collections.v 24.4 KB
Newer Older
Robbert Krebbers's avatar
Robbert Krebbers committed
1
(* Copyright (c) 2012-2015, Robbert Krebbers. *)
2 3 4 5 6 7
(* This file is distributed under the terms of the BSD license. *)
(** This file collects definitions and theorems on collections. Most
importantly, it implements some tactics to automatically solve goals involving
collections. *)
Require Export base tactics orders.

8 9 10
Instance collection_subseteq `{ElemOf A C} : SubsetEq C := λ X Y,
   x, x  X  x  Y.

11
(** * Basic theorems *)
12 13
Section simple_collection.
  Context `{SimpleCollection A C}.
Robbert Krebbers's avatar
Robbert Krebbers committed
14

15
  Lemma elem_of_empty x : x    False.
16
  Proof. split. apply not_elem_of_empty. done. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
17 18 19 20
  Lemma elem_of_union_l x X Y : x  X  x  X  Y.
  Proof. intros. apply elem_of_union. auto. Qed.
  Lemma elem_of_union_r x X Y : x  Y  x  X  Y.
  Proof. intros. apply elem_of_union. auto. Qed.
21 22 23
  Global Instance: EmptySpec C.
  Proof. firstorder auto. Qed.
  Global Instance: JoinSemiLattice C.
24
  Proof. firstorder auto. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
25
  Lemma elem_of_subseteq X Y : X  Y   x, x  X  x  Y.
26
  Proof. done. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
27 28
  Lemma elem_of_equiv X Y : X  Y   x, x  X  x  Y.
  Proof. firstorder. Qed.
29 30
  Lemma elem_of_equiv_alt X Y :
    X  Y  ( x, x  X  x  Y)  ( x, x  Y  x  X).
Robbert Krebbers's avatar
Robbert Krebbers committed
31
  Proof. firstorder. Qed.
32 33
  Lemma elem_of_equiv_empty X : X     x, x  X.
  Proof. firstorder. Qed.
34 35 36 37 38 39
  Lemma collection_positive_l X Y : X  Y    X  .
  Proof.
    rewrite !elem_of_equiv_empty. setoid_rewrite elem_of_union. naive_solver.
  Qed.
  Lemma collection_positive_l_alt X Y : X    X  Y  .
  Proof. eauto using collection_positive_l. Qed.
40 41 42 43
  Lemma elem_of_singleton_1 x y : x  {[y]}  x = y.
  Proof. by rewrite elem_of_singleton. Qed.
  Lemma elem_of_singleton_2 x y : x = y  x  {[y]}.
  Proof. by rewrite elem_of_singleton. Qed.
44 45 46
  Lemma elem_of_subseteq_singleton x X : x  X  {[ x ]}  X.
  Proof.
    split.
47
    * intros ??. rewrite elem_of_singleton. by intros ->.
48 49
    * intros Ex. by apply (Ex x), elem_of_singleton.
  Qed.
50
  Global Instance singleton_proper : Proper ((=) ==> ()) singleton.
51
  Proof. by repeat intro; subst. Qed.
52
  Global Instance elem_of_proper: Proper ((=) ==> () ==> iff) () | 5.
53
  Proof. intros ???; subst. firstorder. Qed.
54
  Lemma elem_of_union_list Xs x : x   Xs   X, X  Xs  x  X.
55 56
  Proof.
    split.
57 58 59 60
    * induction Xs; simpl; intros HXs; [by apply elem_of_empty in HXs|].
      setoid_rewrite elem_of_cons. apply elem_of_union in HXs. naive_solver.
    * intros [X []]. induction 1; simpl; [by apply elem_of_union_l |].
      intros. apply elem_of_union_r; auto.
61 62 63 64 65 66 67 68
  Qed.
  Lemma non_empty_singleton x : {[ x ]}  .
  Proof. intros [E _]. by apply (elem_of_empty x), E, elem_of_singleton. Qed.
  Lemma not_elem_of_singleton x y : x  {[ y ]}  x  y.
  Proof. by rewrite elem_of_singleton. Qed.
  Lemma not_elem_of_union x X Y : x  X  Y  x  X  x  Y.
  Proof. rewrite elem_of_union. tauto. Qed.

69 70 71 72 73 74 75 76 77
  Section leibniz.
    Context `{!LeibnizEquiv C}.
    Lemma elem_of_equiv_L X Y : X = Y   x, x  X  x  Y.
    Proof. unfold_leibniz. apply elem_of_equiv. Qed.
    Lemma elem_of_equiv_alt_L X Y :
      X = Y  ( x, x  X  x  Y)  ( x, x  Y  x  X).
    Proof. unfold_leibniz. apply elem_of_equiv_alt. Qed.
    Lemma elem_of_equiv_empty_L X : X =    x, x  X.
    Proof. unfold_leibniz. apply elem_of_equiv_empty. Qed.
78 79 80 81
    Lemma collection_positive_l_L X Y : X  Y =   X = .
    Proof. unfold_leibniz. apply collection_positive_l. Qed.
    Lemma collection_positive_l_alt_L X Y : X    X  Y  .
    Proof. unfold_leibniz. apply collection_positive_l_alt. Qed.
82 83 84 85 86 87 88 89 90 91 92 93
    Lemma non_empty_singleton_L x : {[ x ]}  .
    Proof. unfold_leibniz. apply non_empty_singleton. Qed.
  End leibniz.

  Section dec.
    Context `{ X Y : C, Decision (X  Y)}.
    Global Instance elem_of_dec_slow (x : A) (X : C) : Decision (x  X) | 100.
    Proof.
      refine (cast_if (decide_rel () {[ x ]} X));
        by rewrite elem_of_subseteq_singleton.
    Defined.
  End dec.
94 95
End simple_collection.

96
Definition of_option `{Singleton A C, Empty C} (x : option A) : C :=
97
  match x with None =>  | Some a => {[ a ]} end.
98 99
Fixpoint of_list `{Singleton A C, Empty C, Union C} (l : list A) : C :=
  match l with [] =>  | x :: l => {[ x ]}  of_list l end.
100

101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
Section of_option_list.
  Context `{SimpleCollection A C}.
  Lemma elem_of_of_option (x : A) o : x  of_option o  o = Some x.
  Proof.
    destruct o; simpl;
      rewrite ?elem_of_empty, ?elem_of_singleton; naive_solver.
  Qed.
  Lemma elem_of_of_list (x : A) l : x  of_list l  x  l.
  Proof.
    split.
    * induction l; simpl; [by rewrite elem_of_empty|].
      rewrite elem_of_union, elem_of_singleton;
        intros [->|?]; constructor (auto).
    * induction 1; simpl; rewrite elem_of_union, elem_of_singleton; auto.
  Qed.
End of_option_list.
117 118 119

Global Instance collection_guard `{CollectionMonad M} : MGuard M :=
  λ P dec A x, match dec with left H => x H | _ =>  end.
120 121 122 123 124 125 126 127 128

Section collection_monad_base.
  Context `{CollectionMonad M}.
  Lemma elem_of_guard `{Decision P} {A} (x : A) (X : M A) :
    x  guard P; X  P  x  X.
  Proof.
    unfold mguard, collection_guard; simpl; case_match;
      rewrite ?elem_of_empty; naive_solver.
  Qed.
129 130 131
  Lemma elem_of_guard_2 `{Decision P} {A} (x : A) (X : M A) :
    P  x  X  x  guard P; X.
  Proof. by rewrite elem_of_guard. Qed.
132 133 134 135 136 137 138 139 140 141 142 143
  Lemma guard_empty `{Decision P} {A} (X : M A) : guard P; X    ¬P  X  .
  Proof.
    rewrite !elem_of_equiv_empty; setoid_rewrite elem_of_guard.
    destruct (decide P); naive_solver.
  Qed.
  Lemma bind_empty {A B} (f : A  M B) X :
    X = f    X     x, x  X  f x  .
  Proof.
    setoid_rewrite elem_of_equiv_empty; setoid_rewrite elem_of_bind.
    naive_solver.
  Qed.
End collection_monad_base.
144

145 146 147 148 149 150 151 152 153
(** * Tactics *)
(** Given a hypothesis [H : _ ∈ _], the tactic [destruct_elem_of H] will
recursively split [H] for [(∪)], [(∩)], [(∖)], [map], [∅], [{[_]}]. *)
Tactic Notation "decompose_elem_of" hyp(H) :=
  let rec go H :=
  lazymatch type of H with
  | _   => apply elem_of_empty in H; destruct H
  | ?x  {[ ?y ]} =>
    apply elem_of_singleton in H; try first [subst y | subst x]
154 155
  | ?x  {[ ?y ]} =>
    apply not_elem_of_singleton in H
156
  | _  _  _ =>
157 158 159 160
    apply elem_of_union in H; destruct H as [H|H]; [go H|go H]
  | _  _  _ =>
    let H1 := fresh H in let H2 := fresh H in apply not_elem_of_union in H;
    destruct H as [H1 H2]; go H1; go H2
161
  | _  _  _ =>
162
    let H1 := fresh H in let H2 := fresh H in apply elem_of_intersection in H;
163 164
    destruct H as [H1 H2]; go H1; go H2
  | _  _  _ =>
165
    let H1 := fresh H in let H2 := fresh H in apply elem_of_difference in H;
166 167
    destruct H as [H1 H2]; go H1; go H2
  | ?x  _ <$> _ =>
168
    apply elem_of_fmap in H; destruct H as [? [? H]]; try (subst x); go H
169
  | _  _ = _ =>
170
    let H1 := fresh H in let H2 := fresh H in apply elem_of_bind in H;
171 172 173 174
    destruct H as [? [H1 H2]]; go H1; go H2
  | ?x  mret ?y =>
    apply elem_of_ret in H; try first [subst y | subst x]
  | _  mjoin _ = _ =>
175
    let H1 := fresh H in let H2 := fresh H in apply elem_of_join in H;
176
    destruct H as [? [H1 H2]]; go H1; go H2
177
  | _  guard _; _ =>
178
    let H1 := fresh H in let H2 := fresh H in apply elem_of_guard in H;
179 180
    destruct H as [H1 H2]; go H2
  | _  of_option _ => apply elem_of_of_option in H
181 182 183 184 185
  | _ => idtac
  end in go H.
Tactic Notation "decompose_elem_of" :=
  repeat_on_hyps (fun H => decompose_elem_of H).

186 187
Ltac decompose_empty := repeat
  match goal with
188 189 190 191
  | H :    |- _ => clear H
  | H :  =  |- _ => clear H
  | H :   _ |- _ => symmetry in H
  | H :  = _ |- _ => symmetry in H
192 193 194
  | H : _  _   |- _ => apply empty_union in H; destruct H
  | H : _  _   |- _ => apply non_empty_union in H; destruct H
  | H : {[ _ ]}   |- _ => destruct (non_empty_singleton _ H)
195 196 197
  | H : _  _ =  |- _ => apply empty_union_L in H; destruct H
  | H : _  _   |- _ => apply non_empty_union_L in H; destruct H
  | H : {[ _ ]} =  |- _ => destruct (non_empty_singleton_L _ H)
198
  | H : guard _ ; _   |- _ => apply guard_empty in H; destruct H
199 200
  end.

201 202 203 204
(** The first pass of our collection tactic consists of eliminating all
occurrences of [(∪)], [(∩)], [(∖)], [(<$>)], [∅], [{[_]}], [(≡)], and [(⊆)],
by rewriting these into logically equivalent propositions. For example we
rewrite [A → x ∈ X ∪ ∅] into [A → x ∈ X ∨ False]. *)
205 206 207 208
Ltac unfold_elem_of :=
  repeat_on_hyps (fun H =>
    repeat match type of H with
    | context [ _  _ ] => setoid_rewrite elem_of_subseteq in H
Robbert Krebbers's avatar
Robbert Krebbers committed
209
    | context [ _  _ ] => setoid_rewrite subset_spec in H
210
    | context [ _   ] => setoid_rewrite elem_of_equiv_empty in H
211
    | context [ _  _ ] => setoid_rewrite elem_of_equiv_alt in H
212 213
    | context [ _ =  ] => setoid_rewrite elem_of_equiv_empty_L in H
    | context [ _ = _ ] => setoid_rewrite elem_of_equiv_alt_L in H
214 215 216 217 218
    | context [ _   ] => setoid_rewrite elem_of_empty in H
    | context [ _  {[ _ ]} ] => setoid_rewrite elem_of_singleton in H
    | context [ _  _  _ ] => setoid_rewrite elem_of_union in H
    | context [ _  _  _ ] => setoid_rewrite elem_of_intersection in H
    | context [ _  _  _ ] => setoid_rewrite elem_of_difference in H
219 220 221 222
    | context [ _  _ <$> _ ] => setoid_rewrite elem_of_fmap in H
    | context [ _  mret _ ] => setoid_rewrite elem_of_ret in H
    | context [ _  _ = _ ] => setoid_rewrite elem_of_bind in H
    | context [ _  mjoin _ ] => setoid_rewrite elem_of_join in H
223
    | context [ _  guard _; _ ] => setoid_rewrite elem_of_guard in H
224 225
    end);
  repeat match goal with
Robbert Krebbers's avatar
Robbert Krebbers committed
226
  | |- context [ _  _ ] => setoid_rewrite elem_of_subseteq
Robbert Krebbers's avatar
Robbert Krebbers committed
227
  | |- context [ _  _ ] => setoid_rewrite subset_spec
228
  | |- context [ _   ] => setoid_rewrite elem_of_equiv_empty
Robbert Krebbers's avatar
Robbert Krebbers committed
229
  | |- context [ _  _ ] => setoid_rewrite elem_of_equiv_alt
230 231
  | |- context [ _ =  ] => setoid_rewrite elem_of_equiv_empty_L
  | |- context [ _ = _ ] => setoid_rewrite elem_of_equiv_alt_L
232
  | |- context [ _   ] => setoid_rewrite elem_of_empty
233
  | |- context [ _  {[ _ ]} ] => setoid_rewrite elem_of_singleton
Robbert Krebbers's avatar
Robbert Krebbers committed
234 235 236
  | |- context [ _  _  _ ] => setoid_rewrite elem_of_union
  | |- context [ _  _  _ ] => setoid_rewrite elem_of_intersection
  | |- context [ _  _  _ ] => setoid_rewrite elem_of_difference
237 238 239 240
  | |- context [ _  _ <$> _ ] => setoid_rewrite elem_of_fmap
  | |- context [ _  mret _ ] => setoid_rewrite elem_of_ret
  | |- context [ _  _ = _ ] => setoid_rewrite elem_of_bind
  | |- context [ _  mjoin _ ] => setoid_rewrite elem_of_join
241
  | |- context [ _  guard _; _ ] => setoid_rewrite elem_of_guard
Robbert Krebbers's avatar
Robbert Krebbers committed
242 243
  end.

244 245 246
(** The tactic [solve_elem_of tac] composes the above tactic with [intuition].
For goals that do not involve [≡], [⊆], [map], or quantifiers this tactic is
generally powerful enough. This tactic either fails or proves the goal. *)
247
Tactic Notation "solve_elem_of" tactic3(tac) :=
Robbert Krebbers's avatar
Robbert Krebbers committed
248
  simpl in *;
249
  decompose_empty;
250 251 252 253 254 255 256 257 258
  unfold_elem_of;
  solve [intuition (simplify_equality; tac)].
Tactic Notation "solve_elem_of" := solve_elem_of auto.

(** For goals with quantifiers we could use the above tactic but with
[firstorder] instead of [intuition] as finishing tactic. However, [firstorder]
fails or loops on very small goals generated by [solve_elem_of] already. We
use the [naive_solver] tactic as a substitute. This tactic either fails or
proves the goal. *)
259
Tactic Notation "esolve_elem_of" tactic3(tac) :=
260
  simpl in *;
261
  decompose_empty;
262 263 264
  unfold_elem_of;
  naive_solver tac.
Tactic Notation "esolve_elem_of" := esolve_elem_of eauto.
265 266
 
(** * More theorems *)
Robbert Krebbers's avatar
Robbert Krebbers committed
267 268 269
Section collection.
  Context `{Collection A C}.

270
  Global Instance: Lattice C.
271
  Proof. split. apply _. firstorder auto. solve_elem_of. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
272 273 274 275
  Lemma intersection_singletons x : {[x]}  {[x]}  {[x]}.
  Proof. esolve_elem_of. Qed.
  Lemma difference_twice X Y : (X  Y)  Y  X  Y.
  Proof. esolve_elem_of. Qed.
276
  Lemma subseteq_empty_difference X Y : X  Y  X  Y  .
Robbert Krebbers's avatar
Robbert Krebbers committed
277 278 279 280 281 282 283 284
  Proof. esolve_elem_of. Qed.
  Lemma difference_diag X : X  X  .
  Proof. esolve_elem_of. Qed.
  Lemma difference_union_distr_l X Y Z : (X  Y)  Z  X  Z  Y  Z.
  Proof. esolve_elem_of. Qed.
  Lemma difference_intersection_distr_l X Y Z : (X  Y)  Z  X  Z  Y  Z.
  Proof. esolve_elem_of. Qed.

285 286 287 288 289 290
  Section leibniz.
    Context `{!LeibnizEquiv C}.
    Lemma intersection_singletons_L x : {[x]}  {[x]} = {[x]}.
    Proof. unfold_leibniz. apply intersection_singletons. Qed.
    Lemma difference_twice_L X Y : (X  Y)  Y = X  Y.
    Proof. unfold_leibniz. apply difference_twice. Qed.
291 292
    Lemma subseteq_empty_difference_L X Y : X  Y  X  Y = .
    Proof. unfold_leibniz. apply subseteq_empty_difference. Qed.
293 294 295 296 297 298 299 300 301 302 303 304
    Lemma difference_diag_L X : X  X = .
    Proof. unfold_leibniz. apply difference_diag. Qed.
    Lemma difference_union_distr_l_L X Y Z : (X  Y)  Z = X  Z  Y  Z.
    Proof. unfold_leibniz. apply difference_union_distr_l. Qed.
    Lemma difference_intersection_distr_l_L X Y Z :
      (X  Y)  Z = X  Z  Y  Z.
    Proof. unfold_leibniz. apply difference_intersection_distr_l. Qed.
  End leibniz.

  Section dec.
    Context `{ X Y : C, Decision (X  Y)}.
    Lemma not_elem_of_intersection x X Y : x  X  Y  x  X  x  Y.
305
    Proof. rewrite elem_of_intersection. destruct (decide (x  X)); tauto. Qed.
306
    Lemma not_elem_of_difference x X Y : x  X  Y  x  X  x  Y.
307
    Proof. rewrite elem_of_difference. destruct (decide (x  Y)); tauto. Qed.
308 309
    Lemma union_difference X Y : X  Y  Y  X  Y  X.
    Proof.
310 311
      split; intros x; rewrite !elem_of_union, elem_of_difference; [|intuition].
      destruct (decide (x  X)); intuition.
312 313 314 315 316 317
    Qed.
    Lemma non_empty_difference X Y : X  Y  Y  X  .
    Proof.
      intros [HXY1 HXY2] Hdiff. destruct HXY2. intros x.
      destruct (decide (x  X)); esolve_elem_of.
    Qed.
318 319
    Lemma empty_difference_subseteq X Y : X  Y    X  Y.
    Proof. intros ? x ?; apply dec_stable; esolve_elem_of. Qed.
320 321 322 323 324
    Context `{!LeibnizEquiv C}.
    Lemma union_difference_L X Y : X  Y  Y = X  Y  X.
    Proof. unfold_leibniz. apply union_difference. Qed.
    Lemma non_empty_difference_L X Y : X  Y  Y  X  .
    Proof. unfold_leibniz. apply non_empty_difference. Qed.
325 326
    Lemma empty_difference_subseteq_L X Y : X  Y =   X  Y.
    Proof. unfold_leibniz. apply empty_difference_subseteq. Qed.
327 328 329 330 331 332
  End dec.
End collection.

Section collection_ops.
  Context `{CollectionOps A C}.

Robbert Krebbers's avatar
Robbert Krebbers committed
333 334 335 336 337
  Lemma elem_of_intersection_with_list (f : A  A  option A) Xs Y x :
    x  intersection_with_list f Y Xs   xs y,
      Forall2 () xs Xs  y  Y  foldr (λ x, (= f x)) (Some y) xs = Some x.
  Proof.
    split.
338 339 340 341
    * revert x. induction Xs; simpl; intros x HXs; [eexists [], x; intuition|].
      rewrite elem_of_intersection_with in HXs; destruct HXs as (x1&x2&?&?&?).
      destruct (IHXs x2) as (xs & y & hy & ? & ?); trivial.
      eexists (x1 :: xs), y. intuition (simplify_option_equality; auto).
Robbert Krebbers's avatar
Robbert Krebbers committed
342 343 344 345 346 347 348 349 350 351 352
    * intros (xs & y & Hxs & ? & Hx). revert x Hx.
      induction Hxs; intros; simplify_option_equality; [done |].
      rewrite elem_of_intersection_with. naive_solver.
  Qed.

  Lemma intersection_with_list_ind (P Q : A  Prop) f Xs Y :
    ( y, y  Y  P y) 
    Forall (λ X,  x, x  X  Q x) Xs 
    ( x y z, Q x  P y  f x y = Some z  P z) 
     x, x  intersection_with_list f Y Xs  P x.
  Proof.
353
    intros HY HXs Hf. induction Xs; simplify_option_equality; [done |].
Robbert Krebbers's avatar
Robbert Krebbers committed
354 355 356
    intros x Hx. rewrite elem_of_intersection_with in Hx.
    decompose_Forall. destruct Hx as (? & ? & ? & ? & ?). eauto.
  Qed.
357
End collection_ops.
Robbert Krebbers's avatar
Robbert Krebbers committed
358

359
(** * Sets without duplicates up to an equivalence *)
360
Section NoDup.
361
  Context `{SimpleCollection A B} (R : relation A) `{!Equivalence R}.
Robbert Krebbers's avatar
Robbert Krebbers committed
362 363

  Definition elem_of_upto (x : A) (X : B) :=  y, y  X  R x y.
364
  Definition set_NoDup (X : B) :=  x y, x  X  y  X  R x y  x = y.
Robbert Krebbers's avatar
Robbert Krebbers committed
365 366

  Global Instance: Proper (() ==> iff) (elem_of_upto x).
Robbert Krebbers's avatar
Robbert Krebbers committed
367
  Proof. intros ??? E. unfold elem_of_upto. by setoid_rewrite E. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
368 369 370
  Global Instance: Proper (R ==> () ==> iff) elem_of_upto.
  Proof.
    intros ?? E1 ?? E2. split; intros [z [??]]; exists z.
371 372
    * rewrite <-E1, <-E2; intuition.
    * rewrite E1, E2; intuition.
Robbert Krebbers's avatar
Robbert Krebbers committed
373
  Qed.
374
  Global Instance: Proper (() ==> iff) set_NoDup.
Robbert Krebbers's avatar
Robbert Krebbers committed
375 376 377
  Proof. firstorder. Qed.

  Lemma elem_of_upto_elem_of x X : x  X  elem_of_upto x X.
378
  Proof. unfold elem_of_upto. esolve_elem_of. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
379
  Lemma elem_of_upto_empty x : ¬elem_of_upto x .
380
  Proof. unfold elem_of_upto. esolve_elem_of. Qed.
381
  Lemma elem_of_upto_singleton x y : elem_of_upto x {[ y ]}  R x y.
382
  Proof. unfold elem_of_upto. esolve_elem_of. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
383

384 385
  Lemma elem_of_upto_union X Y x :
    elem_of_upto x (X  Y)  elem_of_upto x X  elem_of_upto x Y.
386
  Proof. unfold elem_of_upto. esolve_elem_of. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
387
  Lemma not_elem_of_upto x X : ¬elem_of_upto x X   y, y  X  ¬R x y.
388
  Proof. unfold elem_of_upto. esolve_elem_of. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
389

390 391 392 393 394 395 396
  Lemma set_NoDup_empty: set_NoDup .
  Proof. unfold set_NoDup. solve_elem_of. Qed.
  Lemma set_NoDup_add x X :
    ¬elem_of_upto x X  set_NoDup X  set_NoDup ({[ x ]}  X).
  Proof. unfold set_NoDup, elem_of_upto. esolve_elem_of. Qed.
  Lemma set_NoDup_inv_add x X :
    x  X  set_NoDup ({[ x ]}  X)  ¬elem_of_upto x X.
397 398
  Proof.
    intros Hin Hnodup [y [??]].
399
    rewrite (Hnodup x y) in Hin; solve_elem_of.
400
  Qed.
401 402 403 404 405
  Lemma set_NoDup_inv_union_l X Y : set_NoDup (X  Y)  set_NoDup X.
  Proof. unfold set_NoDup. solve_elem_of. Qed.
  Lemma set_NoDup_inv_union_r X Y : set_NoDup (X  Y)  set_NoDup Y.
  Proof. unfold set_NoDup. solve_elem_of. Qed.
End NoDup.
Robbert Krebbers's avatar
Robbert Krebbers committed
406

407
(** * Quantifiers *)
Robbert Krebbers's avatar
Robbert Krebbers committed
408
Section quantifiers.
409
  Context `{SimpleCollection A B} (P : A  Prop).
Robbert Krebbers's avatar
Robbert Krebbers committed
410

411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435
  Definition set_Forall X :=  x, x  X  P x.
  Definition set_Exists X :=  x, x  X  P x.

  Lemma set_Forall_empty : set_Forall .
  Proof. unfold set_Forall. solve_elem_of. Qed.
  Lemma set_Forall_singleton x : set_Forall {[ x ]}  P x.
  Proof. unfold set_Forall. solve_elem_of. Qed.
  Lemma set_Forall_union X Y : set_Forall X  set_Forall Y  set_Forall (X  Y).
  Proof. unfold set_Forall. solve_elem_of. Qed.
  Lemma set_Forall_union_inv_1 X Y : set_Forall (X  Y)  set_Forall X.
  Proof. unfold set_Forall. solve_elem_of. Qed.
  Lemma set_Forall_union_inv_2 X Y : set_Forall (X  Y)  set_Forall Y.
  Proof. unfold set_Forall. solve_elem_of. Qed.

  Lemma set_Exists_empty : ¬set_Exists .
  Proof. unfold set_Exists. esolve_elem_of. Qed.
  Lemma set_Exists_singleton x : set_Exists {[ x ]}  P x.
  Proof. unfold set_Exists. esolve_elem_of. Qed.
  Lemma set_Exists_union_1 X Y : set_Exists X  set_Exists (X  Y).
  Proof. unfold set_Exists. esolve_elem_of. Qed.
  Lemma set_Exists_union_2 X Y : set_Exists Y  set_Exists (X  Y).
  Proof. unfold set_Exists. esolve_elem_of. Qed.
  Lemma set_Exists_union_inv X Y :
    set_Exists (X  Y)  set_Exists X  set_Exists Y.
  Proof. unfold set_Exists. esolve_elem_of. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
436 437
End quantifiers.

438
Section more_quantifiers.
439
  Context `{SimpleCollection A B}.
440

441 442 443 444 445 446
  Lemma set_Forall_weaken (P Q : A  Prop) (Hweaken :  x, P x  Q x) X :
    set_Forall P X  set_Forall Q X.
  Proof. unfold set_Forall. naive_solver. Qed.
  Lemma set_Exists_weaken (P Q : A  Prop) (Hweaken :  x, P x  Q x) X :
    set_Exists P X  set_Exists Q X.
  Proof. unfold set_Exists. naive_solver. Qed.
447 448
End more_quantifiers.

449 450 451
(** * Fresh elements *)
(** We collect some properties on the [fresh] operation. In particular we
generalize [fresh] to generate lists of fresh elements. *)
452 453 454 455 456 457 458 459 460 461
Fixpoint fresh_list `{Fresh A C, Union C, Singleton A C}
    (n : nat) (X : C) : list A :=
  match n with
  | 0 => []
  | S n => let x := fresh X in x :: fresh_list n ({[ x ]}  X)
  end.
Inductive Forall_fresh `{ElemOf A C} (X : C) : list A  Prop :=
  | Forall_fresh_nil : Forall_fresh X []
  | Forall_fresh_cons x xs :
     x  xs  x  X  Forall_fresh X xs  Forall_fresh X (x :: xs).
462

463 464
Section fresh.
  Context `{FreshSpec A C}.
465

466 467
  Global Instance fresh_proper: Proper (() ==> (=)) fresh.
  Proof. intros ???. by apply fresh_proper_alt, elem_of_equiv. Qed.
468 469
  Global Instance fresh_list_proper: Proper ((=) ==> () ==> (=)) fresh_list.
  Proof.
470 471
    intros ? n ->. induction n as [|n IH]; intros ?? E; f_equal'; [by rewrite E|].
    apply IH. by rewrite E.
472
  Qed.
473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488

  Lemma Forall_fresh_NoDup X xs : Forall_fresh X xs  NoDup xs.
  Proof. induction 1; by constructor. Qed.
  Lemma Forall_fresh_elem_of X xs x : Forall_fresh X xs  x  xs  x  X.
  Proof.
    intros HX; revert x; rewrite <-Forall_forall.
    by induction HX; constructor.
  Qed.
  Lemma Forall_fresh_alt X xs :
    Forall_fresh X xs  NoDup xs   x, x  xs  x  X.
  Proof.
    split; eauto using Forall_fresh_NoDup, Forall_fresh_elem_of.
    rewrite <-Forall_forall.
    intros [Hxs Hxs']. induction Hxs; decompose_Forall_hyps; constructor; auto.
  Qed.

489 490
  Lemma fresh_list_length n X : length (fresh_list n X) = n.
  Proof. revert X. induction n; simpl; auto. Qed.
491
  Lemma fresh_list_is_fresh n X x : x  fresh_list n X  x  X.
492
  Proof.
493
    revert X. induction n as [|n IH]; intros X; simpl;[by rewrite elem_of_nil|].
494 495
    rewrite elem_of_cons; intros [->| Hin]; [apply is_fresh|].
    apply IH in Hin; solve_elem_of.
496
  Qed.
497
  Lemma NoDup_fresh_list n X : NoDup (fresh_list n X).
498
  Proof.
499
    revert X. induction n; simpl; constructor; auto.
500 501 502 503 504
    intros Hin; apply fresh_list_is_fresh in Hin; solve_elem_of.
  Qed.
  Lemma Forall_fresh_list X n : Forall_fresh X (fresh_list n X).
  Proof.
    rewrite Forall_fresh_alt; eauto using NoDup_fresh_list, fresh_list_is_fresh.
505 506
  Qed.
End fresh.
507

508
(** * Properties of implementations of collections that form a monad *)
509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524
Section collection_monad.
  Context `{CollectionMonad M}.

  Global Instance collection_fmap_proper {A B} (f : A  B) :
    Proper (() ==> ()) (fmap f).
  Proof. intros X Y E. esolve_elem_of. Qed.
  Global Instance collection_ret_proper {A} :
    Proper ((=) ==> ()) (@mret M _ A).
  Proof. intros X Y E. esolve_elem_of. Qed.
  Global Instance collection_bind_proper {A B} (f : A  M B) :
    Proper (() ==> ()) (mbind f).
  Proof. intros X Y E. esolve_elem_of. Qed.
  Global Instance collection_join_proper {A} :
    Proper (() ==> ()) (@mjoin M _ A).
  Proof. intros X Y E. esolve_elem_of. Qed.

525 526 527 528
  Lemma collection_bind_singleton {A B} (f : A  M B) x : {[ x ]} = f  f x.
  Proof. esolve_elem_of. Qed.
  Lemma collection_guard_True {A} `{Decision P} (X : M A) : P  guard P; X  X.
  Proof. esolve_elem_of. Qed.
529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548
  Lemma collection_fmap_compose {A B C} (f : A  B) (g : B  C) X :
    g  f <$> X  g <$> (f <$> X).
  Proof. esolve_elem_of. Qed.
  Lemma elem_of_fmap_1 {A B} (f : A  B) (X : M A) (y : B) :
    y  f <$> X   x, y = f x  x  X.
  Proof. esolve_elem_of. Qed.
  Lemma elem_of_fmap_2 {A B} (f : A  B) (X : M A) (x : A) :
    x  X  f x  f <$> X.
  Proof. esolve_elem_of. Qed.
  Lemma elem_of_fmap_2_alt {A B} (f : A  B) (X : M A) (x : A) (y : B) :
    x  X  y = f x  y  f <$> X.
  Proof. esolve_elem_of. Qed.

  Lemma elem_of_mapM {A B} (f : A  M B) l k :
    l  mapM f k  Forall2 (λ x y, x  f y) l k.
  Proof.
    split.
    * revert l. induction k; esolve_elem_of.
    * induction 1; esolve_elem_of.
  Qed.
549
  Lemma collection_mapM_length {A B} (f : A  M B) l k :
550 551 552
    l  mapM f k  length l = length k.
  Proof. revert l; induction k; esolve_elem_of. Qed.
  Lemma elem_of_mapM_fmap {A B} (f : A  B) (g : B  M A) l k :
553
    Forall (λ x,  y, y  g x  f y = x) l  k  mapM g l  fmap f k = l.
554
  Proof.
555 556
    intros Hl. revert k. induction Hl; simpl; intros;
      decompose_elem_of; f_equal'; auto.
557 558
  Qed.
  Lemma elem_of_mapM_Forall {A B} (f : A  M B) (P : B  Prop) l k :
559
    l  mapM f k  Forall (λ x,  y, y  f x  P y) k  Forall P l.
Robbert Krebbers's avatar
Robbert Krebbers committed
560
  Proof. rewrite elem_of_mapM. apply Forall2_Forall_l. Qed.
561 562
  Lemma elem_of_mapM_Forall2_l {A B C} (f : A  M B) (P: B  C  Prop) l1 l2 k :
    l1  mapM f k  Forall2 (λ x y,  z, z  f x  P z y) k l2 
Robbert Krebbers's avatar
Robbert Krebbers committed
563 564 565 566 567
    Forall2 P l1 l2.
  Proof.
    rewrite elem_of_mapM. intros Hl1. revert l2.
    induction Hl1; inversion_clear 1; constructor; auto.
  Qed.
568
End collection_monad.