup_app l k : NoDup (l ++ k) ↔ NoDup l ∧ (∀ x, x ∈ l → x ∉ k) ∧ NoDup k.
Robbert Krebbers's avatar
Robbert Krebbers committed
893
Proof.
894
  induction l; simpl.
895 896
  - rewrite NoDup_nil. setoid_rewrite elem_of_nil. naive_solver.
  - rewrite !NoDup_cons.
Robbert Krebbers's avatar
Robbert Krebbers committed
897
    setoid_rewrite elem_of_cons. setoid_rewrite elem_of_app. naive_solver.
Robbert Krebbers's avatar
Robbert Krebbers committed
898
Qed.
899
Global Instance NoDup_proper: Proper ((≡ₚ) ==> iff) (@NoDup A).
900 901
Proof.
  induction 1 as [|x l k Hlk IH | |].
902 903 904 905
  - by rewrite !NoDup_nil.
  - by rewrite !NoDup_cons, IH, Hlk.
  - rewrite !NoDup_cons, !elem_of_cons. intuition.
  - intuition.
906
Qed.
907 908
Lemma NoDup_lookup l i j x :
  NoDup l → l !! i = Some x → l !! j = Some x → i = j.
909 910
Proof.
  intros Hl. revert i j. induction Hl as [|x' l Hx Hl IH].
911 912
  { intros; simplify_eq. }
  intros [|i] [|j] ??; simplify_eq/=; eauto with f_equal;
913 914
    exfalso; eauto using elem_of_list_lookup_2.
Qed.
915 916
Lemma NoDup_alt l :
  NoDup l ↔ ∀ i j x, l !! i = Some x → l !! j = Some x → i = j.
917
Proof.
918 919
  split; eauto using NoDup_lookup.
  induction l as [|x l IH]; intros Hl; constructor.
920
  - rewrite elem_of_list_lookup. intros [i ?].
921
    by feed pose proof (Hl (S i) 0 x); auto.
922
  - apply IH. intros i j x' ??. by apply (inj S), (Hl (S i) (S j) x').
923
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
924

925
Section no_dup_dec.
926
  Context `{!EqDecision A}.
927 928 929 930
  Global Instance NoDup_dec: ∀ l, Decision (NoDup l) :=
    fix NoDup_dec l :=
    match l return Decision (NoDup l) with
    | [] => left NoDup_nil_2
931
    | x :: l =>
932 933 934 935 936 937 938 939
      match decide_rel (∈) x l with
      | left Hin => right (λ H, NoDup_cons_11 _ _ H Hin)
      | right Hin =>
        match NoDup_dec l with
        | left H => left (NoDup_cons_2 _ _ Hin H)
        | right H => right (H ∘ NoDup_cons_12 _ _)
        end
      end
940
    end.
941
  Lemma elem_of_remove_dups l x : x ∈ remove_dups l ↔ x ∈ l.
942 943
  Proof.
    split; induction l; simpl; repeat case_decide;
944
      rewrite ?elem_of_cons; intuition (simplify_eq; auto).
945
  Qed.
946
  Lemma NoDup_remove_dups l : NoDup (remove_dups l).
947 948 949 950
  Proof.
    induction l; simpl; repeat case_decide; try constructor; auto.
    by rewrite elem_of_remove_dups.
  Qed.
951
End no_dup_dec.
952

953 954
(** ** Set operations on lists *)
Section list_set.
955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976
  Lemma elem_of_list_intersection_with f l k x :
    x ∈ list_intersection_with f l k ↔ ∃ x1 x2,
        x1 ∈ l ∧ x2 ∈ k ∧ f x1 x2 = Some x.
  Proof.
    split.
    - induction l as [|x1 l IH]; simpl; [by rewrite elem_of_nil|].
      intros Hx. setoid_rewrite elem_of_cons.
      cut ((∃ x2, x2 ∈ k ∧ f x1 x2 = Some x)
           ∨ x ∈ list_intersection_with f l k); [naive_solver|].
      clear IH. revert Hx. generalize (list_intersection_with f l k).
      induction k; simpl; [by auto|].
      case_match; setoid_rewrite elem_of_cons; naive_solver.
    - intros (x1&x2&Hx1&Hx2&Hx). induction Hx1 as [x1|x1 ? l ? IH]; simpl.
      + generalize (list_intersection_with f l k).
        induction Hx2; simpl; [by rewrite Hx; left |].
        case_match; simpl; try setoid_rewrite elem_of_cons; auto.
      + generalize (IH Hx). clear Hx IH Hx2.
        generalize (list_intersection_with f l k).
        induction k; simpl; intros; [done|].
        case_match; simpl; rewrite ?elem_of_cons; auto.
  Qed.

977
  Context `{!EqDecision A}.
978 979 980 981 982 983 984 985
  Lemma elem_of_list_difference l k x : x ∈ list_difference l k ↔ x ∈ l ∧ x ∉ k.
  Proof.
    split; induction l; simpl; try case_decide;
      rewrite ?elem_of_nil, ?elem_of_cons; intuition congruence.
  Qed.
  Lemma NoDup_list_difference l k : NoDup l → NoDup (list_difference l k).
  Proof.
    induction 1; simpl; try case_decide.
986 987 988
    - constructor.
    - done.
    - constructor. rewrite elem_of_list_difference; intuition. done.
989 990 991 992 993 994 995 996 997
  Qed.
  Lemma elem_of_list_union l k x : x ∈ list_union l k ↔ x ∈ l ∨ x ∈ k.
  Proof.
    unfold list_union. rewrite elem_of_app, elem_of_list_difference.
    intuition. case (decide (x ∈ k)); intuition.
  Qed.
  Lemma NoDup_list_union l k : NoDup l → NoDup k → NoDup (list_union l k).
  Proof.
    intros. apply NoDup_app. repeat split.
998 999 1000
    - by apply NoDup_list_difference.
    - intro. rewrite elem_of_list_difference. intuition.
    - done.
1001 1002 1003 1004 1005 1006 1007 1008 1009 1010
  Qed.
  Lemma elem_of_list_intersection l k x :
    x ∈ list_intersection l k ↔ x ∈ l ∧ x ∈ k.
  Proof.
    split; induction l; simpl; repeat case_decide;
      rewrite ?elem_of_nil, ?elem_of_cons; intuition congruence.
  Qed.
  Lemma NoDup_list_intersection l k : NoDup l → NoDup (list_intersection l k).
  Proof.
    induction 1; simpl; try case_decide.
1011 1012 1013
    - constructor.
    - constructor. rewrite elem_of_list_intersection; intuition. done.
    - done.
1014 1015 1016
  Qed.
End list_set.

1017
(** ** Properties of the [reverse] function *)
1018
Lemma reverse_nil : reverse [] =@{list A} [].
1019
Proof. done. Qed.
1020
Lemma reverse_singleton x : reverse [x] = [x].
1021
Proof. done. Qed.
1022
Lemma reverse_cons l x : reverse (x :: l) = reverse l ++ [x].
1023
Proof. unfold reverse. by rewrite <-!rev_alt. Qed.
1024
Lemma reverse_snoc l x : reverse (l ++ [x]) = x :: reverse l.
1025
Proof. unfold reverse. by rewrite <-!rev_alt, rev_unit. Qed.
1026
Lemma reverse_app l1 l2 : reverse (l1 ++ l2) = reverse l2 ++ reverse l1.