fin_maps.v 99.9 KB
Newer Older
1 2
(** Finite maps associate data to keys. This file defines an interface for
finite maps and collects some theory on it. Most importantly, it proves useful
3
induction principles for finite maps and implements the tactic
4
[simplify_map_eq] to simplify goals involving finite maps. *)
5
From Coq Require Import Permutation.
6
From stdpp Require Export relations orders vector fin_sets.
7 8
(* FIXME: This file needs a 'Proof Using' hint, but the default we use
   everywhere makes for lots of extra ssumptions. *)
9

10 11
(** * Axiomatization of finite maps *)
(** We require Leibniz equality to be extensional on finite maps. This of
12 13 14 15 16
course limits the space of finite map implementations, but since we are mainly
interested in finite maps with numbers as indexes, we do not consider this to
be a serious limitation. The main application of finite maps is to implement
the memory, where extensionality of Leibniz equality is very important for a
convenient use in the assertions of our axiomatic semantics. *)
17

Robbert Krebbers's avatar
Robbert Krebbers committed
18 19
(** Finiteness is axiomatized by requiring that each map can be translated
to an association list. The translation to association lists is used to
20
prove well founded recursion on finite maps. *)
21

22 23 24
(** Finite map implementations are required to implement the [merge] function
which enables us to give a generic implementation of [union_with],
[intersection_with], and [difference_with]. *)
25

26
Class FinMapToList K A M := map_to_list: M  list (K * A).
27 28
Hint Mode FinMapToList ! - - : typeclass_instances.
Hint Mode FinMapToList - - ! : typeclass_instances.
Robbert Krebbers's avatar
Robbert Krebbers committed
29

30 31
Class FinMap K M `{FMap M,  A, Lookup K A (M A),  A, Empty (M A),  A,
    PartialAlter K A (M A), OMap M, Merge M,  A, FinMapToList K A (M A),
32
    EqDecision K} := {
33 34
  map_eq {A} (m1 m2 : M A) : ( i, m1 !! i = m2 !! i)  m1 = m2;
  lookup_empty {A} i : ( : M A) !! i = None;
35 36 37 38
  lookup_partial_alter {A} f (m : M A) i :
    partial_alter f i m !! i = f (m !! i);
  lookup_partial_alter_ne {A} f (m : M A) i j :
    i  j  partial_alter f i m !! j = m !! j;
39
  lookup_fmap {A B} (f : A  B) (m : M A) i : (f <$> m) !! i = f <$> m !! i;
40
  NoDup_map_to_list {A} (m : M A) : NoDup (map_to_list m);
41 42
  elem_of_map_to_list {A} (m : M A) i x :
    (i,x)  map_to_list m  m !! i = Some x;
43
  lookup_omap {A B} (f : A  option B) (m : M A) i :
Michael Sammler's avatar
Michael Sammler committed
44
    omap f m !! i = m !! i = f;
45 46
  lookup_merge {A B C} (f : option A  option B  option C)
      `{!DiagNone f} (m1 : M A) (m2 : M B) i :
47
    merge f m1 m2 !! i = f (m1 !! i) (m2 !! i)
Robbert Krebbers's avatar
Robbert Krebbers committed
48 49
}.

50 51 52
(** * Derived operations *)
(** All of the following functions are defined in a generic way for arbitrary
finite map implementations. These generic implementations do not cause a
53 54
significant performance loss, which justifies including them in the finite map
interface as primitive operations. *)
55 56 57 58 59 60 61 62 63
Instance map_insert `{PartialAlter K A M} : Insert K A M :=
  λ i x, partial_alter (λ _, Some x) i.
Instance map_alter `{PartialAlter K A M} : Alter K A M :=
  λ f, partial_alter (fmap f).
Instance map_delete `{PartialAlter K A M} : Delete K M :=
  partial_alter (λ _, None).
Instance map_singleton `{PartialAlter K A M, Empty M} :
  SingletonM K A M := λ i x, <[i:=x]> .

64
Definition list_to_map `{Insert K A M, Empty M} : list (K * A)  M :=
65
  fold_right (λ p, <[p.1:=p.2]>) .
66

67 68
Instance map_size `{FinMapToList K A M} : Size M := λ m, length (map_to_list m).

69
Definition map_to_set `{FinMapToList K A M,
70
    Singleton B C, Empty C, Union C} (f : K  A  B) (m : M) : C :=
71 72
  list_to_set (curry f <$> map_to_list m).
Definition set_to_map `{Elements B C, Insert K A M, Empty M}
73
    (f : B  K * A) (X : C) : M :=
74
  list_to_map (f <$> elements X).
Robbert Krebbers's avatar
Robbert Krebbers committed
75

76 77 78 79 80 81
Instance map_union_with `{Merge M} {A} : UnionWith A (M A) :=
  λ f, merge (union_with f).
Instance map_intersection_with `{Merge M} {A} : IntersectionWith A (M A) :=
  λ f, merge (intersection_with f).
Instance map_difference_with `{Merge M} {A} : DifferenceWith A (M A) :=
  λ f, merge (difference_with f).
Robbert Krebbers's avatar
Robbert Krebbers committed
82

83 84 85
(** Higher precedence to make sure it's not used for other types with a [Lookup]
instance, such as lists. *)
Instance map_equiv `{ A, Lookup K A (M A), Equiv A} : Equiv (M A) | 20 :=
86
  λ m1 m2,  i, m1 !! i  m2 !! i.
Robbert Krebbers's avatar
Robbert Krebbers committed
87

88
Definition map_Forall `{Lookup K A M} (P : K  A  Prop) : M  Prop :=
Robbert Krebbers's avatar
Robbert Krebbers committed
89
  λ m,  i x, m !! i = Some x  P i x.
Ralf Jung's avatar
Ralf Jung committed
90

91
Definition map_relation `{ A, Lookup K A (M A)} {A B} (R : A  B  Prop)
Robbert Krebbers's avatar
Robbert Krebbers committed
92 93
    (P : A  Prop) (Q : B  Prop) (m1 : M A) (m2 : M B) : Prop :=  i,
  option_relation R P Q (m1 !! i) (m2 !! i).
94
Definition map_included `{ A, Lookup K A (M A)} {A}
Robbert Krebbers's avatar
Robbert Krebbers committed
95
  (R : relation A) : relation (M A) := map_relation R (λ _, False) (λ _, True).
96
Definition map_disjoint `{ A, Lookup K A (M A)} {A} : relation (M A) :=
Robbert Krebbers's avatar
Robbert Krebbers committed
97
  map_relation (λ _ _, False) (λ _, True) (λ _, True).
98
Infix "##ₘ" := map_disjoint (at level 70) : stdpp_scope.
Tej Chajed's avatar
Tej Chajed committed
99
Hint Extern 0 (_ ## _) => symmetry; eassumption : core.
100 101
Notation "( m ##ₘ.)" := (map_disjoint m) (only parsing) : stdpp_scope.
Notation "(.##ₘ m )" := (λ m2, m2 ## m) (only parsing) : stdpp_scope.
102
Instance map_subseteq `{ A, Lookup K A (M A)} {A} : SubsetEq (M A) :=
Robbert Krebbers's avatar
Robbert Krebbers committed
103
  map_included (=).
Robbert Krebbers's avatar
Robbert Krebbers committed
104 105 106 107 108

(** The union of two finite maps only has a meaningful definition for maps
that are disjoint. However, as working with partial functions is inconvenient
in Coq, we define the union as a total function. In case both finite maps
have a value at the same index, we take the value of the first map. *)
109
Instance map_union `{Merge M} {A} : Union (M A) := union_with (λ x _, Some x).
110 111 112
Instance map_intersection `{Merge M} {A} : Intersection (M A) :=
  intersection_with (λ x _, Some x).

113 114
(** The difference operation removes all values from the first map whose
index contains a value in the second map as well. *)
115
Instance map_difference `{Merge M} {A} : Difference (M A) :=
116
  difference_with (λ _ _, None).
Robbert Krebbers's avatar
Robbert Krebbers committed
117

118 119
(** A stronger variant of map that allows the mapped function to use the index
of the elements. Implemented by conversion to lists, so not very efficient. *)
120 121
Definition map_imap `{ A, Insert K A (M A),  A, Empty (M A),
     A, FinMapToList K A (M A)} {A B} (f : K  A  option B) (m : M A) : M B :=
122
  list_to_map (omap (λ ix, (fst ix ,.) <$> curry f ix) (map_to_list m)).
123

124 125 126 127 128 129 130
(* The zip operation on maps combines two maps key-wise. The keys of resulting
map correspond to the keys that are in both maps. *)
Definition map_zip_with `{Merge M} {A B C} (f : A  B  C) : M A  M B  M C :=
  merge (λ mx my,
    match mx, my with Some x, Some y => Some (f x y) | _, _ => None end).
Notation map_zip := (map_zip_with pair).

131 132 133 134 135
(* Folds a function [f] over a map. The order in which the function is called
is unspecified. *)
Definition map_fold `{FinMapToList K A M} {B}
  (f : K  A  B  B) (b : B) : M  B := foldr (curry f) b  map_to_list.

136
Instance map_filter `{FinMapToList K A M, Insert K A M, Empty M} : Filter (K * A) M :=
137 138
  λ P _, map_fold (λ k v m, if decide (P (k,v)) then <[k := v]>m else m) .

139 140 141 142 143 144
Fixpoint map_seq `{Insert nat A M, Empty M} (start : nat) (xs : list A) : M :=
  match xs with
  | [] => 
  | x :: xs => <[start:=x]> (map_seq (S start) xs)
  end.

Dan Frumin's avatar
Dan Frumin committed
145 146 147 148
Instance finmap_lookup_total `{!Lookup K A (M A), !Inhabited A} : LookupTotal K A (M A) | 20 :=
  λ i m, default inhabitant (m !! i).
Typeclasses Opaque finmap_lookup_total.

149 150 151 152
(** * Theorems *)
Section theorems.
Context `{FinMap K M}.

Robbert Krebbers's avatar
Robbert Krebbers committed
153 154
(** ** Setoids *)
Section setoid.
155
  Context `{Equiv A}.
156

157 158 159 160
  Lemma map_equiv_lookup_l (m1 m2 : M A) i x :
    m1  m2  m1 !! i = Some x   y, m2 !! i = Some y  x  y.
  Proof. generalize (equiv_Some_inv_l (m1 !! i) (m2 !! i) x); naive_solver. Qed.

161
  Global Instance map_equivalence : Equivalence (@{A})  Equivalence (@{M A}).
Robbert Krebbers's avatar
Robbert Krebbers committed
162 163
  Proof.
    split.
164 165
    - by intros m i.
    - by intros m1 m2 ? i.
166
    - by intros m1 m2 m3 ?? i; trans (m2 !! i).
Robbert Krebbers's avatar
Robbert Krebbers committed
167
  Qed.
168
  Global Instance lookup_proper (i : K) : Proper ((@{M A}) ==> ()) (lookup i).
Robbert Krebbers's avatar
Robbert Krebbers committed
169
  Proof. by intros m1 m2 Hm. Qed.
Dan Frumin's avatar
Dan Frumin committed
170 171 172 173 174 175 176
  Global Instance lookup_total_proper (i : K) `{!Inhabited A} :
    Proper (@{A}) inhabitant 
    Proper ((@{M A}) ==> ()) (lookup_total i).
  Proof.
    intros ? m1 m2 Hm. unfold lookup_total, finmap_lookup_total.
    apply from_option_proper; auto. by intros ??.
  Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
177
  Global Instance partial_alter_proper :
178
    Proper ((() ==> ()) ==> (=) ==> () ==> (@{M A})) partial_alter.
Robbert Krebbers's avatar
Robbert Krebbers committed
179 180 181 182 183 184
  Proof.
    by intros f1 f2 Hf i ? <- m1 m2 Hm j; destruct (decide (i = j)) as [->|];
      rewrite ?lookup_partial_alter, ?lookup_partial_alter_ne by done;
      try apply Hf; apply lookup_proper.
  Qed.
  Global Instance insert_proper (i : K) :
185
    Proper (() ==> () ==> (@{M A})) (insert i).
Robbert Krebbers's avatar
Robbert Krebbers committed
186
  Proof. by intros ???; apply partial_alter_proper; [constructor|]. Qed.
187
  Global Instance singleton_proper k : Proper (() ==> (@{M A})) (singletonM k).
188 189 190 191
  Proof.
    intros ???; apply insert_proper; [done|].
    intros ?. rewrite lookup_empty; constructor.
  Qed.
192
  Global Instance delete_proper (i : K) : Proper (() ==> (@{M A})) (delete i).
Robbert Krebbers's avatar
Robbert Krebbers committed
193 194
  Proof. by apply partial_alter_proper; [constructor|]. Qed.
  Global Instance alter_proper :
195
    Proper ((() ==> ()) ==> (=) ==> () ==> (@{M A})) alter.
Robbert Krebbers's avatar
Robbert Krebbers committed
196 197 198 199
  Proof.
    intros ?? Hf; apply partial_alter_proper.
    by destruct 1; constructor; apply Hf.
  Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
200 201
  Lemma merge_ext `{Equiv B, Equiv C} (f g : option A  option B  option C)
      `{!DiagNone f, !DiagNone g} :
Robbert Krebbers's avatar
Robbert Krebbers committed
202
    (() ==> () ==> ())%signature f g 
203
    (() ==> () ==> (@{M _}))%signature (merge f) (merge g).
Robbert Krebbers's avatar
Robbert Krebbers committed
204 205 206 207
  Proof.
    by intros Hf ?? Hm1 ?? Hm2 i; rewrite !lookup_merge by done; apply Hf.
  Qed.
  Global Instance union_with_proper :
208
    Proper ((() ==> () ==> ()) ==> () ==> () ==>(@{M A})) union_with.
Robbert Krebbers's avatar
Robbert Krebbers committed
209 210 211
  Proof.
    intros ?? Hf ?? Hm1 ?? Hm2 i; apply (merge_ext _ _); auto.
    by do 2 destruct 1; first [apply Hf | constructor].
212
  Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
213
  Global Instance map_leibniz `{!LeibnizEquiv A} : LeibnizEquiv (M A).
214
  Proof. intros m1 m2 Hm; apply map_eq; intros i. apply leibniz_equiv, Hm. Qed.
215 216
  Lemma map_equiv_empty (m : M A) : m    m = .
  Proof.
217 218 219
    split; [intros Hm; apply map_eq; intros i|intros ->].
    - generalize (Hm i). by rewrite lookup_empty, equiv_None.
    - intros ?. rewrite lookup_empty; constructor.
220
  Qed.
221
  Global Instance map_fmap_proper `{Equiv B} (f : A  B) :
222
    Proper (() ==> ()) f  Proper (() ==> (@{M _})) (fmap f).
223 224 225
  Proof.
    intros ? m m' ? k; rewrite !lookup_fmap. by apply option_fmap_proper.
  Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
226 227 228 229 230 231 232
  Global Instance map_zip_with_proper `{Equiv B, Equiv C} (f : A  B  C) :
    Proper (() ==> () ==> ()) f 
    Proper (() ==> () ==> ()) (map_zip_with (M:=M) f).
  Proof.
    intros Hf m1 m1' Hm1 m2 m2' Hm2. apply merge_ext; try done.
    destruct 1; destruct 1; repeat f_equiv; constructor || done.
  Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
233 234 235
End setoid.

(** ** General properties *)
236 237 238 239 240
Lemma map_eq_iff {A} (m1 m2 : M A) : m1 = m2   i, m1 !! i = m2 !! i.
Proof. split. by intros ->. apply map_eq. Qed.
Lemma map_subseteq_spec {A} (m1 m2 : M A) :
  m1  m2   i x, m1 !! i = Some x  m2 !! i = Some x.
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
241
  unfold subseteq, map_subseteq, map_relation. split; intros Hm i;
242 243
    specialize (Hm i); destruct (m1 !! i), (m2 !! i); naive_solver.
Qed.
244
Global Instance map_included_preorder {A} (R : relation A) :
245
  PreOrder R  PreOrder (map_included R : relation (M A)).
246
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
247
  split; [intros m i; by destruct (m !! i); simpl|].
248
  intros m1 m2 m3 Hm12 Hm23 i; specialize (Hm12 i); specialize (Hm23 i).
249
  destruct (m1 !! i), (m2 !! i), (m3 !! i); simplify_eq/=;
250
    done || etrans; eauto.
251
Qed.
252
Global Instance map_subseteq_po : PartialOrder (@{M A}).
253
Proof.
254 255 256
  split; [apply _|].
  intros m1 m2; rewrite !map_subseteq_spec.
  intros; apply map_eq; intros i; apply option_eq; naive_solver.
257
Qed.
Dan Frumin's avatar
Dan Frumin committed
258 259 260 261 262 263 264 265 266
Lemma lookup_total_alt `{!Inhabited A} (m : M A) i :
  m !!! i = default inhabitant (m !! i).
Proof. reflexivity. Qed.
Lemma lookup_total_correct `{!Inhabited A} (m : M A) i x :
  m !! i = Some x  m !!! i = x.
Proof. rewrite lookup_total_alt. by intros ->. Qed.
Lemma lookup_lookup_total `{!Inhabited A} (m : M A) i :
  is_Some (m !! i)  m !! i = Some (m !!! i).
Proof. intros [x Hx]. by rewrite (lookup_total_correct m i x). Qed.
267 268
Lemma lookup_weaken {A} (m1 m2 : M A) i x :
  m1 !! i = Some x  m1  m2  m2 !! i = Some x.
269
Proof. rewrite !map_subseteq_spec. auto. Qed.
270 271 272 273 274 275
Lemma lookup_weaken_is_Some {A} (m1 m2 : M A) i :
  is_Some (m1 !! i)  m1  m2  is_Some (m2 !! i).
Proof. inversion 1. eauto using lookup_weaken. Qed.
Lemma lookup_weaken_None {A} (m1 m2 : M A) i :
  m2 !! i = None  m1  m2  m1 !! i = None.
Proof.
276 277
  rewrite map_subseteq_spec, !eq_None_not_Some.
  intros Hm2 Hm [??]; destruct Hm2; eauto.
278 279
Qed.
Lemma lookup_weaken_inv {A} (m1 m2 : M A) i x y :
280 281
  m1 !! i = Some x  m1  m2  m2 !! i = Some y  x = y.
Proof. intros Hm1 ? Hm2. eapply lookup_weaken in Hm1; eauto. congruence. Qed.
282 283 284 285 286 287
Lemma lookup_ne {A} (m : M A) i j : m !! i  m !! j  i  j.
Proof. congruence. Qed.
Lemma map_empty {A} (m : M A) : ( i, m !! i = None)  m = .
Proof. intros Hm. apply map_eq. intros. by rewrite Hm, lookup_empty. Qed.
Lemma lookup_empty_is_Some {A} i : ¬is_Some (( : M A) !! i).
Proof. rewrite lookup_empty. by inversion 1. Qed.
288
Lemma lookup_empty_Some {A} i (x : A) : ¬( : M A) !! i = Some x.
289
Proof. by rewrite lookup_empty. Qed.
290 291
Lemma loopup_total_empty `{!Inhabited A} i : ( : M A) !!! i = inhabitant.
Proof. by rewrite lookup_total_alt, lookup_empty. Qed.
292
Lemma map_subset_empty {A} (m : M A) : m  .
293 294 295
Proof.
  intros [_ []]. rewrite map_subseteq_spec. intros ??. by rewrite lookup_empty.
Qed.
296 297
Lemma map_fmap_empty {A B} (f : A  B) : f <$> ( : M A) = .
Proof. by apply map_eq; intros i; rewrite lookup_fmap, !lookup_empty. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
298 299 300 301 302
Lemma map_fmap_empty_inv {A B} (f : A  B) m : f <$> m =   m = .
Proof.
  intros Hm. apply map_eq; intros i. generalize (f_equal (lookup i) Hm).
  by rewrite lookup_fmap, !lookup_empty, fmap_None.
Qed.
303

304 305 306 307 308
Lemma map_subset_alt {A} (m1 m2 : M A) :
  m1  m2  m1  m2   i, m1 !! i = None  is_Some (m2 !! i).
Proof.
  rewrite strict_spec_alt. split.
  - intros [? Heq]; split; [done|].
Robbert Krebbers's avatar
Robbert Krebbers committed
309
    destruct (decide (Exists (λ ix, m1 !! ix.1 = None) (map_to_list m2)))
310 311 312 313 314 315 316 317 318 319
      as [[[i x] [?%elem_of_map_to_list ?]]%Exists_exists
         |Hm%(not_Exists_Forall _)]; [eauto|].
    destruct Heq; apply (anti_symm _), map_subseteq_spec; [done|intros i x Hi].
    assert (is_Some (m1 !! i)) as [x' ?].
    { by apply not_eq_None_Some,
        (proj1 (Forall_forall _ _) Hm (i,x)), elem_of_map_to_list. }
    by rewrite <-(lookup_weaken_inv m1 m2 i x' x).
  - intros [? (i&?&x&?)]; split; [done|]. congruence.
Qed.

320
(** ** Properties of the [partial_alter] operation *)
321 322 323
Lemma partial_alter_ext {A} (f g : option A  option A) (m : M A) i :
  ( x, m !! i = x  f x = g x)  partial_alter f i m = partial_alter g i m.
Proof.
324 325
  intros. apply map_eq; intros j. by destruct (decide (i = j)) as [->|?];
    rewrite ?lookup_partial_alter, ?lookup_partial_alter_ne; auto.
326 327
Qed.
Lemma partial_alter_compose {A} f g (m : M A) i:
328 329
  partial_alter (f  g) i m = partial_alter f i (partial_alter g i m).
Proof.
330 331
  intros. apply map_eq. intros ii. by destruct (decide (i = ii)) as [->|?];
    rewrite ?lookup_partial_alter, ?lookup_partial_alter_ne.
332
Qed.
333
Lemma partial_alter_commute {A} f g (m : M A) i j :
334
  i  j  partial_alter f i (partial_alter g j m) =
335 336
    partial_alter g j (partial_alter f i m).
Proof.
337 338 339 340
  intros. apply map_eq; intros jj. destruct (decide (jj = j)) as [->|?].
  { by rewrite lookup_partial_alter_ne,
      !lookup_partial_alter, lookup_partial_alter_ne. }
  destruct (decide (jj = i)) as [->|?].
341
  - by rewrite lookup_partial_alter,
342
     !lookup_partial_alter_ne, lookup_partial_alter by congruence.
343
  - by rewrite !lookup_partial_alter_ne by congruence.
344 345 346 347
Qed.
Lemma partial_alter_self_alt {A} (m : M A) i x :
  x = m !! i  partial_alter (λ _, x) i m = m.
Proof.
348 349
  intros. apply map_eq. intros ii. by destruct (decide (i = ii)) as [->|];
    rewrite ?lookup_partial_alter, ?lookup_partial_alter_ne.
350
Qed.
351
Lemma partial_alter_self {A} (m : M A) i : partial_alter (λ _, m !! i) i m = m.
352
Proof. by apply partial_alter_self_alt. Qed.
353
Lemma partial_alter_subseteq {A} f (m : M A) i :
354
  m !! i = None  m  partial_alter f i m.
355 356 357 358
Proof.
  rewrite map_subseteq_spec. intros Hi j x Hj.
  rewrite lookup_partial_alter_ne; congruence.
Qed.
359
Lemma partial_alter_subset {A} f (m : M A) i :
360
  m !! i = None  is_Some (f (m !! i))  m  partial_alter f i m.
361
Proof.
362 363
  intros Hi Hfi. apply map_subset_alt; split; [by apply partial_alter_subseteq|].
  exists i. by rewrite lookup_partial_alter.
364 365 366
Qed.

(** ** Properties of the [alter] operation *)
367
Lemma lookup_alter {A} (f : A  A) (m : M A) i : alter f i m !! i = f <$> m !! i.
368
Proof. unfold alter. apply lookup_partial_alter. Qed.
369 370
Lemma lookup_alter_ne {A} (f : A  A) (m : M A) i j :
  i  j  alter f i m !! j = m !! j.
371
Proof. unfold alter. apply lookup_partial_alter_ne. Qed.
372 373 374
Lemma alter_ext {A} (f g : A  A) (m : M A) i :
  ( x, m !! i = Some x  f x = g x)  alter f i m = alter g i m.
Proof. intro. apply partial_alter_ext. intros [x|] ?; f_equal/=; auto. Qed.
375 376 377 378 379 380 381 382 383
Lemma alter_compose {A} (f g : A  A) (m : M A) i:
  alter (f  g) i m = alter f i (alter g i m).
Proof.
  unfold alter, map_alter. rewrite <-partial_alter_compose.
  apply partial_alter_ext. by intros [?|].
Qed.
Lemma alter_commute {A} (f g : A  A) (m : M A) i j :
  i  j  alter f i (alter g j m) = alter g j (alter f i m).
Proof. apply partial_alter_commute. Qed.
384
Lemma lookup_alter_Some {A} (f : A  A) (m : M A) i j y :
385 386 387
  alter f i m !! j = Some y 
    (i = j   x, m !! j = Some x  y = f x)  (i  j  m !! j = Some y).
Proof.
388
  destruct (decide (i = j)) as [->|?].
389
  - rewrite lookup_alter. naive_solver (simplify_option_eq; eauto).
390
  - rewrite lookup_alter_ne by done. naive_solver.
391
Qed.
392
Lemma lookup_alter_None {A} (f : A  A) (m : M A) i j :
393 394
  alter f i m !! j = None  m !! j = None.
Proof.
395 396
  by destruct (decide (i = j)) as [->|?];
    rewrite ?lookup_alter, ?fmap_None, ?lookup_alter_ne.
397
Qed.
398
Lemma lookup_alter_is_Some {A} (f : A  A) (m : M A) i j :
399 400
  is_Some (alter f i m !! j)  is_Some (m !! j).
Proof. by rewrite <-!not_eq_None_Some, lookup_alter_None. Qed.
401
Lemma alter_id {A} (f : A  A) (m : M A) i :
Robbert Krebbers's avatar
Robbert Krebbers committed
402
  ( x, m !! i = Some x  f x = x)  alter f i m = m.
403
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
404
  intros Hi; apply map_eq; intros j; destruct (decide (i = j)) as [->|?].
405
  { rewrite lookup_alter; destruct (m !! j); f_equal/=; auto. }
Robbert Krebbers's avatar
Robbert Krebbers committed
406
  by rewrite lookup_alter_ne by done.
407
Qed.
408 409 410 411 412 413 414 415 416 417 418 419
Lemma alter_mono {A} f (m1 m2 : M A) i : m1  m2  alter f i m1  alter f i m2.
Proof.
  rewrite !map_subseteq_spec. intros ? j x.
  rewrite !lookup_alter_Some. naive_solver.
Qed.
Lemma alter_strict_mono {A} f (m1 m2 : M A) i :
  m1  m2  alter f i m1  alter f i m2.
Proof.
  rewrite !map_subset_alt.
  intros [? (j&?&?)]; split; auto using alter_mono.
  exists j. by rewrite lookup_alter_None, lookup_alter_is_Some.
Qed.
420 421 422 423

(** ** Properties of the [delete] operation *)
Lemma lookup_delete {A} (m : M A) i : delete i m !! i = None.
Proof. apply lookup_partial_alter. Qed.
424 425 426
Lemma lookup_total_delete `{!Inhabited A} (m : M A) i :
  delete i m !!! i = inhabitant.
Proof. by rewrite lookup_total_alt, lookup_delete. Qed.
427 428
Lemma lookup_delete_ne {A} (m : M A) i j : i  j  delete i m !! j = m !! j.
Proof. apply lookup_partial_alter_ne. Qed.
429 430 431
Lemma lookup_total_delete_ne `{!Inhabited A} (m : M A) i j :
  i  j  delete i m !!! j = m !!! j.
Proof. intros. by rewrite lookup_total_alt, lookup_delete_ne. Qed.
432 433 434 435
Lemma lookup_delete_Some {A} (m : M A) i j y :
  delete i m !! j = Some y  i  j  m !! j = Some y.
Proof.
  split.
436
  - destruct (decide (i = j)) as [->|?];
437
      rewrite ?lookup_delete, ?lookup_delete_ne; intuition congruence.
438
  - intros [??]. by rewrite lookup_delete_ne.
439
Qed.
440 441 442
Lemma lookup_delete_is_Some {A} (m : M A) i j :
  is_Some (delete i m !! j)  i  j  is_Some (m !! j).
Proof. unfold is_Some; setoid_rewrite lookup_delete_Some; naive_solver. Qed.
443 444 445
Lemma lookup_delete_None {A} (m : M A) i j :
  delete i m !! j = None  i = j  m !! j = None.
Proof.
446 447
  destruct (decide (i = j)) as [->|?];
    rewrite ?lookup_delete, ?lookup_delete_ne; tauto.
448 449 450 451 452 453 454 455 456
Qed.
Lemma delete_empty {A} i : delete i ( : M A) = .
Proof. rewrite <-(partial_alter_self ) at 2. by rewrite lookup_empty. Qed.
Lemma delete_commute {A} (m : M A) i j :
  delete i (delete j m) = delete j (delete i m).
Proof. destruct (decide (i = j)). by subst. by apply partial_alter_commute. Qed.
Lemma delete_insert_ne {A} (m : M A) i j x :
  i  j  delete i (<[j:=x]>m) = <[j:=x]>(delete i m).
Proof. intro. by apply partial_alter_commute. Qed.
457
Lemma delete_notin {A} (m : M A) i : m !! i = None  delete i m = m.
458
Proof.
459 460
  intros. apply map_eq. intros j. by destruct (decide (i = j)) as [->|?];
    rewrite ?lookup_delete, ?lookup_delete_ne.
461
Qed.
462 463 464
Lemma delete_idemp {A} (m : M A) i :
  delete i (delete i m) = delete i m.
Proof. by setoid_rewrite <-partial_alter_compose. Qed.
465 466 467 468 469 470 471 472 473
Lemma delete_partial_alter {A} (m : M A) i f :
  m !! i = None  delete i (partial_alter f i m) = m.
Proof.
  intros. unfold delete, map_delete. rewrite <-partial_alter_compose.
  unfold compose. by apply partial_alter_self_alt.
Qed.
Lemma delete_insert {A} (m : M A) i x :
  m !! i = None  delete i (<[i:=x]>m) = m.
Proof. apply delete_partial_alter. Qed.
474 475 476
Lemma delete_insert_delete {A} (m : M A) i x :
  delete i (<[i:=x]>m) = delete i m.
Proof. by setoid_rewrite <-partial_alter_compose. Qed.
477 478
Lemma insert_delete {A} (m : M A) i x : <[i:=x]>(delete i m) = <[i:=x]> m.
Proof. symmetry; apply (partial_alter_compose (λ _, Some x)). Qed.
479
Lemma delete_subseteq {A} (m : M A) i : delete i m  m.
480 481 482
Proof.
  rewrite !map_subseteq_spec. intros j x. rewrite lookup_delete_Some. tauto.
Qed.
483
Lemma delete_subset {A} (m : M A) i : is_Some (m !! i)  delete i m  m.
484
Proof.
485 486
  intros [x ?]; apply map_subset_alt; split; [apply delete_subseteq|].
  exists i. rewrite lookup_delete; eauto.
487
Qed.
488
Lemma delete_mono {A} (m1 m2 : M A) i : m1  m2  delete i m1  delete i m2.
489
Proof.
490 491
  rewrite !map_subseteq_spec. intros ? j x.
  rewrite !lookup_delete_Some. intuition eauto.
492 493 494 495 496
Qed.

(** ** Properties of the [insert] operation *)
Lemma lookup_insert {A} (m : M A) i x : <[i:=x]>m !! i = Some x.
Proof. unfold insert. apply lookup_partial_alter. Qed.
497 498
Lemma lookup_total_insert `{!Inhabited A} (m : M A) i x : <[i:=x]>m !!! i = x.
Proof. by rewrite lookup_total_alt, lookup_insert. Qed.
499
Lemma lookup_insert_rev {A}  (m : M A) i x y : <[i:=x]>m !! i = Some y  x = y.
500
Proof. rewrite lookup_insert. congruence. Qed.
501
Lemma lookup_insert_ne {A} (m : M A) i j x : i  j  <[i:=x]>m !! j = m !! j.
502
Proof. unfold insert. apply lookup_partial_alter_ne. Qed.
503 504 505
Lemma lookup_total_insert_ne `{!Inhabited A} (m : M A) i j x :
  i  j  <[i:=x]>m !!! j = m !!! j.
Proof. intros. by rewrite lookup_total_alt, lookup_insert_ne. Qed.
506 507
Lemma insert_insert {A} (m : M A) i x y : <[i:=x]>(<[i:=y]>m) = <[i:=x]>m.
Proof. unfold insert, map_insert. by rewrite <-partial_alter_compose. Qed.
508 509 510 511 512 513 514
Lemma insert_commute {A} (m : M A) i j x y :
  i  j  <[i:=x]>(<[j:=y]>m) = <[j:=y]>(<[i:=x]>m).
Proof. apply partial_alter_commute. Qed.
Lemma lookup_insert_Some {A} (m : M A) i j x y :
  <[i:=x]>m !! j = Some y  (i = j  x = y)  (i  j  m !! j = Some y).
Proof.
  split.
515
  - destruct (decide (i = j)) as [->|?];
516
      rewrite ?lookup_insert, ?lookup_insert_ne; intuition congruence.
517
  - intros [[-> ->]|[??]]; [apply lookup_insert|]. by rewrite lookup_insert_ne.
518
Qed.
519 520 521
Lemma lookup_insert_is_Some {A} (m : M A) i j x :
  is_Some (<[i:=x]>m !! j)  i = j  i  j  is_Some (m !! j).
Proof. unfold is_Some; setoid_rewrite lookup_insert_Some; naive_solver. Qed.
522 523 524
Lemma lookup_insert_is_Some' {A} (m : M A) i j x :
  is_Some (<[i:=x]>m !! j)  i = j  is_Some (m !! j).
Proof. rewrite lookup_insert_is_Some. destruct (decide (i=j)); naive_solver. Qed.
525 526 527
Lemma lookup_insert_None {A} (m : M A) i j x :
  <[i:=x]>m !! j = None  m !! j = None  i  j.
Proof.
528 529 530
  split; [|by intros [??]; rewrite lookup_insert_ne].
  destruct (decide (i = j)) as [->|];
    rewrite ?lookup_insert, ?lookup_insert_ne; intuition congruence.
531
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
532
Lemma insert_id {A} (m : M A) i x : m !! i = Some x  <[i:=x]>m = m.
533 534 535 536 537 538 539 540
Proof.
  intros; apply map_eq; intros j; destruct (decide (i = j)) as [->|];
    by rewrite ?lookup_insert, ?lookup_insert_ne by done.
Qed.
Lemma insert_included {A} R `{!Reflexive R} (m : M A) i x :
  ( y, m !! i = Some y  R y x)  map_included R m (<[i:=x]>m).
Proof.
  intros ? j; destruct (decide (i = j)) as [->|].
541 542
  - rewrite lookup_insert. destruct (m !! j); simpl; eauto.
  - rewrite lookup_insert_ne by done. by destruct (m !! j); simpl.
543
Qed.
544
Lemma insert_empty {A} i (x : A) : <[i:=x]>( : M A) = {[i := x]}.
545 546 547
Proof. done. Qed.
Lemma insert_non_empty {A} (m : M A) i x : <[i:=x]>m  .
Proof.
548
  intros Hi%(f_equal (.!! i)). by rewrite lookup_insert, lookup_empty in Hi.
549 550
Qed.

551
Lemma insert_subseteq {A} (m : M A) i x : m !! i = None  m  <[i:=x]>m.
552
Proof. apply partial_alter_subseteq. Qed.
553
Lemma insert_subset {A} (m : M A) i x : m !! i = None  m  <[i:=x]>m.
554
Proof. intro. apply partial_alter_subset; eauto. Qed.
555 556 557 558 559
Lemma insert_mono {A} (m1 m2 : M A) i x : m1  m2  <[i:=x]> m1  <[i:=x]>m2.
Proof.
  rewrite !map_subseteq_spec.
  intros Hm j y. rewrite !lookup_insert_Some. naive_solver.
Qed.
560
Lemma insert_subseteq_r {A} (m1 m2 : M A) i x :
561
  m1 !! i = None  m1  m2  m1  <[i:=x]>m2.
562
Proof.
563
  intros. trans (<[i:=x]> m1); eauto using insert_subseteq, insert_mono.
564
Qed.
565

566
Lemma insert_delete_subseteq {A} (m1 m2 : M A) i x :
567
  m1 !! i = None  <[i:=x]> m1  m2  m1  delete i m2.
568
Proof.
569 570 571 572
  rewrite !map_subseteq_spec. intros Hi Hix j y Hj.
  destruct (decide (i = j)) as [->|]; [congruence|].
  rewrite lookup_delete_ne by done.
  apply Hix; by rewrite lookup_insert_ne by done.
573 574
Qed.
Lemma delete_insert_subseteq {A} (m1 m2 : M A) i x :
575
  m1 !! i = Some x  delete i m1  m2  m1  <[i:=x]> m2.
576
Proof.
577 578
  rewrite !map_subseteq_spec.
  intros Hix Hi j y Hj. destruct (decide (i = j)) as [->|?].
579 580
  - rewrite lookup_insert. congruence.
  - rewrite lookup_insert_ne by done. apply Hi. by rewrite lookup_delete_ne.
581 582
Qed.
Lemma insert_delete_subset {A} (m1 m2 : M A) i x :
583
  m1 !! i = None  <[i:=x]> m1  m2  m1  delete i m2.
584
Proof.
585 586 587
  intros ? [Hm12 Hm21]; split; [eauto using insert_delete_subseteq|].
  contradict Hm21. apply delete_insert_subseteq; auto.
  eapply lookup_weaken, Hm12. by rewrite lookup_insert.
588 589
Qed.
Lemma insert_subset_inv {A} (m1 m2 : M A) i x :
590
  m1 !! i = None  <[i:=x]> m1  m2 
591 592
   m2', m2 = <[i:=x]>m2'  m1  m2'  m2' !! i = None.
Proof.
593
  intros Hi Hm1m2. exists (delete i m2). split_and?.
594 595
  - rewrite insert_delete, insert_id. done.
    eapply lookup_weaken, strict_include; eauto. by rewrite lookup_insert.
596 597
  - eauto using insert_delete_subset.
  - by rewrite lookup_delete.
598 599 600 601
Qed.

(** ** Properties of the singleton maps *)
Lemma lookup_singleton_Some {A} i j (x y : A) :
602
  ({[i := x]} : M A) !! j = Some y  i = j  x = y.
603
Proof.
604
  rewrite <-insert_empty,lookup_insert_Some, lookup_empty; intuition congruence.
605
Qed.
606 607
Lemma lookup_singleton_None {A} i j (x : A) :
  ({[i := x]} : M A) !! j = None  i  j.
608
Proof. rewrite <-insert_empty,lookup_insert_None, lookup_empty; tauto. Qed.
609
Lemma lookup_singleton {A} i (x : A) : ({[i := x]} : M A) !! i = Some x.
610
Proof. by rewrite lookup_singleton_Some. Qed.
611 612 613
Lemma lookup_total_singleton `{!Inhabited A} i (x : A) :
  ({[i := x]} : M A) !!! i = x.
Proof. by rewrite lookup_total_alt, lookup_singleton. Qed.
614 615
Lemma lookup_singleton_ne {A} i j (x : A) :
  i  j  ({[i := x]} : M A) !! j = None.
616
Proof. by rewrite lookup_singleton_None. Qed.
617 618 619
Lemma lookup_total_singleton_ne `{!Inhabited A} i j (x : A) :
  i  j  ({[i := x]} : M A) !!! j = inhabitant.
Proof. intros. by rewrite lookup_total_alt, lookup_singleton_ne. Qed.
620
Lemma map_non_empty_singleton {A} i (x : A) : {[i := x]}  ( : M A).
621
Proof.
622
  intros Hix. apply (f_equal (.!! i)) in Hix.
623 624
  by rewrite lookup_empty, lookup_singleton in Hix.
Qed.
625
Lemma insert_singleton {A} i (x y : A) : <[i:=y]>({[i := x]} : M A) = {[i := y]}.
626
Proof.
627
  unfold singletonM, map_singleton, insert, map_insert.
628 629
  by rewrite <-partial_alter_compose.
Qed.
630 631
Lemma alter_singleton {A} (f : A  A) i x :
  alter f i ({[i := x]} : M A) = {[i := f x]}.
632
Proof.
633
  intros. apply map_eq. intros i'. destruct (decide (i = i')) as [->|?].
634 635
  - by rewrite lookup_alter, !lookup_singleton.
  - by rewrite lookup_alter_ne, !lookup_singleton_ne.
636 637
Qed.
Lemma alter_singleton_ne {A} (f : A  A) i j x :
638
  i  j  alter f i ({[j := x]} : M A) = {[j := x]}.
639
Proof.
640 641
  intros. apply map_eq; intros i'. by destruct (decide (i = i')) as [->|?];
    rewrite ?lookup_alter, ?lookup_singleton_ne, ?lookup_alter_ne by done.
642
Qed.
643
Lemma singleton_non_empty {A} i (x : A) : {[i:=x]}  ( : M A).
644
Proof. apply insert_non_empty. Qed.
645
Lemma delete_singleton {A} i (x : A) : delete i {[i := x]} = ( : M A).
646
Proof. setoid_rewrite <-partial_alter_compose. apply delete_empty. Qed.
647
Lemma delete_singleton_ne {A} i j (x : A) :
648
  i  j  delete i ({[j := x]} : M A) = {[j := x]}.
649
Proof. intro. apply delete_notin. by apply lookup_singleton_ne. Qed.
650

651 652 653 654 655
(** ** Properties of the map operations *)
Lemma fmap_empty {A B} (f : A  B) : f <$>  = .
Proof. apply map_empty; intros i. by rewrite lookup_fmap, lookup_empty. Qed.
Lemma omap_empty {A B} (f : A  option B) : omap f  = .
Proof. apply map_empty; intros i. by rewrite lookup_omap, lookup_empty. Qed.
656 657 658
Lemma fmap_insert {A B} (f: A  B) m i x: f <$> <[i:=x]>m = <[i:=f x]>(f <$> m).
Proof.
  apply map_eq; intros i'; destruct (decide (i' = i)) as [->|].
659 660
  - by rewrite lookup_fmap, !lookup_insert.
  - by rewrite lookup_fmap, !lookup_insert_ne, lookup_fmap by done.
661
Qed.
662 663 664 665