decidable.v 8.97 KB
Newer Older
Robbert Krebbers's avatar
Robbert Krebbers committed
1
(* Copyright (c) 2012-2015, Robbert Krebbers. *)
2 3 4 5
(* This file is distributed under the terms of the BSD license. *)
(** This file collects theorems, definitions, tactics, related to propositions
with a decidable equality. Such propositions are collected by the [Decision]
type class. *)
6
From stdpp Require Export proof_irrel.
7

Robbert Krebbers's avatar
Robbert Krebbers committed
8 9
Hint Extern 200 (Decision _) => progress (lazy beta) : typeclass_instances.

10 11
Lemma dec_stable `{Decision P} : ¬¬P  P.
Proof. firstorder. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
12

13
Lemma Is_true_reflect (b : bool) : reflect b b.
14
Proof. destruct b. left; constructor. right. intros []. Qed.
15
Instance: Inj (=) () Is_true.
16
Proof. intros [] []; simpl; intuition. Qed.
17

18 19 20 21 22 23 24 25 26
(** We introduce [decide_rel] to avoid inefficienct computation due to eager
evaluation of propositions by [vm_compute]. This inefficiency occurs if
[(x = y) := (f x = f y)] as [decide (x = y)] evaluates to [decide (f x = f y)]
which then might lead to evaluation of [f x] and [f y]. Using [decide_rel]
we hide [f] under a lambda abstraction to avoid this unnecessary evaluation. *)
Definition decide_rel {A B} (R : A  B  Prop) {dec :  x y, Decision (R x y)}
  (x : A) (y : B) : Decision (R x y) := dec x y.
Lemma decide_rel_correct {A B} (R : A  B  Prop) `{ x y, Decision (R x y)}
  (x : A) (y : B) : decide_rel R x y = decide (R x y).
27
Proof. reflexivity. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
28

Robbert Krebbers's avatar
Robbert Krebbers committed
29
Lemma decide_True {A} `{Decision P} (x y : A) :
30
  P  (if decide P then x else y) = x.
31
Proof. destruct (decide P); tauto. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
32
Lemma decide_False {A} `{Decision P} (x y : A) :
33
  ¬P  (if decide P then x else y) = y.
34
Proof. destruct (decide P); tauto. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
35 36
Lemma decide_iff {A} P Q `{Decision P, Decision Q} (x y : A) :
  (P  Q)  (if decide P then x else y) = (if decide Q then x else y).
37
Proof. intros [??]. destruct (decide P), (decide Q); tauto. Qed.
38

Ralf Jung's avatar
Ralf Jung committed
39 40 41 42 43
Lemma decide_left`{Decision P, !ProofIrrel P} (HP : P) : decide P = left HP.
Proof. destruct (decide P) as [?|?]; [|contradiction]. f_equal. apply proof_irrel. Qed.
Lemma decide_right`{Decision P} `{!ProofIrrel (¬ P)} (HP : ¬ P) : decide P = right HP.
Proof. destruct (decide P) as [?|?]; [contradiction|]. f_equal. apply proof_irrel. Qed.

44 45
(** The tactic [destruct_decide] destructs a sumbool [dec]. If one of the
components is double negated, it will try to remove the double negation. *)
46
Tactic Notation "destruct_decide" constr(dec) "as" ident(H) :=
47 48 49 50
  destruct dec as [H|H];
  try match type of H with
  | ¬¬_ => apply dec_stable in H
  end.
51 52
Tactic Notation "destruct_decide" constr(dec) :=
  let H := fresh in destruct_decide dec as H.
53

54
(** The tactic [case_decide] performs case analysis on an arbitrary occurrence
55
of [decide] or [decide_rel] in the conclusion or hypotheses. *)
56
Tactic Notation "case_decide" "as" ident(Hd) :=
Robbert Krebbers's avatar
Robbert Krebbers committed
57
  match goal with
58
  | H : context [@decide ?P ?dec] |- _ =>
59
    destruct_decide (@decide P dec) as Hd
60
  | H : context [@decide_rel _ _ ?R ?x ?y ?dec] |- _ =>
61
    destruct_decide (@decide_rel _ _ R x y dec) as Hd
62
  | |- context [@decide ?P ?dec] =>
63
    destruct_decide (@decide P dec) as Hd
64
  | |- context [@decide_rel _ _ ?R ?x ?y ?dec] =>
65
    destruct_decide (@decide_rel _ _ R x y dec) as Hd
Robbert Krebbers's avatar
Robbert Krebbers committed
66
  end.
67 68
Tactic Notation "case_decide" :=
  let H := fresh in case_decide as H.
Robbert Krebbers's avatar
Robbert Krebbers committed
69

70 71
(** The tactic [solve_decision] uses Coq's [decide equality] tactic together
with instance resolution to automatically generate decision procedures. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
72 73
Ltac solve_trivial_decision :=
  match goal with
74 75
  | |- Decision (?P) => apply _
  | |- sumbool ?P (¬?P) => change (Decision P); apply _
Robbert Krebbers's avatar
Robbert Krebbers committed
76
  end.
77 78 79
Ltac solve_decision := intros; first
  [ solve_trivial_decision
  | unfold Decision; decide equality; solve_trivial_decision ].
Robbert Krebbers's avatar
Robbert Krebbers committed
80

81 82
(** The following combinators are useful to create Decision proofs in
combination with the [refine] tactic. *)
83
Notation swap_if S := (match S with left H => right H | right H => left H end).
84 85 86 87 88
Notation cast_if S := (if S then left _ else right _).
Notation cast_if_and S1 S2 := (if S1 then cast_if S2 else right _).
Notation cast_if_and3 S1 S2 S3 := (if S1 then cast_if_and S2 S3 else right _).
Notation cast_if_and4 S1 S2 S3 S4 :=
  (if S1 then cast_if_and3 S2 S3 S4 else right _).
89 90
Notation cast_if_and5 S1 S2 S3 S4 S5 :=
  (if S1 then cast_if_and4 S2 S3 S4 S5 else right _).
91 92
Notation cast_if_and6 S1 S2 S3 S4 S5 S6 :=
  (if S1 then cast_if_and5 S2 S3 S4 S5 S6 else right _).
93
Notation cast_if_or S1 S2 := (if S1 then left _ else cast_if S2).
94
Notation cast_if_or3 S1 S2 S3 := (if S1 then left _ else cast_if_or S2 S3).
95 96 97
Notation cast_if_not_or S1 S2 := (if S1 then cast_if S2 else left _).
Notation cast_if_not S := (if S then right _ else left _).

98 99 100
(** We can convert decidable propositions to booleans. *)
Definition bool_decide (P : Prop) {dec : Decision P} : bool :=
  if dec then true else false.
Robbert Krebbers's avatar
Robbert Krebbers committed
101

102
Lemma bool_decide_reflect P `{dec : Decision P} : reflect P (bool_decide P).
103
Proof. unfold bool_decide. destruct dec; [left|right]; assumption. Qed.
104

105
Tactic Notation "case_bool_decide" "as" ident (Hd) :=
106 107
  match goal with
  | H : context [@bool_decide ?P ?dec] |- _ =>
108
    destruct_decide (@bool_decide_reflect P dec) as Hd
109
  | |- context [@bool_decide ?P ?dec] =>
110
    destruct_decide (@bool_decide_reflect P dec) as Hd
111
  end.
112 113
Tactic Notation "case_bool_decide" :=
  let H := fresh in case_bool_decide as H.
114

115
Lemma bool_decide_spec (P : Prop) {dec : Decision P} : bool_decide P  P.
116
Proof. unfold bool_decide. destruct dec; simpl; tauto. Qed.
117
Lemma bool_decide_unpack (P : Prop) {dec : Decision P} : bool_decide P  P.
118
Proof. rewrite bool_decide_spec; trivial. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
119
Lemma bool_decide_pack (P : Prop) {dec : Decision P} : P  bool_decide P.
120
Proof. rewrite bool_decide_spec; trivial. Qed.
121
Hint Resolve bool_decide_pack.
122
Lemma bool_decide_true (P : Prop) `{Decision P} : P  bool_decide P = true.
123
Proof. case_bool_decide; tauto. Qed.
124
Lemma bool_decide_false (P : Prop) `{Decision P} : ¬P  bool_decide P = false.
125
Proof. case_bool_decide; tauto. Qed.
126 127 128
Lemma bool_decide_iff (P Q : Prop) `{Decision P, Decision Q} :
  (P  Q)  bool_decide P = bool_decide Q.
Proof. repeat case_bool_decide; tauto. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
129

130 131 132 133
(** * Decidable Sigma types *)
(** Leibniz equality on Sigma types requires the equipped proofs to be
equal as Coq does not support proof irrelevance. For decidable we
propositions we define the type [dsig P] whose Leibniz equality is proof
Robbert Krebbers's avatar
Robbert Krebbers committed
134
irrelevant. That is [∀ x y : dsig P, x = y ↔ `x = `y]. *)
135 136
Definition dsig `(P : A  Prop) `{ x : A, Decision (P x)} :=
  { x | bool_decide (P x) }.
137

138 139 140 141
Definition proj2_dsig `{ x : A, Decision (P x)} (x : dsig P) : P (`x) :=
  bool_decide_unpack _ (proj2_sig x).
Definition dexist `{ x : A, Decision (P x)} (x : A) (p : P x) : dsig P :=
  xbool_decide_pack _ p.
142
Lemma dsig_eq `(P : A  Prop) `{ x, Decision (P x)}
143
  (x y : dsig P) : x = y  `x = `y.
144
Proof. apply (sig_eq_pi _). Qed.
145 146
Lemma dexists_proj1 `(P : A  Prop) `{ x, Decision (P x)} (x : dsig P) p :
  dexist (`x) p = x.
147
Proof. apply dsig_eq; reflexivity. Qed.
148 149 150

(** * Instances of Decision *)
(** Instances of [Decision] for operators of propositional logic. *)
151 152
Instance True_dec: Decision True := left I.
Instance False_dec: Decision False := right (False_rect False).
153
Instance Is_true_dec b : Decision (Is_true b).
154
Proof. destruct b; simpl; apply _. Defined.
155 156 157 158

Section prop_dec.
  Context `(P_dec : Decision P) `(Q_dec : Decision Q).

159 160
  Global Instance not_dec: Decision (¬P).
  Proof. refine (cast_if_not P_dec); intuition. Defined.
161
  Global Instance and_dec: Decision (P  Q).
162
  Proof. refine (cast_if_and P_dec Q_dec); intuition. Defined.
163
  Global Instance or_dec: Decision (P  Q).
164
  Proof. refine (cast_if_or P_dec Q_dec); intuition. Defined.
165
  Global Instance impl_dec: Decision (P  Q).
166
  Proof. refine (if P_dec then cast_if Q_dec else left _); intuition. Defined.
167
End prop_dec.
168 169
Instance iff_dec `(P_dec : Decision P) `(Q_dec : Decision Q) :
  Decision (P  Q) := and_dec _ _.
170 171

(** Instances of [Decision] for common data types. *)
172
Instance bool_eq_dec : EqDecision bool.
Robbert Krebbers's avatar
Robbert Krebbers committed
173
Proof. solve_decision. Defined.
174
Instance unit_eq_dec : EqDecision unit.
175
Proof. solve_decision. Defined.
176
Instance prod_eq_dec `{EqDecision A, EqDecision B} : EqDecision (A * B).
177
Proof. solve_decision. Defined.
178
Instance sum_eq_dec `{EqDecision A, EqDecision B} : EqDecision (A + B).
179
Proof. solve_decision. Defined.
Robbert Krebbers's avatar
Robbert Krebbers committed
180 181 182 183 184 185

Instance curry_dec `(P_dec :  (x : A) (y : B), Decision (P x y)) p :
    Decision (curry P p) :=
  match p as p return Decision (curry P p) with
  | (x,y) => P_dec x y
  end.
186

187 188 189 190 191
Instance sig_eq_dec `(P : A  Prop) `{ x, ProofIrrel (P x), EqDecision A} :
  EqDecision (sig P).
Proof.
 refine (λ x y, cast_if (decide (`x = `y))); rewrite sig_eq_pi; trivial.
Defined.
192 193

(** Some laws for decidable propositions *)
194 195 196 197 198
Lemma not_and_l {P Q : Prop} `{Decision P} : ¬(P  Q)  ¬P  ¬Q.
Proof. destruct (decide P); tauto. Qed.
Lemma not_and_r {P Q : Prop} `{Decision Q} : ¬(P  Q)  ¬P  ¬Q.
Proof. destruct (decide Q); tauto. Qed.
Lemma not_and_l_alt {P Q : Prop} `{Decision P} : ¬(P  Q)  ¬P  (¬Q  P).
199
Proof. destruct (decide P); tauto. Qed.
200
Lemma not_and_r_alt {P Q : Prop} `{Decision Q} : ¬(P  Q)  (¬P  Q)  ¬Q.
201
Proof. destruct (decide Q); tauto. Qed.