list.v 151 KB
Newer Older
Robbert Krebbers's avatar
Robbert Krebbers committed
1
(* Copyright (c) 2012-2015, Robbert Krebbers. *)
2 3 4
(* This file is distributed under the terms of the BSD license. *)
(** This file collects general purpose definitions and theorems on lists that
are not in the Coq standard library. *)
5
Require Export Permutation.
6
Require Export numbers base decidable option.
Robbert Krebbers's avatar
Robbert Krebbers committed
7

8
Arguments length {_} _.
Robbert Krebbers's avatar
Robbert Krebbers committed
9 10 11
Arguments cons {_} _ _.
Arguments app {_} _ _.
Arguments Permutation {_} _ _.
12
Arguments Forall_cons {_} _ _ _ _ _.
Robbert Krebbers's avatar
Robbert Krebbers committed
13

14 15 16
Notation tail := tl.
Notation take := firstn.
Notation drop := skipn.
17

18 19 20
Arguments take {_} !_ !_ /.
Arguments drop {_} !_ !_ /.

Robbert Krebbers's avatar
Robbert Krebbers committed
21 22 23 24 25 26 27
Notation "(::)" := cons (only parsing) : C_scope.
Notation "( x ::)" := (cons x) (only parsing) : C_scope.
Notation "(:: l )" := (λ x, cons x l) (only parsing) : C_scope.
Notation "(++)" := app (only parsing) : C_scope.
Notation "( l ++)" := (app l) (only parsing) : C_scope.
Notation "(++ k )" := (λ l, app l k) (only parsing) : C_scope.

28 29 30 31 32 33 34 35 36
Infix "≡ₚ" := Permutation (at level 70, no associativity) : C_scope.
Notation "(≡ₚ)" := Permutation (only parsing) : C_scope.
Notation "( x ≡ₚ)" := (Permutation x) (only parsing) : C_scope.
Notation "(≡ₚ x )" := (λ y, y  x) (only parsing) : C_scope.
Notation "(≢ₚ)" := (λ x y, ¬x  y) (only parsing) : C_scope.
Notation "x ≢ₚ y":= (¬x  y) (at level 70, no associativity) : C_scope.
Notation "( x ≢ₚ)" := (λ y, x ≢ₚ y) (only parsing) : C_scope.
Notation "(≢ₚ x )" := (λ y, y ≢ₚ x) (only parsing) : C_scope.

37 38 39
(** * Definitions *)
(** The operation [l !! i] gives the [i]th element of the list [l], or [None]
in case [i] is out of bounds. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
40
Instance list_lookup {A} : Lookup nat A (list A) :=
41
  fix go i l {struct l} : option A := let _ : Lookup _ _ _ := @go in
42
  match l with
43
  | [] => None | x :: l => match i with 0 => Some x | S i => l !! i end
44
  end.
45 46 47

(** The operation [alter f i l] applies the function [f] to the [i]th element
of [l]. In case [i] is out of bounds, the list is returned unchanged. *)
48 49
Instance list_alter {A} : Alter nat A (list A) := λ f,
  fix go i l {struct l} :=
50 51
  match l with
  | [] => []
52
  | x :: l => match i with 0 => f x :: l | S i => x :: go i l end
53
  end.
54

55 56
(** The operation [<[i:=x]> l] overwrites the element at position [i] with the
value [x]. In case [i] is out of bounds, the list is returned unchanged. *)
57 58 59 60 61 62
Instance list_insert {A} : Insert nat A (list A) :=
  fix go i y l {struct l} := let _ : Insert _ _ _ := @go in
  match l with
  | [] => []
  | x :: l => match i with 0 => y :: l | S i => x :: <[i:=y]>l end
  end.
63 64 65 66 67
Fixpoint list_inserts {A} (i : nat) (k l : list A) : list A :=
  match k with
  | [] => l
  | y :: k => <[i:=y]>(list_inserts (S i) k l)
  end.
68

69 70 71
(** The operation [delete i l] removes the [i]th element of [l] and moves
all consecutive elements one position ahead. In case [i] is out of bounds,
the list is returned unchanged. *)
72 73
Instance list_delete {A} : Delete nat (list A) :=
  fix go (i : nat) (l : list A) {struct l} : list A :=
74 75
  match l with
  | [] => []
76
  | x :: l => match i with 0 => l | S i => x :: @delete _ _ go i l end
77
  end.
78 79 80

(** The function [option_list o] converts an element [Some x] into the
singleton list [[x]], and [None] into the empty list [[]]. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
81
Definition option_list {A} : option A  list A := option_rect _ (λ x, [x]) [].
82 83
Definition list_singleton {A} (l : list A) : option A :=
  match l with [x] => Some x | _ => None end.
Robbert Krebbers's avatar
Robbert Krebbers committed
84 85 86 87

(** The function [filter P l] returns the list of elements of [l] that
satisfies [P]. The order remains unchanged. *)
Instance list_filter {A} : Filter A (list A) :=
88
  fix go P _ l := let _ : Filter _ _ := @go in
Robbert Krebbers's avatar
Robbert Krebbers committed
89 90
  match l with
  | [] => []
91
  | x :: l => if decide (P x) then x :: filter P l else filter P l
92 93 94 95
  end.

(** The function [list_find P l] returns the first index [i] whose element
satisfies the predicate [P]. *)
96
Definition list_find {A} P `{ x, Decision (P x)} : list A  option (nat * A) :=
97 98
  fix go l :=
  match l with
99 100
  | [] => None
  | x :: l => if decide (P x) then Some (0,x) else prod_map S id <$> go l
101
  end.
Robbert Krebbers's avatar
Robbert Krebbers committed
102 103 104 105

(** The function [replicate n x] generates a list with length [n] of elements
with value [x]. *)
Fixpoint replicate {A} (n : nat) (x : A) : list A :=
106
  match n with 0 => [] | S n => x :: replicate n x end.
Robbert Krebbers's avatar
Robbert Krebbers committed
107 108 109 110

(** The function [reverse l] returns the elements of [l] in reverse order. *)
Definition reverse {A} (l : list A) : list A := rev_append l [].

111 112 113 114
(** The function [last l] returns the last element of the list [l], or [None]
if the list [l] is empty. *)
Fixpoint last {A} (l : list A) : option A :=
  match l with [] => None | [x] => Some x | _ :: l => last l end.
115

Robbert Krebbers's avatar
Robbert Krebbers committed
116 117 118 119 120 121
(** The function [resize n y l] takes the first [n] elements of [l] in case
[length l ≤ n], and otherwise appends elements with value [x] to [l] to obtain
a list of length [n]. *)
Fixpoint resize {A} (n : nat) (y : A) (l : list A) : list A :=
  match l with
  | [] => replicate n y
122
  | x :: l => match n with 0 => [] | S n => x :: resize n y l end
Robbert Krebbers's avatar
Robbert Krebbers committed
123 124 125
  end.
Arguments resize {_} !_ _ !_.

126 127 128
(** The function [reshape k l] transforms [l] into a list of lists whose sizes
are specified by [k]. In case [l] is too short, the resulting list will be
padded with empty lists. In case [l] is too long, it will be truncated. *)
129 130
Fixpoint reshape {A} (szs : list nat) (l : list A) : list (list A) :=
  match szs with
131
  | [] => [] | sz :: szs => take sz l :: reshape szs (drop sz l)
132 133
  end.

134
Definition sublist_lookup {A} (i n : nat) (l : list A) : option (list A) :=
135 136 137 138
  guard (i + n  length l); Some (take n (drop i l)).
Definition sublist_alter {A} (f : list A  list A)
    (i n : nat) (l : list A) : list A :=
  take i l ++ f (take n (drop i l)) ++ drop (i + n) l.
139

140 141 142 143
(** Functions to fold over a list. We redefine [foldl] with the arguments in
the same order as in Haskell. *)
Notation foldr := fold_right.
Definition foldl {A B} (f : A  B  A) : A  list B  A :=
144
  fix go a l := match l with [] => a | x :: l => go (f a x) l end.
145 146 147

(** The monadic operations. *)
Instance list_ret: MRet list := λ A x, x :: @nil A.
148 149
Instance list_fmap : FMap list := λ A B f,
  fix go (l : list A) := match l with [] => [] | x :: l => f x :: go l end.
150 151 152 153 154 155
Instance list_omap : OMap list := λ A B f,
  fix go (l : list A) :=
  match l with
  | [] => []
  | x :: l => match f x with Some y => y :: go l | None => go l end
  end.
156 157
Instance list_bind : MBind list := λ A B f,
  fix go (l : list A) := match l with [] => [] | x :: l => f x ++ go l end.
158 159
Instance list_join: MJoin list :=
  fix go A (ls : list (list A)) : list A :=
160
  match ls with [] => [] | l :: ls => l ++ @mjoin _ go _ ls end.
161
Definition mapM `{MBind M, MRet M} {A B} (f : A  M B) : list A  M (list B) :=
162
  fix go l :=
163
  match l with [] => mret [] | x :: l => y  f x; k  go l; mret (y :: k) end.
164 165 166 167 168

(** We define stronger variants of map and fold that allow the mapped
function to use the index of the elements. *)
Definition imap_go {A B} (f : nat  A  B) : nat  list A  list B :=
  fix go (n : nat) (l : list A) :=
169
  match l with [] => [] | x :: l => f n x :: go (S n) l end.
170
Definition imap {A B} (f : nat  A  B) : list A  list B := imap_go f 0.
171 172 173 174 175 176 177 178 179 180 181
Definition zipped_map {A B} (f : list A  list A  A  B) :
  list A  list A  list B := fix go l k :=
  match k with [] => [] | x :: k => f l k x :: go (x :: l) k end.

Inductive zipped_Forall {A} (P : list A  list A  A  Prop) :
    list A  list A  Prop :=
  | zipped_Forall_nil l : zipped_Forall P l []
  | zipped_Forall_cons l k x :
     P l k x  zipped_Forall P (x :: l) k  zipped_Forall P l (x :: k).
Arguments zipped_Forall_nil {_ _} _.
Arguments zipped_Forall_cons {_ _} _ _ _ _ _.
182

183 184 185 186 187 188 189
(** The function [mask f βs l] applies the function [f] to elements in [l] at
positions that are [true] in [βs]. *)
Fixpoint mask {A} (f : A  A) (βs : list bool) (l : list A) : list A :=
  match βs, l with
  | β :: βs, x :: l => (if β then f x else x) :: mask f βs l
  | _, _ => l
  end.
190 191 192 193

(** The function [permutations l] yields all permutations of [l]. *)
Fixpoint interleave {A} (x : A) (l : list A) : list (list A) :=
  match l with
194
  | [] => [[x]]| y :: l => (x :: y :: l) :: ((y ::) <$> interleave x l)
195 196
  end.
Fixpoint permutations {A} (l : list A) : list (list A) :=
197
  match l with [] => [[]] | x :: l => permutations l = interleave x end.
198

199 200
(** The predicate [suffix_of] holds if the first list is a suffix of the second.
The predicate [prefix_of] holds if the first list is a prefix of the second. *)
201 202
Definition suffix_of {A} : relation (list A) := λ l1 l2,  k, l2 = k ++ l1.
Definition prefix_of {A} : relation (list A) := λ l1 l2,  k, l2 = l1 ++ k.
203 204
Infix "`suffix_of`" := suffix_of (at level 70) : C_scope.
Infix "`prefix_of`" := prefix_of (at level 70) : C_scope.
205 206
Hint Extern 0 (?x `prefix_of` ?y) => reflexivity.
Hint Extern 0 (?x `suffix_of` ?y) => reflexivity.
Robbert Krebbers's avatar
Robbert Krebbers committed
207

208 209 210 211 212 213 214 215
Section prefix_suffix_ops.
  Context `{ x y : A, Decision (x = y)}.
  Definition max_prefix_of : list A  list A  list A * list A * list A :=
    fix go l1 l2 :=
    match l1, l2 with
    | [], l2 => ([], l2, [])
    | l1, [] => (l1, [], [])
    | x1 :: l1, x2 :: l2 =>
216
      if decide_rel (=) x1 x2
217
      then prod_map id (x1 ::) (go l1 l2) else (x1 :: l1, x2 :: l2, [])
218 219 220 221 222
    end.
  Definition max_suffix_of (l1 l2 : list A) : list A * list A * list A :=
    match max_prefix_of (reverse l1) (reverse l2) with
    | (k1, k2, k3) => (reverse k1, reverse k2, reverse k3)
    end.
223 224
  Definition strip_prefix (l1 l2 : list A) := (max_prefix_of l1 l2).1.2.
  Definition strip_suffix (l1 l2 : list A) := (max_suffix_of l1 l2).1.2.
225
End prefix_suffix_ops.
Robbert Krebbers's avatar
Robbert Krebbers committed
226

227
(** A list [l1] is a sublist of [l2] if [l2] is obtained by removing elements
228 229 230
from [l1] without changing the order. *)
Inductive sublist {A} : relation (list A) :=
  | sublist_nil : sublist [] []
231
  | sublist_skip x l1 l2 : sublist l1 l2  sublist (x :: l1) (x :: l2)
232
  | sublist_cons x l1 l2 : sublist l1 l2  sublist l1 (x :: l2).
233
Infix "`sublist`" := sublist (at level 70) : C_scope.
234
Hint Extern 0 (?x `sublist` ?y) => reflexivity.
235 236

(** A list [l2] contains a list [l1] if [l2] is obtained by removing elements
237
from [l1] while possiblity changing the order. *)
238 239 240 241
Inductive contains {A} : relation (list A) :=
  | contains_nil : contains [] []
  | contains_skip x l1 l2 : contains l1 l2  contains (x :: l1) (x :: l2)
  | contains_swap x y l : contains (y :: x :: l) (x :: y :: l)
242
  | contains_cons x l1 l2 : contains l1 l2  contains l1 (x :: l2)
243 244
  | contains_trans l1 l2 l3 : contains l1 l2  contains l2 l3  contains l1 l3.
Infix "`contains`" := contains (at level 70) : C_scope.
245
Hint Extern 0 (?x `contains` ?y) => reflexivity.
246 247 248 249 250 251 252 253 254 255

Section contains_dec_help.
  Context {A} {dec :  x y : A, Decision (x = y)}.
  Fixpoint list_remove (x : A) (l : list A) : option (list A) :=
    match l with
    | [] => None
    | y :: l => if decide (x = y) then Some l else (y ::) <$> list_remove x l
    end.
  Fixpoint list_remove_list (k : list A) (l : list A) : option (list A) :=
    match k with
256
    | [] => Some l | x :: k => list_remove x l = list_remove_list k
257 258
    end.
End contains_dec_help.
259

260 261 262 263 264
Inductive Forall3 {A B C} (P : A  B  C  Prop) :
     list A  list B  list C  Prop :=
  | Forall3_nil : Forall3 P [] [] []
  | Forall3_cons x y z l k k' :
     P x y z  Forall3 P l k k'  Forall3 P (x :: l) (y :: k) (z :: k').
265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289

(** Set operations on lists *)
Section list_set.
  Context {A} {dec :  x y : A, Decision (x = y)}.
  Global Instance elem_of_list_dec {dec :  x y : A, Decision (x = y)}
    (x : A) :  l, Decision (x  l).
  Proof.
   refine (
    fix go l :=
    match l return Decision (x  l) with
    | [] => right _
    | y :: l => cast_if_or (decide (x = y)) (go l)
    end); clear go dec; subst; try (by constructor); abstract by inversion 1.
  Defined.
  Fixpoint remove_dups (l : list A) : list A :=
    match l with
    | [] => []
    | x :: l =>
      if decide_rel () x l then remove_dups l else x :: remove_dups l
    end.
  Fixpoint list_difference (l k : list A) : list A :=
    match l with
    | [] => []
    | x :: l =>
      if decide_rel () x k
290
      then list_difference l k else x :: list_difference l k
291
    end.
292
  Definition list_union (l k : list A) : list A := list_difference l k ++ k.
293 294 295 296 297
  Fixpoint list_intersection (l k : list A) : list A :=
    match l with
    | [] => []
    | x :: l =>
      if decide_rel () x k
298
      then x :: list_intersection l k else list_intersection l k
299 300 301 302 303 304 305 306 307
    end.
  Definition list_intersection_with (f : A  A  option A) :
    list A  list A  list A := fix go l k :=
    match l with
    | [] => []
    | x :: l => foldr (λ y,
        match f x y with None => id | Some z => (z ::) end) (go l k) k
    end.
End list_set.
308 309

(** * Basic tactics on lists *)
310 311 312
(** The tactic [discriminate_list_equality] discharges a goal if it contains
a list equality involving [(::)] and [(++)] of two lists that have a different
length as one of its hypotheses. *)
313 314
Tactic Notation "discriminate_list_equality" hyp(H) :=
  apply (f_equal length) in H;
315
  repeat (csimpl in H || rewrite app_length in H); exfalso; lia.
316
Tactic Notation "discriminate_list_equality" :=
317 318 319
  match goal with
  | H : @eq (list _) _ _ |- _ => discriminate_list_equality H
  end.
320

321 322 323
(** The tactic [simplify_list_equality] simplifies hypotheses involving
equalities on lists using injectivity of [(::)] and [(++)]. Also, it simplifies
lookups in singleton lists. *)
324 325 326 327 328 329 330 331 332
Lemma app_injective_1 {A} (l1 k1 l2 k2 : list A) :
  length l1 = length k1  l1 ++ l2 = k1 ++ k2  l1 = k1  l2 = k2.
Proof. revert k1. induction l1; intros [|??]; naive_solver. Qed.
Lemma app_injective_2 {A} (l1 k1 l2 k2 : list A) :
  length l2 = length k2  l1 ++ l2 = k1 ++ k2  l1 = k1  l2 = k2.
Proof.
  intros ? Hl. apply app_injective_1; auto.
  apply (f_equal length) in Hl. rewrite !app_length in Hl. lia.
Qed.
333
Ltac simplify_list_equality :=
334
  repeat match goal with
335
  | _ => progress simplify_equality'
336
  | H : _ ++ _ = _ ++ _ |- _ => first
337 338 339
    [ apply app_inv_head in H | apply app_inv_tail in H
    | apply app_injective_1 in H; [destruct H|done]
    | apply app_injective_2 in H; [destruct H|done] ]
Robbert Krebbers's avatar
Robbert Krebbers committed
340
  | H : [?x] !! ?i = Some ?y |- _ =>
341
    destruct i; [change (Some x = Some y) in H | discriminate]
342
  end.
343

344 345
(** * General theorems *)
Section general_properties.
Robbert Krebbers's avatar
Robbert Krebbers committed
346
Context {A : Type}.
347 348
Implicit Types x y z : A.
Implicit Types l k : list A.
Robbert Krebbers's avatar
Robbert Krebbers committed
349

350 351 352
Global Instance: Injective2 (=) (=) (=) (@cons A).
Proof. by injection 1. Qed.
Global Instance:  k, Injective (=) (=) (k ++).
353
Proof. intros ???. apply app_inv_head. Qed.
354
Global Instance:  k, Injective (=) (=) (++ k).
355
Proof. intros ???. apply app_inv_tail. Qed.
356 357 358 359 360 361
Global Instance: Associative (=) (@app A).
Proof. intros ???. apply app_assoc. Qed.
Global Instance: LeftId (=) [] (@app A).
Proof. done. Qed.
Global Instance: RightId (=) [] (@app A).
Proof. intro. apply app_nil_r. Qed.
362

363
Lemma app_nil l1 l2 : l1 ++ l2 = []  l1 = []  l2 = [].
364
Proof. split. apply app_eq_nil. by intros [-> ->]. Qed.
365 366
Lemma app_singleton l1 l2 x :
  l1 ++ l2 = [x]  l1 = []  l2 = [x]  l1 = [x]  l2 = [].
367
Proof. split. apply app_eq_unit. by intros [[-> ->]|[-> ->]]. Qed.
368 369 370
Lemma cons_middle x l1 l2 : l1 ++ x :: l2 = l1 ++ [x] ++ l2.
Proof. done. Qed.
Lemma list_eq l1 l2 : ( i, l1 !! i = l2 !! i)  l1 = l2.
371 372
Proof.
  revert l2. induction l1; intros [|??] H.
373
  * done.
374 375
  * discriminate (H 0).
  * discriminate (H 0).
376
  * f_equal; [by injection (H 0)|]. apply (IHl1 _ $ λ i, H (S i)).
377
Qed.
378
Global Instance list_eq_dec {dec :  x y, Decision (x = y)} :  l k,
379
  Decision (l = k) := list_eq_dec dec.
380 381 382 383 384 385 386 387
Global Instance list_eq_nil_dec l : Decision (l = []).
Proof. by refine match l with [] => left _ | _ => right _ end. Defined.
Lemma list_singleton_reflect l :
  option_reflect (λ x, l = [x]) (length l  1) (list_singleton l).
Proof. by destruct l as [|? []]; constructor. Defined.

Definition nil_length : length (@nil A) = 0 := eq_refl.
Definition cons_length x l : length (x :: l) = S (length l) := eq_refl.
388
Lemma nil_or_length_pos l : l = []  length l  0.
389
Proof. destruct l; simpl; auto with lia. Qed.
390
Lemma nil_length_inv l : length l = 0  l = [].
391 392
Proof. by destruct l. Qed.
Lemma lookup_nil i : @nil A !! i = None.
393
Proof. by destruct i. Qed.
394
Lemma lookup_tail l i : tail l !! i = l !! S i.
395
Proof. by destruct l. Qed.
396 397
Lemma lookup_lt_Some l i x : l !! i = Some x  i < length l.
Proof.
398
  revert i. induction l; intros [|?] ?; simplify_equality'; auto with arith.
399 400 401 402 403
Qed.
Lemma lookup_lt_is_Some_1 l i : is_Some (l !! i)  i < length l.
Proof. intros [??]; eauto using lookup_lt_Some. Qed.
Lemma lookup_lt_is_Some_2 l i : i < length l  is_Some (l !! i).
Proof.
404
  revert i. induction l; intros [|?] ?; simplify_equality'; eauto with lia.
405 406 407 408 409 410 411 412 413
Qed.
Lemma lookup_lt_is_Some l i : is_Some (l !! i)  i < length l.
Proof. split; auto using lookup_lt_is_Some_1, lookup_lt_is_Some_2. Qed.
Lemma lookup_ge_None l i : l !! i = None  length l  i.
Proof. rewrite eq_None_not_Some, lookup_lt_is_Some. lia. Qed.
Lemma lookup_ge_None_1 l i : l !! i = None  length l  i.
Proof. by rewrite lookup_ge_None. Qed.
Lemma lookup_ge_None_2 l i : length l  i  l !! i = None.
Proof. by rewrite lookup_ge_None. Qed.
414 415 416
Lemma list_eq_same_length l1 l2 n :
  length l2 = n  length l1 = n 
  ( i x y, i < n  l1 !! i = Some x  l2 !! i = Some y  x = y)  l1 = l2.
Robbert Krebbers's avatar
Robbert Krebbers committed
417
Proof.
418 419 420 421 422
  intros <- Hlen Hl; apply list_eq; intros i. destruct (l2 !! i) as [x|] eqn:Hx.
  * destruct (lookup_lt_is_Some_2 l1 i) as [y Hy].
    { rewrite Hlen; eauto using lookup_lt_Some. }
    rewrite Hy; f_equal; apply (Hl i); eauto using lookup_lt_Some.
  * by rewrite lookup_ge_None, Hlen, <-lookup_ge_None.
Robbert Krebbers's avatar
Robbert Krebbers committed
423
Qed.
424
Lemma lookup_app_l l1 l2 i : i < length l1  (l1 ++ l2) !! i = l1 !! i.
425
Proof. revert i. induction l1; intros [|?]; simpl; auto with lia. Qed.
426 427
Lemma lookup_app_l_Some l1 l2 i x : l1 !! i = Some x  (l1 ++ l2) !! i = Some x.
Proof. intros. rewrite lookup_app_l; eauto using lookup_lt_Some. Qed.
428
Lemma lookup_app_r l1 l2 i :
429
  length l1  i  (l1 ++ l2) !! i = l2 !! (i - length l1).
430 431 432 433 434 435 436 437 438 439 440
Proof. revert i. induction l1; intros [|?]; simpl; auto with lia. Qed.
Lemma lookup_app_Some l1 l2 i x :
  (l1 ++ l2) !! i = Some x 
    l1 !! i = Some x  length l1  i  l2 !! (i - length l1) = Some x.
Proof.
  split.
  * revert i. induction l1 as [|y l1 IH]; intros [|i] ?;
      simplify_equality'; auto with lia.
    destruct (IH i) as [?|[??]]; auto with lia.
  * intros [?|[??]]; auto using lookup_app_l_Some. by rewrite lookup_app_r.
Qed.
441 442 443
Lemma list_lookup_middle l1 l2 x n :
  n = length l1  (l1 ++ x :: l2) !! n = Some x.
Proof. intros ->. by induction l1. Qed.
444

445 446
Lemma list_insert_alter l i x : <[i:=x]>l = alter (λ _, x) i l.
Proof. by revert i; induction l; intros []; intros; f_equal'. Qed.
447
Lemma alter_length f l i : length (alter f i l) = length l.
448
Proof. revert i. by induction l; intros [|?]; f_equal'. Qed.
449
Lemma insert_length l i x : length (<[i:=x]>l) = length l.
450
Proof. revert i. by induction l; intros [|?]; f_equal'. Qed.
451
Lemma list_lookup_alter f l i : alter f i l !! i = f <$> l !! i.
452
Proof. revert i. induction l. done. intros [|i]. done. apply (IHl i). Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
453
Lemma list_lookup_alter_ne f l i j : i  j  alter f i l !! j = l !! j.
454
Proof.
455
  revert i j. induction l; [done|]. intros [][] ?; csimpl; auto with congruence.
456
Qed.
457
Lemma list_lookup_insert l i x : i < length l  <[i:=x]>l !! i = Some x.
458 459
Proof. revert i. induction l; intros [|?] ?; f_equal'; auto with lia. Qed.
Lemma list_lookup_insert_ne l i j x : i  j  <[i:=x]>l !! j = l !! j.
460
Proof.
461
  revert i j. induction l; [done|]. intros [] [] ?; simpl; auto with congruence.
462
Qed.
463 464 465 466 467 468 469 470 471 472 473 474 475 476
Lemma list_lookup_insert_Some l i x j y :
  <[i:=x]>l !! j = Some y 
    i = j  x = y  j < length l  i  j  l !! j = Some y.
Proof.
  destruct (decide (i = j)) as [->|];
    [split|rewrite list_lookup_insert_ne by done; tauto].
  * intros Hy. assert (j < length l).
    { rewrite <-(insert_length l j x); eauto using lookup_lt_Some. }
    rewrite list_lookup_insert in Hy by done; naive_solver.
  * intros [(?&?&?)|[??]]; rewrite ?list_lookup_insert; naive_solver.
Qed.
Lemma list_insert_commute l i j x y :
  i  j  <[i:=x]>(<[j:=y]>l) = <[j:=y]>(<[i:=x]>l).
Proof. revert i j. by induction l; intros [|?] [|?] ?; f_equal'; auto. Qed.
477 478
Lemma list_lookup_other l i x :
  length l  1  l !! i = Some x   j y, j  i  l !! j = Some y.
Robbert Krebbers's avatar
Robbert Krebbers committed
479
Proof.
480
  intros. destruct i, l as [|x0 [|x1 l]]; simplify_equality'.
Robbert Krebbers's avatar
Robbert Krebbers committed
481 482 483
  * by exists 1 x1.
  * by exists 0 x0.
Qed.
484 485
Lemma alter_app_l f l1 l2 i :
  i < length l1  alter f i (l1 ++ l2) = alter f i l1 ++ l2.
486
Proof. revert i. induction l1; intros [|?] ?; f_equal'; auto with lia. Qed.
487
Lemma alter_app_r f l1 l2 i :
488
  alter f (length l1 + i) (l1 ++ l2) = l1 ++ alter f i l2.
489
Proof. revert i. induction l1; intros [|?]; f_equal'; auto. Qed.
490 491
Lemma alter_app_r_alt f l1 l2 i :
  length l1  i  alter f i (l1 ++ l2) = l1 ++ alter f (i - length l1) l2.
492 493 494 495
Proof.
  intros. assert (i = length l1 + (i - length l1)) as Hi by lia.
  rewrite Hi at 1. by apply alter_app_r.
Qed.
496 497
Lemma list_alter_id f l i : ( x, f x = x)  alter f i l = l.
Proof. intros ?. revert i. induction l; intros [|?]; f_equal'; auto. Qed.
498 499 500
Lemma list_alter_ext f g l k i :
  ( x, l !! i = Some x  f x = g x)  l = k  alter f i l = alter g i k.
Proof. intros H ->. revert i H. induction k; intros [|?] ?; f_equal'; auto. Qed.
501 502
Lemma list_alter_compose f g l i :
  alter (f  g) i l = alter f i (alter g i l).
503
Proof. revert i. induction l; intros [|?]; f_equal'; auto. Qed.
504 505
Lemma list_alter_commute f g l i j :
  i  j  alter f i (alter g j l) = alter g j (alter f i l).
506
Proof. revert i j. induction l; intros [|?][|?] ?; f_equal'; auto with lia. Qed.
507 508
Lemma insert_app_l l1 l2 i x :
  i < length l1  <[i:=x]>(l1 ++ l2) = <[i:=x]>l1 ++ l2.
509
Proof. revert i. induction l1; intros [|?] ?; f_equal'; auto with lia. Qed.
510
Lemma insert_app_r l1 l2 i x : <[length l1+i:=x]>(l1 ++ l2) = l1 ++ <[i:=x]>l2.
511
Proof. revert i. induction l1; intros [|?]; f_equal'; auto. Qed.
512 513
Lemma insert_app_r_alt l1 l2 i x :
  length l1  i  <[i:=x]>(l1 ++ l2) = l1 ++ <[i - length l1:=x]>l2.
514 515 516 517
Proof.
  intros. assert (i = length l1 + (i - length l1)) as Hi by lia.
  rewrite Hi at 1. by apply insert_app_r.
Qed.
518
Lemma delete_middle l1 l2 x : delete (length l1) (l1 ++ x :: l2) = l1 ++ l2.
519
Proof. induction l1; f_equal'; auto. Qed.
520

521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569
Lemma inserts_length l i k : length (list_inserts i k l) = length l.
Proof.
  revert i. induction k; intros ?; csimpl; rewrite ?insert_length; auto.
Qed.
Lemma list_lookup_inserts l i k j :
  i  j < i + length k  j < length l 
  list_inserts i k l !! j = k !! (j - i).
Proof.
  revert i j. induction k as [|y k IH]; csimpl; intros i j ??; [lia|].
  destruct (decide (i = j)) as [->|].
  { by rewrite list_lookup_insert, Nat.sub_diag
      by (rewrite inserts_length; lia). }
  rewrite list_lookup_insert_ne, IH by lia.
  by replace (j - i) with (S (j - S i)) by lia.
Qed.
Lemma list_lookup_inserts_lt l i k j :
  j < i  list_inserts i k l !! j = l !! j.
Proof.
  revert i j. induction k; intros i j ?; csimpl;
    rewrite ?list_lookup_insert_ne by lia; auto with lia.
Qed.
Lemma list_lookup_inserts_ge l i k j :
  i + length k  j  list_inserts i k l !! j = l !! j.
Proof.
  revert i j. induction k; csimpl; intros i j ?;
    rewrite ?list_lookup_insert_ne by lia; auto with lia.
Qed.
Lemma list_lookup_inserts_Some l i k j y :
  list_inserts i k l !! j = Some y 
    (j < i  i + length k  j)  l !! j = Some y 
    i  j < i + length k  j < length l  k !! (j - i) = Some y.
Proof.
  destruct (decide (j < i)).
  { rewrite list_lookup_inserts_lt by done; intuition lia. }
  destruct (decide (i + length k  j)).
  { rewrite list_lookup_inserts_ge by done; intuition lia. }
  split.
  * intros Hy. assert (j < length l).
    { rewrite <-(inserts_length l i k); eauto using lookup_lt_Some. }
    rewrite list_lookup_inserts in Hy by lia. intuition lia.
  * intuition. by rewrite list_lookup_inserts by lia.
Qed.
Lemma list_insert_inserts_lt l i j x k :
  i < j  <[i:=x]>(list_inserts j k l) = list_inserts j k (<[i:=x]>l).
Proof.
  revert i j. induction k; intros i j ?; simpl;
    rewrite 1?list_insert_commute by lia; auto with f_equal.
Qed.

570
(** ** Properties of the [elem_of] predicate *)
571
Lemma not_elem_of_nil x : x  [].
572
Proof. by inversion 1. Qed.
573
Lemma elem_of_nil x : x  []  False.
574
Proof. intuition. by destruct (not_elem_of_nil x). Qed.
575
Lemma elem_of_nil_inv l : ( x, x  l)  l = [].
576
Proof. destruct l. done. by edestruct 1; constructor. Qed.
577 578
Lemma elem_of_not_nil x l : x  l  l  [].
Proof. intros ? ->. by apply (elem_of_nil x). Qed.
579
Lemma elem_of_cons l x y : x  y :: l  x = y  x  l.
580
Proof. split; [inversion 1; subst|intros [->|?]]; constructor (done). Qed.
581
Lemma not_elem_of_cons l x y : x  y :: l  x  y  x  l.
Robbert Krebbers's avatar
Robbert Krebbers committed
582
Proof. rewrite elem_of_cons. tauto. Qed.
583
Lemma elem_of_app l1 l2 x : x  l1 ++ l2  x  l1  x  l2.
584
Proof.
585
  induction l1.
586
  * split; [by right|]. intros [Hx|]; [|done]. by destruct (elem_of_nil x).
587
  * simpl. rewrite !elem_of_cons, IHl1. tauto.
588
Qed.
589
Lemma not_elem_of_app l1 l2 x : x  l1 ++ l2  x  l1  x  l2.
Robbert Krebbers's avatar
Robbert Krebbers committed
590
Proof. rewrite elem_of_app. tauto. Qed.
591
Lemma elem_of_list_singleton x y : x  [y]  x = y.
592
Proof. rewrite elem_of_cons, elem_of_nil. tauto. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
593
Global Instance elem_of_list_permutation_proper x : Proper (() ==> iff) (x ).
594
Proof. induction 1; rewrite ?elem_of_nil, ?elem_of_cons; intuition. Qed.
595
Lemma elem_of_list_split l x : x  l   l1 l2, l = l1 ++ x :: l2.
596
Proof.
597 598
  induction 1 as [x l|x y l ? [l1 [l2 ->]]]; [by eexists [], l|].
  by exists (y :: l1) l2.
599
Qed.
600
Lemma elem_of_list_lookup_1 l x : x  l   i, l !! i = Some x.
601
Proof.
602 603
  induction 1 as [|???? IH]; [by exists 0 |].
  destruct IH as [i ?]; auto. by exists (S i).
604
Qed.
605
Lemma elem_of_list_lookup_2 l i x : l !! i = Some x  x  l.
606
Proof.
607
  revert i. induction l; intros [|i] ?; simplify_equality'; constructor; eauto.
608
Qed.
609 610
Lemma elem_of_list_lookup l x : x  l   i, l !! i = Some x.
Proof. firstorder eauto using elem_of_list_lookup_1, elem_of_list_lookup_2. Qed.
611 612 613 614 615 616 617 618 619
Lemma elem_of_list_omap {B} (f : A  option B) l (y : B) :
  y  omap f l   x, x  l  f x = Some y.
Proof.
  split.
  * induction l as [|x l]; csimpl; repeat case_match; inversion 1; subst;
      setoid_rewrite elem_of_cons; naive_solver.
  * intros (x&Hx&?). induction Hx; csimpl; repeat case_match;
      simplify_equality; auto; constructor (by auto).
Qed.
620

621
(** ** Properties of the [NoDup] predicate *)
622 623
Lemma NoDup_nil : NoDup (@nil A)  True.
Proof. split; constructor. Qed.
624
Lemma NoDup_cons x l : NoDup (x :: l)  x  l  NoDup l.
625
Proof. split. by inversion 1. intros [??]. by constructor. Qed.
626
Lemma NoDup_cons_11 x l : NoDup (x :: l)  x  l.
627
Proof. rewrite NoDup_cons. by intros [??]. Qed.
628
Lemma NoDup_cons_12 x l : NoDup (x :: l)  NoDup l.
629
Proof. rewrite NoDup_cons. by intros [??]. Qed.
630
Lemma NoDup_singleton x : NoDup [x].
631
Proof. constructor. apply not_elem_of_nil. constructor. Qed.
632
Lemma NoDup_app l k : NoDup (l ++ k)  NoDup l  ( x, x  l  x  k)  NoDup k.
Robbert Krebbers's avatar
Robbert Krebbers committed
633
Proof.
634
  induction l; simpl.
635
  * rewrite NoDup_nil. setoid_rewrite elem_of_nil. naive_solver.
636
  * rewrite !NoDup_cons.
Robbert Krebbers's avatar
Robbert Krebbers committed
637
    setoid_rewrite elem_of_cons. setoid_rewrite elem_of_app. naive_solver.
Robbert Krebbers's avatar
Robbert Krebbers committed
638
Qed.
639
Global Instance NoDup_proper: Proper (() ==> iff) (@NoDup A).
640 641 642 643 644 645 646
Proof.
  induction 1 as [|x l k Hlk IH | |].
  * by rewrite !NoDup_nil.
  * by rewrite !NoDup_cons, IH, Hlk.
  * rewrite !NoDup_cons, !elem_of_cons. intuition.
  * intuition.
Qed.
647 648
Lemma NoDup_lookup l i j x :
  NoDup l  l !! i = Some x  l !! j = Some x  i = j.
649 650 651 652 653 654
Proof.
  intros Hl. revert i j. induction Hl as [|x' l Hx Hl IH].
  { intros; simplify_equality. }
  intros [|i] [|j] ??; simplify_equality'; eauto with f_equal;
    exfalso; eauto using elem_of_list_lookup_2.
Qed.
655 656
Lemma NoDup_alt l :
  NoDup l   i j x, l !! i = Some x  l !! j = Some x  i = j.
657
Proof.
658 659 660 661 662
  split; eauto using NoDup_lookup.
  induction l as [|x l IH]; intros Hl; constructor.
  * rewrite elem_of_list_lookup. intros [i ?].
    by feed pose proof (Hl (S i) 0 x); auto.
  * apply IH. intros i j x' ??. by apply (injective S), (Hl (S i) (S j) x').
663
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
664

665 666 667 668 669 670
Section no_dup_dec.
  Context `{! x y, Decision (x = y)}.
  Global Instance NoDup_dec:  l, Decision (NoDup l) :=
    fix NoDup_dec l :=
    match l return Decision (NoDup l) with
    | [] => left NoDup_nil_2
671
    | x :: l =>
672 673 674 675 676 677 678 679
      match decide_rel () x l with
      | left Hin => right (λ H, NoDup_cons_11 _ _ H Hin)
      | right Hin =>
        match NoDup_dec l with
        | left H => left (NoDup_cons_2 _ _ Hin H)
        | right H => right (H  NoDup_cons_12 _ _)
        end
      end
680
    end.
681
  Lemma elem_of_remove_dups l x : x  remove_dups l  x  l.
682 683 684 685
  Proof.
    split; induction l; simpl; repeat case_decide;
      rewrite ?elem_of_cons; intuition (simplify_equality; auto).
  Qed.
686
  Lemma NoDup_remove_dups l : NoDup (remove_dups l).
687 688 689 690
  Proof.
    induction l; simpl; repeat case_decide; try constructor; auto.
    by rewrite elem_of_remove_dups.
  Qed.
691
End no_dup_dec.
692

693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755
(** ** Set operations on lists *)
Section list_set.
  Context {dec :  x y, Decision (x = y)}.
  Lemma elem_of_list_difference l k x : x  list_difference l k  x  l  x  k.
  Proof.
    split; induction l; simpl; try case_decide;
      rewrite ?elem_of_nil, ?elem_of_cons; intuition congruence.
  Qed.
  Lemma NoDup_list_difference l k : NoDup l  NoDup (list_difference l k).
  Proof.
    induction 1; simpl; try case_decide.
    * constructor.
    * done.
    * constructor. rewrite elem_of_list_difference; intuition. done.
  Qed.
  Lemma elem_of_list_union l k x : x  list_union l k  x  l  x  k.
  Proof.
    unfold list_union. rewrite elem_of_app, elem_of_list_difference.
    intuition. case (decide (x  k)); intuition.
  Qed.
  Lemma NoDup_list_union l k : NoDup l  NoDup k  NoDup (list_union l k).
  Proof.
    intros. apply NoDup_app. repeat split.
    * by apply NoDup_list_difference.
    * intro. rewrite elem_of_list_difference. intuition.
    * done.
  Qed.
  Lemma elem_of_list_intersection l k x :
    x  list_intersection l k  x  l  x  k.
  Proof.
    split; induction l; simpl; repeat case_decide;
      rewrite ?elem_of_nil, ?elem_of_cons; intuition congruence.
  Qed.
  Lemma NoDup_list_intersection l k : NoDup l  NoDup (list_intersection l k).
  Proof.
    induction 1; simpl; try case_decide.
    * constructor.
    * constructor. rewrite elem_of_list_intersection; intuition. done.
    * done.
  Qed.
  Lemma elem_of_list_intersection_with f l k x :
    x  list_intersection_with f l k   x1 x2,
      x1  l  x2  k  f x1 x2 = Some x.
  Proof.
    split.
    * induction l as [|x1 l IH]; simpl; [by rewrite elem_of_nil|].
      intros Hx. setoid_rewrite elem_of_cons.
      cut (( x2, x2  k  f x1 x2 = Some x)
         x  list_intersection_with f l k); [naive_solver|].
      clear IH. revert Hx. generalize (list_intersection_with f l k).
      induction k; simpl; [by auto|].
      case_match; setoid_rewrite elem_of_cons; naive_solver.
    * intros (x1&x2&Hx1&Hx2&Hx). induction Hx1 as [x1|x1 ? l ? IH]; simpl.
      + generalize (list_intersection_with f l k).
        induction Hx2; simpl; [by rewrite Hx; left |].
        case_match; simpl; try setoid_rewrite elem_of_cons; auto.
      + generalize (IH Hx). clear Hx IH Hx2.
        generalize (list_intersection_with f l k).
        induction k; simpl; intros; [done|].
        case_match; simpl; rewrite ?elem_of_cons; auto.
  Qed.
End list_set.

756
(** ** Properties of the [filter] function *)
757 758 759 760 761 762 763
Section filter.
  Context (P : A  Prop) `{ x, Decision (P x)}.
  Lemma elem_of_list_filter l x : x  filter P l  P x  x  l.
  Proof.
    unfold filter. induction l; simpl; repeat case_decide;
       rewrite ?elem_of_nil, ?elem_of_cons; naive_solver.
  Qed.
764
  Lemma NoDup_filter l : NoDup l  NoDup (filter P l).
765 766 767 768 769
  Proof.
    unfold filter. induction 1; simpl; repeat case_decide;
      rewrite ?NoDup_nil, ?NoDup_cons, ?elem_of_list_filter; tauto.
  Qed.
End filter.
Robbert Krebbers's avatar
Robbert Krebbers committed
770

771 772 773
(** ** Properties of the [find] function *)
Section find.
  Context (P : A  Prop) `{ x, Decision (P x)}.
774 775
  Lemma list_find_Some l i x :
    list_find P l = Some (i,x)  l !! i = Some x  P x.
776
  Proof.
777 778 779
    revert i; induction l; intros [] ?;
      repeat (match goal with x : prod _ _ |- _ => destruct x end
              || simplify_option_equality); eauto.
780
  Qed.
781
  Lemma list_find_elem_of l x : x  l  P x  is_Some (list_find P l).
782
  Proof.
783
    induction 1 as [|x y l ? IH]; intros; simplify_option_equality; eauto.
784
    by destruct IH as [[i x'] ->]; [|exists (S i, x')].
785 786 787
  Qed.
End find.

788
(** ** Properties of the [reverse] function *)
789 790
Lemma reverse_nil : reverse [] = @nil A.
Proof. done. Qed.
791
Lemma reverse_singleton x : reverse [x] = [x].
792
Proof. done. Qed.
793
Lemma reverse_cons l x : reverse (x :: l) = reverse l ++ [x].
794
Proof. unfold reverse. by rewrite <-!rev_alt. Qed.
795
Lemma reverse_snoc l x : reverse (l ++ [x]) = x :: reverse l.
796
Proof. unfold reverse. by rewrite <-!rev_alt, rev_unit. Qed.
797
Lemma reverse_app l1 l2 : reverse (l1 ++ l2) = reverse l2 ++ reverse l1.
798
Proof. unfold reverse. rewrite <-!rev_alt. apply rev_app_distr. Qed.
799
Lemma reverse_length l : length (reverse l) = length l.
800
Proof. unfold reverse. rewrite <-!rev_alt. apply rev_length. Qed.
801
Lemma reverse_involutive l : reverse (reverse l) = l.
802
Proof. unfold reverse. rewrite <-!rev_alt. apply rev_involutive. Qed.
803 804 805 806 807 808 809 810 811 812 813 814 815 816 817
Lemma elem_of_reverse_2 x l : x  l  x  reverse l.
Proof.
  induction 1; rewrite reverse_cons, elem_of_app,
    ?elem_of_list_singleton; intuition.
Qed.
Lemma elem_of_reverse x l : x  reverse l  x  l.
Proof.
  split; auto using elem_of_reverse_2.
  intros. rewrite <-(reverse_involutive l). by apply elem_of_reverse_2.
Qed.
Global Instance: Injective (=) (=) (@reverse A).
Proof.
  intros l1 l2 Hl.
  by rewrite <-(reverse_involutive l1), <-(reverse_involutive l2), Hl.
Qed.
818 819 820 821 822 823 824 825
Lemma sum_list_with_app (f : A  nat) l k :
  sum_list_with f (l ++ k) = sum_list_with f l + sum_list_with f k.
Proof. induction l; simpl; lia. Qed.
Lemma sum_list_with_reverse (f : A  nat) l :
  sum_list_with f (reverse l) = sum_list_with f l.
Proof.
  induction l; simpl; rewrite ?reverse_cons, ?sum_list_with_app; simpl; lia.
Qed.
826

827 828 829
(** ** Properties of the [last] function *)
Lemma last_snoc x l : last (l ++ [x]) = Some x.
Proof. induction l as [|? []]; simpl; auto. Qed.