finite.v 13.7 KB
Newer Older
Robbert Krebbers's avatar
Robbert Krebbers committed
1
(* Copyright (c) 2012-2015, Robbert Krebbers. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
2
(* This file is distributed under the terms of the BSD license. *)
3
From stdpp Require Export countable vector.
4 5 6

Class Finite A `{ x y : A, Decision (x = y)} := {
  enum : list A;
7
  NoDup_enum : NoDup enum;
8 9 10
  elem_of_enum x : x  enum
}.
Arguments enum _ {_ _} : clear implicits.
11
Arguments NoDup_enum _ {_ _} : clear implicits.
12 13
Definition card A `{Finite A} := length (enum A).
Program Instance finite_countable `{Finite A} : Countable A := {|
14
  encode := λ x,
15
    Pos.of_nat $ S $ from_option id 0 $ fst <$> list_find (x =) (enum A);
16 17 18 19 20
  decode := λ p, enum A !! pred (Pos.to_nat p)
|}.
Arguments Pos.of_nat _ : simpl never.
Next Obligation.
  intros ?? [xs Hxs HA] x; unfold encode, decode; simpl.
21 22 23
  destruct (list_find_elem_of (x =) xs x) as [[i y] Hi]; auto.
  rewrite Nat2Pos.id by done; simpl; rewrite Hi; simpl.
  destruct (list_find_Some (x =) xs i y); naive_solver.
24 25
Qed.
Definition find `{Finite A} P `{ x, Decision (P x)} : option A :=
26
  list_find P (enum A) = decode_nat  fst.
27 28 29 30

Lemma encode_lt_card `{finA: Finite A} x : encode_nat x < card A.
Proof.
  destruct finA as [xs Hxs HA]; unfold encode_nat, encode, card; simpl.
31 32
  rewrite Nat2Pos.id by done; simpl.
  destruct (list_find _ xs) as [[i y]|] eqn:?; simpl.
33 34
  - destruct (list_find_Some (x =) xs i y); eauto using lookup_lt_Some.
  - destruct xs; simpl. exfalso; eapply not_elem_of_nil, (HA x). lia.
35 36 37 38 39 40 41 42
Qed.
Lemma encode_decode A `{finA: Finite A} i :
  i < card A   x, decode_nat i = Some x  encode_nat x = i.
Proof.
  destruct finA as [xs Hxs HA].
  unfold encode_nat, decode_nat, encode, decode, card; simpl.
  intros Hi. apply lookup_lt_is_Some in Hi. destruct Hi as [x Hx].
  exists x. rewrite !Nat2Pos.id by done; simpl.
43 44 45
  destruct (list_find_elem_of (x =) xs x) as [[j y] Hj]; auto.
  destruct (list_find_Some (x =) xs j y) as [? ->]; auto.
  rewrite Hj; csimpl; eauto using NoDup_lookup.
46 47 48 49 50
Qed.
Lemma find_Some `{finA: Finite A} P `{ x, Decision (P x)} x :
  find P = Some x  P x.
Proof.
  destruct finA as [xs Hxs HA]; unfold find, decode_nat, decode; simpl.
51
  intros Hx. destruct (list_find _ _) as [[i y]|] eqn:Hi; simplify_eq/=.
52
  rewrite !Nat2Pos.id in Hx by done.
53
  destruct (list_find_Some P xs i y); naive_solver.
54 55 56 57 58
Qed.
Lemma find_is_Some `{finA: Finite A} P `{ x, Decision (P x)} x :
  P x   y, find P = Some y  P y.
Proof.
  destruct finA as [xs Hxs HA]; unfold find, decode; simpl.
59
  intros Hx. destruct (list_find_elem_of P xs x) as [[i y] Hi]; auto.
60
  rewrite Hi. destruct (list_find_Some P xs i y); simplify_eq/=; auto.
61
  exists y. by rewrite !Nat2Pos.id by done.
62 63
Qed.

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
Definition encode_fin `{Finite A} (x : A) : fin (card A) :=
  Fin.of_nat_lt (encode_lt_card x).
Program Definition decode_fin `{Finite A} (i : fin (card A)) : A :=
  match Some_dec (decode_nat i) return _ with
  | inleft (exist x _) => x | inright _ => _
  end.
Next Obligation.
  intros A ?? i ?; exfalso.
  destruct (encode_decode A i); naive_solver auto using fin_to_nat_lt.
Qed.
Lemma decode_encode_fin `{Finite A} (x : A) : decode_fin (encode_fin x) = x.
Proof.
  unfold decode_fin, encode_fin. destruct (Some_dec _) as [[x' Hx]|Hx].
  { by rewrite fin_to_of_nat, decode_encode_nat in Hx; simplify_eq. }
  exfalso; by rewrite ->fin_to_of_nat, decode_encode_nat in Hx.
Qed.

Lemma fin_choice {n} {B : fin n  Type} (P :  i, B i  Prop) :
  ( i,  y, P i y)   f,  i, P i (f i).
Proof.
  induction n as [|n IH]; intros Hex.
  { exists (fin_0_inv _); intros i; inv_fin i. }
  destruct (IH _ _ (λ i, Hex (FS i))) as [f Hf], (Hex 0%fin) as [y Hy].
  exists (fin_S_inv _ y f); intros i; by inv_fin i.
Qed.
Lemma finite_choice `{Finite A} {B : A  Type} (P :  x, B x  Prop) :
  ( x,  y, P x y)   f,  x, P x (f x).
Proof.
  intros Hex. destruct (fin_choice _ (λ i, Hex (decode_fin i))) as [f ?].
  exists (λ x, eq_rect _ _ (f(encode_fin x)) _ (decode_encode_fin x)); intros x.
  destruct (decode_encode_fin x); simpl; auto.
Qed.

97 98
Lemma card_0_inv P `{finA: Finite A} : card A = 0  A  P.
Proof.
99
  intros ? x. destruct finA as [[|??] ??]; simplify_eq.
100 101 102 103
  by destruct (not_elem_of_nil x).
Qed.
Lemma finite_inhabited A `{finA: Finite A} : 0 < card A  Inhabited A.
Proof.
104
  unfold card; intros. destruct finA as [[|x ?] ??]; simpl in *; [exfalso;lia|].
105 106
  constructor; exact x.
Qed.
107 108
Lemma finite_inj_contains `{finA: Finite A} `{finB: Finite B} (f: A  B)
  `{!Inj (=) (=) f} : f <$> enum A `contains` enum B.
109
Proof.
110
  intros. destruct finA, finB. apply NoDup_contains; auto using NoDup_fmap_2.
111
Qed.
112 113
Lemma finite_inj_Permutation `{Finite A} `{Finite B} (f : A  B)
  `{!Inj (=) (=) f} : card A = card B  f <$> enum A  enum B.
114
Proof.
115
  intros. apply contains_Permutation_length_eq.
116 117
  - by rewrite fmap_length.
  - by apply finite_inj_contains.
118
Qed.
119 120
Lemma finite_inj_surj `{Finite A} `{Finite B} (f : A  B)
  `{!Inj (=) (=) f} : card A = card B  Surj (=) f.
121 122
Proof.
  intros HAB y. destruct (elem_of_list_fmap_2 f (enum A) y) as (x&?&?); eauto.
123
  rewrite finite_inj_Permutation; auto using elem_of_enum.
124 125
Qed.

126 127
Lemma finite_surj A `{Finite A} B `{Finite B} :
  0 < card A  card B   g : B  A, Surj (=) g.
128 129
Proof.
  intros [??]. destruct (finite_inhabited A) as [x']; auto with lia.
130
  exists (λ y : B, from_option id x' (decode_nat (encode_nat y))).
131 132 133 134
  intros x. destruct (encode_decode B (encode_nat x)) as (y&Hy1&Hy2).
  { pose proof (encode_lt_card x); lia. }
  exists y. by rewrite Hy2, decode_encode_nat.
Qed.
135 136
Lemma finite_inj A `{Finite A} B `{Finite B} :
  card A  card B   f : A  B, Inj (=) (=) f.
137 138
Proof.
  split.
139
  - intros. destruct (decide (card A = 0)) as [HA|?].
140
    { exists (card_0_inv B HA). intros y. apply (card_0_inv _ HA y). }
141 142
    destruct (finite_surj A B) as (g&?); auto with lia.
    destruct (surj_cancel g) as (f&?). exists f. apply cancel_inj.
143
  - intros [f ?]. unfold card. rewrite <-(fmap_length f).
144
    by apply contains_length, (finite_inj_contains f).
145 146
Qed.
Lemma finite_bijective A `{Finite A} B `{Finite B} :
147
  card A = card B   f : A  B, Inj (=) (=) f  Surj (=) f.
148 149
Proof.
  split.
150
  - intros; destruct (proj1 (finite_inj A B)) as [f ?]; auto with lia.
151
    exists f; auto using (finite_inj_surj f).
152
  - intros (f&?&?). apply (anti_symm ()); apply finite_inj.
153
    + by exists f.
154
    + destruct (surj_cancel f) as (g&?); eauto using cancel_inj.
155
Qed.
156 157 158 159 160
Lemma inj_card `{Finite A} `{Finite B} (f : A  B)
  `{!Inj (=) (=) f} : card A  card B.
Proof. apply finite_inj. eauto. Qed.
Lemma surj_card `{Finite A} `{Finite B} (f : A  B)
  `{!Surj (=) f} : card B  card A.
161
Proof.
162 163
  destruct (surj_cancel f) as (g&?).
  apply inj_card with g, cancel_inj.
164 165
Qed.
Lemma bijective_card `{Finite A} `{Finite B} (f : A  B)
166
  `{!Inj (=) (=) f} `{!Surj (=) f} : card A = card B.
167 168
Proof. apply finite_bijective. eauto. Qed.

169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
(** Decidability of quantification over finite types *)
Section forall_exists.
  Context `{Finite A} (P : A  Prop) `{ x, Decision (P x)}.

  Lemma Forall_finite : Forall P (enum A)  ( x, P x).
  Proof. rewrite Forall_forall. intuition auto using elem_of_enum. Qed.
  Lemma Exists_finite : Exists P (enum A)  ( x, P x).
  Proof. rewrite Exists_exists. naive_solver eauto using elem_of_enum. Qed.

  Global Instance forall_dec: Decision ( x, P x).
  Proof.
   refine (cast_if (decide (Forall P (enum A))));
    abstract by rewrite <-Forall_finite.
  Defined.
  Global Instance exists_dec: Decision ( x, P x).
  Proof.
   refine (cast_if (decide (Exists P (enum A))));
    abstract by rewrite <-Exists_finite.
  Defined.
End forall_exists.

190 191 192 193 194 195 196 197 198 199 200 201
(** Instances *)
Section enc_finite.
  Context `{ x y : A, Decision (x = y)}.
  Context (to_nat : A  nat) (of_nat : nat  A) (c : nat).
  Context (of_to_nat :  x, of_nat (to_nat x) = x).
  Context (to_nat_c :  x, to_nat x < c).
  Context (to_of_nat :  i, i < c  to_nat (of_nat i) = i).

  Program Instance enc_finite : Finite A := {| enum := of_nat <$> seq 0 c |}.
  Next Obligation.
    apply NoDup_alt. intros i j x. rewrite !list_lookup_fmap. intros Hi Hj.
    destruct (seq _ _ !! i) as [i'|] eqn:Hi',
202
      (seq _ _ !! j) as [j'|] eqn:Hj'; simplify_eq/=.
203 204 205 206 207 208 209 210 211 212 213 214
    destruct (lookup_seq_inv _ _ _ _ Hi'), (lookup_seq_inv _ _ _ _ Hj'); subst.
    rewrite <-(to_of_nat i), <-(to_of_nat j) by done. by f_equal.
  Qed.
  Next Obligation.
    intros x. rewrite elem_of_list_fmap. exists (to_nat x).
    split; auto. by apply elem_of_list_lookup_2 with (to_nat x), lookup_seq.
  Qed.
  Lemma enc_finite_card : card A = c.
  Proof. unfold card. simpl. by rewrite fmap_length, seq_length. Qed.
End enc_finite.

Section bijective_finite.
215
  Context `{Finite A,  x y : B, Decision (x = y)} (f : A  B) (g : B  A).
216
  Context `{!Inj (=) (=) f, !Cancel (=) f g}.
217 218

  Program Instance bijective_finite: Finite B := {| enum := f <$> enum A |}.
219
  Next Obligation. apply (NoDup_fmap_2 _), NoDup_enum. Qed.
220 221 222 223 224 225 226 227 228
  Next Obligation.
    intros y. rewrite elem_of_list_fmap. eauto using elem_of_enum.
  Qed.
End bijective_finite.

Program Instance option_finite `{Finite A} : Finite (option A) :=
  {| enum := None :: Some <$> enum A |}.
Next Obligation.
  constructor.
229 230
  - rewrite elem_of_list_fmap. by intros (?&?&?).
  - apply (NoDup_fmap_2 _); auto using NoDup_enum.
231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
Qed.
Next Obligation.
  intros ??? [x|]; [right|left]; auto.
  apply elem_of_list_fmap. eauto using elem_of_enum.
Qed.
Lemma option_cardinality `{Finite A} : card (option A) = S (card A).
Proof. unfold card. simpl. by rewrite fmap_length. Qed.

Program Instance unit_finite : Finite () := {| enum := [tt] |}.
Next Obligation. apply NoDup_singleton. Qed.
Next Obligation. intros []. by apply elem_of_list_singleton. Qed.
Lemma unit_card : card unit = 1.
Proof. done. Qed.

Program Instance bool_finite : Finite bool := {| enum := [true; false] |}.
Next Obligation.
  constructor. by rewrite elem_of_list_singleton. apply NoDup_singleton.
Qed.
Next Obligation. intros [|]. left. right; left. Qed.
Lemma bool_card : card bool = 2.
Proof. done. Qed.

253
Program Instance sum_finite `{Finite A, Finite B} : Finite (A + B)%type :=
254 255
  {| enum := (inl <$> enum A) ++ (inr <$> enum B) |}.
Next Obligation.
256
  intros. apply NoDup_app; split_and?.
257 258 259
  - apply (NoDup_fmap_2 _). by apply NoDup_enum.
  - intro. rewrite !elem_of_list_fmap. intros (?&?&?) (?&?&?); congruence.
  - apply (NoDup_fmap_2 _). by apply NoDup_enum.
260 261 262 263 264
Qed.
Next Obligation.
  intros ?????? [x|y]; rewrite elem_of_app, !elem_of_list_fmap;
    eauto using @elem_of_enum.
Qed.
265
Lemma sum_card `{Finite A, Finite B} : card (A + B) = card A + card B.
266 267
Proof. unfold card. simpl. by rewrite app_length, !fmap_length. Qed.

268
Program Instance prod_finite `{Finite A, Finite B} : Finite (A * B)%type :=
269 270
  {| enum := foldr (λ x, (pair x <$> enum B ++)) [] (enum A) |}.
Next Obligation.
271
  intros ??????. induction (NoDup_enum A) as [|x xs Hx Hxs IH]; simpl.
272
  { constructor. }
273
  apply NoDup_app; split_and?.
274
  - by apply (NoDup_fmap_2 _), NoDup_enum.
275
  - intros [? y]. rewrite elem_of_list_fmap. intros (?&?&?); simplify_eq.
276 277 278
    clear IH. induction Hxs as [|x' xs ?? IH]; simpl.
    { rewrite elem_of_nil. tauto. }
    rewrite elem_of_app, elem_of_list_fmap.
279
    intros [(?&?&?)|?]; simplify_eq.
280 281
    + destruct Hx. by left.
    + destruct IH. by intro; destruct Hx; right. auto.
282
  - done.
283 284 285
Qed.
Next Obligation.
  intros ?????? [x y]. induction (elem_of_enum x); simpl.
286 287
  - rewrite elem_of_app, !elem_of_list_fmap. eauto using @elem_of_enum.
  - rewrite elem_of_app; eauto.
288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
Qed.
Lemma prod_card `{Finite A} `{Finite B} : card (A * B) = card A * card B.
Proof.
  unfold card; simpl. induction (enum A); simpl; auto.
  rewrite app_length, fmap_length. auto.
Qed.

Let list_enum {A} (l : list A) :  n, list { l : list A | length l = n } :=
  fix go n :=
  match n with
  | 0 => [[]eq_refl]
  | S n => foldr (λ x, (sig_map (x ::) (λ _ H, f_equal S H) <$> (go n) ++)) [] l
  end.
Program Instance list_finite `{Finite A} n : Finite { l | length l = n } :=
  {| enum := list_enum (enum A) n |}.
Next Obligation.
  intros ????. induction n as [|n IH]; simpl; [apply NoDup_singleton |].
  revert IH. generalize (list_enum (enum A) n). intros l Hl.
306
  induction (NoDup_enum A) as [|x xs Hx Hxs IH]; simpl; auto; [constructor |].
307
  apply NoDup_app; split_and?.
308 309
  - by apply (NoDup_fmap_2 _).
  - intros [k1 Hk1]. clear Hxs IH. rewrite elem_of_list_fmap.
310
    intros ([k2 Hk2]&?&?) Hxk2; simplify_eq/=. destruct Hx. revert Hxk2.
311 312
    induction xs as [|x' xs IH]; simpl in *; [by rewrite elem_of_nil |].
    rewrite elem_of_app, elem_of_list_fmap, elem_of_cons.
313
    intros [([??]&?&?)|?]; simplify_eq/=; auto.
314
  - apply IH.
315 316 317
Qed.
Next Obligation.
  intros ???? [l Hl]. revert l Hl.
318
  induction n as [|n IH]; intros [|x l] ?; simpl; simplify_eq.
319 320 321
  { apply elem_of_list_singleton. by apply (sig_eq_pi _). }
  revert IH. generalize (list_enum (enum A) n). intros k Hk.
  induction (elem_of_enum x) as [x xs|x xs]; simpl in *.
322
  - rewrite elem_of_app, elem_of_list_fmap. left. injection Hl. intros Hl'.
323
    eexists (lHl'). split. by apply (sig_eq_pi _). done.
324
  - rewrite elem_of_app. eauto.
325 326 327 328 329 330 331 332
Qed.
Lemma list_card `{Finite A} n : card { l | length l = n } = card A ^ n.
Proof.
  unfold card; simpl. induction n as [|n IH]; simpl; auto.
  rewrite <-IH. clear IH. generalize (list_enum (enum A) n).
  induction (enum A) as [|x xs IH]; intros l; simpl; auto.
  by rewrite app_length, fmap_length, IH.
Qed.
333 334 335 336 337 338 339 340 341 342 343 344 345 346 347

Fixpoint fin_enum (n : nat) : list (fin n) :=
  match n with 0 => [] | S n => 0%fin :: FS <$> fin_enum n end.
Program Instance fin_finite n : Finite (fin n) := {| enum := fin_enum n |}.
Next Obligation.
  intros n. induction n; simpl; constructor.
  - rewrite elem_of_list_fmap. by intros (?&?&?).
  - by apply (NoDup_fmap _).
Qed.
Next Obligation.
  intros n i. induction i as [|n i IH]; simpl;
    rewrite elem_of_cons, ?elem_of_list_fmap; eauto.
Qed.
Lemma fin_card n : card (fin n) = n.
Proof. unfold card; simpl. induction n; simpl; rewrite ?fmap_length; auto. Qed.