collections.v 45.4 KB
Newer Older
Robbert Krebbers's avatar
Robbert Krebbers committed
1
(* Copyright (c) 2012-2015, Robbert Krebbers. *)
2 3 4 5
(* This file is distributed under the terms of the BSD license. *)
(** This file collects definitions and theorems on collections. Most
importantly, it implements some tactics to automatically solve goals involving
collections. *)
6
From stdpp Require Export orders list.
7

8 9
Instance collection_equiv `{ElemOf A C} : Equiv C := λ X Y,
   x, x  X  x  Y.
10 11
Instance collection_subseteq `{ElemOf A C} : SubsetEq C := λ X Y,
   x, x  X  x  Y.
12 13 14
Instance collection_disjoint `{ElemOf A C} : Disjoint C := λ X Y,
   x, x  X  x  Y  False.
Typeclasses Opaque collection_equiv collection_subseteq collection_disjoint.
15

16 17
(** * Setoids *)
Section setoids_simple.
18
  Context `{SimpleCollection A C}.
Robbert Krebbers's avatar
Robbert Krebbers committed
19

20
  Global Instance collection_equivalence: @Equivalence C ().
21
  Proof.
22 23 24 25
    split.
    - done.
    - intros X Y ? x. by symmetry.
    - intros X Y Z ?? x; by trans (x  Y).
26
  Qed.
27 28 29 30 31 32
  Global Instance singleton_proper : Proper ((=) ==> ()) (singleton (B:=C)).
  Proof. apply _. Qed.
  Global Instance elem_of_proper :
    Proper ((=) ==> () ==> iff) (@elem_of A C _) | 5.
  Proof. by intros x ? <- X Y. Qed.
  Global Instance disjoint_proper: Proper (() ==> () ==> iff) (@disjoint C _).
33
  Proof.
34
    intros X1 X2 HX Y1 Y2 HY; apply forall_proper; intros x. by rewrite HX, HY.
35
  Qed.
36 37 38 39 40 41 42 43 44 45 46 47
  Global Instance union_proper : Proper (() ==> () ==> ()) (@union C _).
  Proof. intros X1 X2 HX Y1 Y2 HY x. rewrite !elem_of_union. f_equiv; auto. Qed.
  Global Instance union_list_proper: Proper (() ==> ()) (union_list (A:=C)).
  Proof. by induction 1; simpl; try apply union_proper. Qed.
  Global Instance subseteq_proper : Proper (() ==> () ==> iff) (() : relation C).
  Proof.
    intros X1 X2 HX Y1 Y2 HY. apply forall_proper; intros x. by rewrite HX, HY.
  Qed.
End setoids_simple.

Section setoids.
  Context `{Collection A C}.
48

49 50 51
  (** * Setoids *)
  Global Instance intersection_proper :
    Proper (() ==> () ==> ()) (@intersection C _).
52
  Proof.
53
    intros X1 X2 HX Y1 Y2 HY x. by rewrite !elem_of_intersection, HX, HY.
54
  Qed.
55 56
  Global Instance difference_proper :
     Proper (() ==> () ==> ()) (@difference C _).
57
  Proof.
58
    intros X1 X2 HX Y1 Y2 HY x. by rewrite !elem_of_difference, HX, HY.
59
  Qed.
60
End setoids.
Robbert Krebbers's avatar
Robbert Krebbers committed
61

62 63 64 65 66
Section setoids_monad.
  Context `{CollectionMonad M}.

  Global Instance collection_fmap_proper {A B} :
    Proper (pointwise_relation _ (=) ==> () ==> ()) (@fmap M _ A B).
67
  Proof.
68 69
    intros f1 f2 Hf X1 X2 HX x. rewrite !elem_of_fmap. f_equiv; intros z.
    by rewrite HX, Hf.
70
  Qed.
71 72 73 74 75 76 77 78 79 80 81 82
  Global Instance collection_bind_proper {A B} :
    Proper (((=) ==> ()) ==> () ==> ()) (@mbind M _ A B).
  Proof.
    intros f1 f2 Hf X1 X2 HX x. rewrite !elem_of_bind. f_equiv; intros z.
    by rewrite HX, (Hf z z).
  Qed.
  Global Instance collection_join_proper {A} :
    Proper (() ==> ()) (@mjoin M _ A).
  Proof.
    intros X1 X2 HX x. rewrite !elem_of_join. f_equiv; intros z. by rewrite HX.
  Qed.
End setoids_monad.
83

84 85 86 87 88
(** * Tactics *)
(** The tactic [set_unfold] transforms all occurrences of [(∪)], [(∩)], [(∖)],
[(<$>)], [∅], [{[_]}], [(≡)], and [(⊆)] into logically equivalent propositions
involving just [∈]. For example, [A → x ∈ X ∪ ∅] becomes [A → x ∈ X ∨ False].

89 90 91
This transformation is implemented using type classes instead of setoid
rewriting to ensure that we traverse each term at most once and to be able to
deal with occurences of the set operations under binders. *)
92 93 94 95 96 97 98
Class SetUnfold (P Q : Prop) := { set_unfold : P  Q }.
Arguments set_unfold _ _ {_}.
Hint Mode SetUnfold + - : typeclass_instances.

Class SetUnfoldSimpl (P Q : Prop) := { set_unfold_simpl : SetUnfold P Q }.
Hint Extern 0 (SetUnfoldSimpl _ _) => csimpl; constructor : typeclass_instances.

99
Instance set_unfold_default P : SetUnfold P P | 1000. done. Qed.
100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
Definition set_unfold_1 `{SetUnfold P Q} : P  Q := proj1 (set_unfold P Q).
Definition set_unfold_2 `{SetUnfold P Q} : Q  P := proj2 (set_unfold P Q).

Lemma set_unfold_impl P Q P' Q' :
  SetUnfold P P'  SetUnfold Q Q'  SetUnfold (P  Q) (P'  Q').
Proof. constructor. by rewrite (set_unfold P P'), (set_unfold Q Q'). Qed.
Lemma set_unfold_and P Q P' Q' :
  SetUnfold P P'  SetUnfold Q Q'  SetUnfold (P  Q) (P'  Q').
Proof. constructor. by rewrite (set_unfold P P'), (set_unfold Q Q'). Qed.
Lemma set_unfold_or P Q P' Q' :
  SetUnfold P P'  SetUnfold Q Q'  SetUnfold (P  Q) (P'  Q').
Proof. constructor. by rewrite (set_unfold P P'), (set_unfold Q Q'). Qed.
Lemma set_unfold_iff P Q P' Q' :
  SetUnfold P P'  SetUnfold Q Q'  SetUnfold (P  Q) (P'  Q').
Proof. constructor. by rewrite (set_unfold P P'), (set_unfold Q Q'). Qed.
Lemma set_unfold_not P P' : SetUnfold P P'  SetUnfold (¬P) (¬P').
Proof. constructor. by rewrite (set_unfold P P'). Qed.
Lemma set_unfold_forall {A} (P P' : A  Prop) :
  ( x, SetUnfold (P x) (P' x))  SetUnfold ( x, P x) ( x, P' x).
Proof. constructor. naive_solver. Qed.
Lemma set_unfold_exist {A} (P P' : A  Prop) :
  ( x, SetUnfold (P x) (P' x))  SetUnfold ( x, P x) ( x, P' x).
Proof. constructor. naive_solver. Qed.

(* Avoid too eager application of the above instances (and thus too eager
unfolding of type class transparent definitions). *)
Hint Extern 0 (SetUnfold (_  _) _) =>
  class_apply set_unfold_impl : typeclass_instances.
Hint Extern 0 (SetUnfold (_  _) _) =>
  class_apply set_unfold_and : typeclass_instances.
Hint Extern 0 (SetUnfold (_  _) _) =>
  class_apply set_unfold_or : typeclass_instances.
Hint Extern 0 (SetUnfold (_  _) _) =>
  class_apply set_unfold_iff : typeclass_instances.
Hint Extern 0 (SetUnfold (¬ _) _) =>
  class_apply set_unfold_not : typeclass_instances.
Hint Extern 1 (SetUnfold ( _, _) _) =>
  class_apply set_unfold_forall : typeclass_instances.
Hint Extern 0 (SetUnfold ( _, _) _) =>
  class_apply set_unfold_exist : typeclass_instances.

Section set_unfold_simple.
  Context `{SimpleCollection A C}.
  Implicit Types x y : A.
  Implicit Types X Y : C.

  Global Instance set_unfold_empty x : SetUnfold (x  ) False.
147
  Proof. constructor. split. apply not_elem_of_empty. done. Qed.
148 149 150 151 152 153 154 155 156 157 158 159 160
  Global Instance set_unfold_singleton x y : SetUnfold (x  {[ y ]}) (x = y).
  Proof. constructor; apply elem_of_singleton. Qed.
  Global Instance set_unfold_union x X Y P Q :
    SetUnfold (x  X) P  SetUnfold (x  Y) Q  SetUnfold (x  X  Y) (P  Q).
  Proof.
    intros ??; constructor.
    by rewrite elem_of_union, (set_unfold (x  X) P), (set_unfold (x  Y) Q).
  Qed.
  Global Instance set_unfold_equiv_same X : SetUnfold (X  X) True | 1.
  Proof. done. Qed.
  Global Instance set_unfold_equiv_empty_l X (P : A  Prop) :
    ( x, SetUnfold (x  X) (P x))  SetUnfold (  X) ( x, ¬P x) | 5.
  Proof.
161 162
    intros ?; constructor. unfold equiv, collection_equiv.
    pose proof not_elem_of_empty; naive_solver.
163 164 165
  Qed.
  Global Instance set_unfold_equiv_empty_r (P : A  Prop) :
    ( x, SetUnfold (x  X) (P x))  SetUnfold (X  ) ( x, ¬P x) | 5.
166 167 168 169
  Proof.
    intros ?; constructor. unfold equiv, collection_equiv.
    pose proof not_elem_of_empty; naive_solver.
  Qed.
170 171 172
  Global Instance set_unfold_equiv (P Q : A  Prop) :
    ( x, SetUnfold (x  X) (P x))  ( x, SetUnfold (x  Y) (Q x)) 
    SetUnfold (X  Y) ( x, P x  Q x) | 10.
173
  Proof. constructor. apply forall_proper; naive_solver. Qed.
174 175 176
  Global Instance set_unfold_subseteq (P Q : A  Prop) :
    ( x, SetUnfold (x  X) (P x))  ( x, SetUnfold (x  Y) (Q x)) 
    SetUnfold (X  Y) ( x, P x  Q x).
177
  Proof. constructor. apply forall_proper; naive_solver. Qed.
178 179
  Global Instance set_unfold_subset (P Q : A  Prop) :
    ( x, SetUnfold (x  X) (P x))  ( x, SetUnfold (x  Y) (Q x)) 
180
    SetUnfold (X  Y) (( x, P x  Q x)  ¬∀ x, Q x  P x).
181
  Proof.
182 183
    constructor. unfold strict.
    repeat f_equiv; apply forall_proper; naive_solver.
184
  Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
185 186 187
  Global Instance set_unfold_disjoint (P Q : A  Prop) :
    ( x, SetUnfold (x  X) (P x))  ( x, SetUnfold (x  Y) (Q x)) 
    SetUnfold (X  Y) ( x, P x  Q x  False).
188
  Proof. constructor. unfold disjoint, collection_disjoint. naive_solver. Qed.
189 190 191 192 193 194

  Context `{!LeibnizEquiv C}.
  Global Instance set_unfold_equiv_same_L X : SetUnfold (X = X) True | 1.
  Proof. done. Qed.
  Global Instance set_unfold_equiv_empty_l_L X (P : A  Prop) :
    ( x, SetUnfold (x  X) (P x))  SetUnfold ( = X) ( x, ¬P x) | 5.
195
  Proof. constructor. unfold_leibniz. by apply set_unfold_equiv_empty_l. Qed.
196 197
  Global Instance set_unfold_equiv_empty_r_L (P : A  Prop) :
    ( x, SetUnfold (x  X) (P x))  SetUnfold (X = ) ( x, ¬P x) | 5.
198
  Proof. constructor. unfold_leibniz. by apply set_unfold_equiv_empty_r. Qed.
199 200 201
  Global Instance set_unfold_equiv_L (P Q : A  Prop) :
    ( x, SetUnfold (x  X) (P x))  ( x, SetUnfold (x  Y) (Q x)) 
    SetUnfold (X = Y) ( x, P x  Q x) | 10.
202
  Proof. constructor. unfold_leibniz. by apply set_unfold_equiv. Qed.
203 204 205 206 207 208 209 210 211 212
End set_unfold_simple.

Section set_unfold.
  Context `{Collection A C}.
  Implicit Types x y : A.
  Implicit Types X Y : C.

  Global Instance set_unfold_intersection x X Y P Q :
    SetUnfold (x  X) P  SetUnfold (x  Y) Q  SetUnfold (x  X  Y) (P  Q).
  Proof.
213 214
    intros ??; constructor. rewrite elem_of_intersection.
    by rewrite (set_unfold (x  X) P), (set_unfold (x  Y) Q).
215 216 217 218
  Qed.
  Global Instance set_unfold_difference x X Y P Q :
    SetUnfold (x  X) P  SetUnfold (x  Y) Q  SetUnfold (x  X  Y) (P  ¬Q).
  Proof.
219 220
    intros ??; constructor. rewrite elem_of_difference.
    by rewrite (set_unfold (x  X) P), (set_unfold (x  Y) Q).
221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
  Qed.
End set_unfold.

Section set_unfold_monad.
  Context `{CollectionMonad M} {A : Type}.
  Implicit Types x y : A.

  Global Instance set_unfold_ret x y : SetUnfold (x  mret y) (x = y).
  Proof. constructor; apply elem_of_ret. Qed.
  Global Instance set_unfold_bind {B} (f : A  M B) X (P Q : A  Prop) :
    ( y, SetUnfold (y  X) (P y))  ( y, SetUnfold (x  f y) (Q y)) 
    SetUnfold (x  X = f) ( y, Q y  P y).
  Proof. constructor. rewrite elem_of_bind; naive_solver. Qed.
  Global Instance set_unfold_fmap {B} (f : A  B) X (P : A  Prop) :
    ( y, SetUnfold (y  X) (P y)) 
    SetUnfold (x  f <$> X) ( y, x = f y  P y).
  Proof. constructor. rewrite elem_of_fmap; naive_solver. Qed.
  Global Instance set_unfold_join (X : M (M A)) (P : M A  Prop) :
    ( Y, SetUnfold (Y  X) (P Y))  SetUnfold (x  mjoin X) ( Y, x  Y  P Y).
  Proof. constructor. rewrite elem_of_join; naive_solver. Qed.
End set_unfold_monad.

Robbert Krebbers's avatar
Robbert Krebbers committed
243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
Section set_unfold_list.
  Context {A : Type}.
  Implicit Types x : A.
  Implicit Types l : list A.

  Global Instance set_unfold_nil x : SetUnfold (x  []) False.
  Proof. constructor; apply elem_of_nil. Qed.
  Global Instance set_unfold_cons x y l P :
    SetUnfold (x  l) P  SetUnfold (x  y :: l) (x = y  P).
  Proof. constructor. by rewrite elem_of_cons, (set_unfold (x  l) P). Qed.
  Global Instance set_unfold_app x l k P Q :
    SetUnfold (x  l) P  SetUnfold (x  k) Q  SetUnfold (x  l ++ k) (P  Q).
  Proof.
    intros ??; constructor.
    by rewrite elem_of_app, (set_unfold (x  l) P), (set_unfold (x  k) Q).
  Qed.
  Global Instance set_unfold_included l k (P Q : A  Prop) :
    ( x, SetUnfold (x  l) (P x))  ( x, SetUnfold (x  k) (Q x)) 
    SetUnfold (l  k) ( x, P x  Q x).
  Proof.
    constructor; unfold subseteq, list_subseteq.
    apply forall_proper; naive_solver.
  Qed.
End set_unfold_list.

268 269 270 271 272 273 274 275 276
Ltac set_unfold :=
  let rec unfold_hyps :=
    try match goal with
    | H : _ |- _ =>
       apply set_unfold_1 in H; revert H;
       first [unfold_hyps; intros H | intros H; fail 1]
    end in
  apply set_unfold_2; unfold_hyps; csimpl in *.

277 278
(** Since [firstorder] already fails or loops on very small goals generated by
[set_solver], we use the [naive_solver] tactic as a substitute. *)
279
Tactic Notation "set_solver" "by" tactic3(tac) :=
280
  try fast_done;
281 282 283 284 285 286 287 288 289 290 291 292 293
  intros; setoid_subst;
  set_unfold;
  intros; setoid_subst;
  try match goal with |- _  _ => apply dec_stable end;
  naive_solver tac.
Tactic Notation "set_solver" "-" hyp_list(Hs) "by" tactic3(tac) :=
  clear Hs; set_solver by tac.
Tactic Notation "set_solver" "+" hyp_list(Hs) "by" tactic3(tac) :=
  clear -Hs; set_solver by tac.
Tactic Notation "set_solver" := set_solver by idtac.
Tactic Notation "set_solver" "-" hyp_list(Hs) := clear Hs; set_solver.
Tactic Notation "set_solver" "+" hyp_list(Hs) := clear -Hs; set_solver.

294 295 296 297
Hint Extern 1000 (_  _) => set_solver : set_solver.
Hint Extern 1000 (_  _) => set_solver : set_solver.
Hint Extern 1000 (_  _) => set_solver : set_solver.

298

299 300
(** * Collections with [∪], [∅] and [{[_]}] *)
Section simple_collection.
301
  Context `{SimpleCollection A C}.
302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366
  Implicit Types x y : A.
  Implicit Types X Y : C.
  Implicit Types Xs Ys : list C.

  (** Equality *)
  Lemma elem_of_equiv X Y : X  Y   x, x  X  x  Y.
  Proof. set_solver. Qed.
  Lemma collection_equiv_spec X Y : X  Y  X  Y  Y  X.
  Proof. set_solver. Qed.

  (** Subset relation *)
  Global Instance collection_subseteq_antisymm: AntiSymm () (() : relation C).
  Proof. intros ??. set_solver. Qed.

  Global Instance collection_subseteq_preorder: PreOrder (() : relation C).
  Proof. split. by intros ??. intros ???; set_solver. Qed.

  Lemma subseteq_union X Y : X  Y  X  Y  Y.
  Proof. set_solver. Qed.
  Lemma subseteq_union_1 X Y : X  Y  X  Y  Y.
  Proof. by rewrite subseteq_union. Qed.
  Lemma subseteq_union_2 X Y : X  Y  Y  X  Y.
  Proof. by rewrite subseteq_union. Qed.

  Lemma union_subseteq_l X Y : X  X  Y.
  Proof. set_solver. Qed.
  Lemma union_subseteq_r X Y : Y  X  Y.
  Proof. set_solver. Qed.
  Lemma union_least X Y Z : X  Z  Y  Z  X  Y  Z.
  Proof. set_solver. Qed.

  Lemma elem_of_subseteq X Y : X  Y   x, x  X  x  Y.
  Proof. done. Qed.
  Lemma elem_of_subset X Y : X  Y  ( x, x  X  x  Y)  ¬( x, x  Y  x  X).
  Proof. set_solver. Qed.

  (** Union *)
  Lemma not_elem_of_union x X Y : x  X  Y  x  X  x  Y.
  Proof. set_solver. Qed.
  Lemma elem_of_union_l x X Y : x  X  x  X  Y.
  Proof. set_solver. Qed.
  Lemma elem_of_union_r x X Y : x  Y  x  X  Y.
  Proof. set_solver. Qed.

  Lemma union_preserving_l X Y1 Y2 : Y1  Y2  X  Y1  X  Y2.
  Proof. set_solver. Qed.
  Lemma union_preserving_r X1 X2 Y : X1  X2  X1  Y  X2  Y.
  Proof. set_solver. Qed.
  Lemma union_preserving X1 X2 Y1 Y2 : X1  X2  Y1  Y2  X1  Y1  X2  Y2.
  Proof. set_solver. Qed.

  Global Instance union_idemp : IdemP (() : relation C) ().
  Proof. intros X. set_solver. Qed.
  Global Instance union_empty_l : LeftId (() : relation C)  ().
  Proof. intros X. set_solver. Qed.
  Global Instance union_empty_r : RightId (() : relation C)  ().
  Proof. intros X. set_solver. Qed.
  Global Instance union_comm : Comm (() : relation C) ().
  Proof. intros X Y. set_solver. Qed.
  Global Instance union_assoc : Assoc (() : relation C) ().
  Proof. intros X Y Z. set_solver. Qed.

  Lemma empty_union X Y : X  Y    X    Y  .
  Proof. set_solver. Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
367 368 369 370 371
  Lemma union_cancel_l X Y Z : Z  X  Z  Y  Z  X  Z  Y  X  Y.
  Proof. set_solver. Qed.
  Lemma union_cancel_r X Y Z : X  Z  Y  Z  X  Z  Y  Z  X  Y.
  Proof. set_solver. Qed.

372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418
  (** Empty *)
  Lemma elem_of_equiv_empty X : X     x, x  X.
  Proof. set_solver. Qed.
  Lemma elem_of_empty x : x    False.
  Proof. set_solver. Qed.
  Lemma equiv_empty X : X    X  .
  Proof. set_solver. Qed.
  Lemma union_positive_l X Y : X  Y    X  .
  Proof. set_solver. Qed.
  Lemma union_positive_l_alt X Y : X    X  Y  .
  Proof. set_solver. Qed.
  Lemma non_empty_inhabited x X : x  X  X  .
  Proof. set_solver. Qed.

  (** Singleton *)
  Lemma elem_of_singleton_1 x y : x  {[y]}  x = y.
  Proof. by rewrite elem_of_singleton. Qed.
  Lemma elem_of_singleton_2 x y : x = y  x  {[y]}.
  Proof. by rewrite elem_of_singleton. Qed.
  Lemma elem_of_subseteq_singleton x X : x  X  {[ x ]}  X.
  Proof. set_solver. Qed.
  Lemma non_empty_singleton x : ({[ x ]} : C)  .
  Proof. set_solver. Qed.
  Lemma not_elem_of_singleton x y : x  {[ y ]}  x  y.
  Proof. by rewrite elem_of_singleton. Qed.

  (** Disjointness *)
  Lemma elem_of_disjoint X Y : X  Y   x, x  X  x  Y  False.
  Proof. done. Qed.

  Global Instance disjoint_sym : Symmetric (@disjoint C _).
  Proof. intros X Y. set_solver. Qed.
  Lemma disjoint_empty_l Y :   Y.
  Proof. set_solver. Qed.
  Lemma disjoint_empty_r X : X  .
  Proof. set_solver. Qed.
  Lemma disjoint_singleton_l x Y : {[ x ]}  Y  x  Y.
  Proof. set_solver. Qed.
  Lemma disjoint_singleton_r y X : X  {[ y ]}  y  X.
  Proof. set_solver. Qed.
  Lemma disjoint_union_l X1 X2 Y : X1  X2  Y  X1  Y  X2  Y.
  Proof. set_solver. Qed.
  Lemma disjoint_union_r X Y1 Y2 : X  Y1  Y2  X  Y1  X  Y2.
  Proof. set_solver. Qed.

  (** Big unions *)
  Lemma elem_of_union_list Xs x : x   Xs   X, X  Xs  x  X.
419 420
  Proof.
    split.
421 422
    - induction Xs; simpl; intros HXs; [by apply elem_of_empty in HXs|].
      setoid_rewrite elem_of_cons. apply elem_of_union in HXs. naive_solver.
Ralf Jung's avatar
Ralf Jung committed
423
    - intros [X [Hx]]. induction Hx; simpl; [by apply elem_of_union_l |].
424
      intros. apply elem_of_union_r; auto.
425
  Qed.
426

427 428 429 430 431 432 433
  Lemma union_list_nil :  @nil C = .
  Proof. done. Qed.
  Lemma union_list_cons X Xs :  (X :: Xs) = X   Xs.
  Proof. done. Qed.
  Lemma union_list_singleton X :  [X]  X.
  Proof. simpl. by rewrite (right_id  _). Qed.
  Lemma union_list_app Xs1 Xs2 :  (Xs1 ++ Xs2)   Xs1   Xs2.
434
  Proof.
435 436
    induction Xs1 as [|X Xs1 IH]; simpl; [by rewrite (left_id  _)|].
    by rewrite IH, (assoc _).
437
  Qed.
438
  Lemma union_list_reverse Xs :  (reverse Xs)   Xs.
439
  Proof.
440 441 442
    induction Xs as [|X Xs IH]; simpl; [done |].
    by rewrite reverse_cons, union_list_app,
      union_list_singleton, (comm _), IH.
443
  Qed.
444 445 446
  Lemma union_list_preserving Xs Ys : Xs * Ys   Xs   Ys.
  Proof. induction 1; simpl; auto using union_preserving. Qed.
  Lemma empty_union_list Xs :  Xs    Forall ( ) Xs.
447
  Proof.
448 449 450
    split.
    - induction Xs; simpl; rewrite ?empty_union; intuition.
    - induction 1 as [|?? E1 ? E2]; simpl. done. by apply empty_union.
451
  Qed.
452

453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487
  Section leibniz.
    Context `{!LeibnizEquiv C}.

    Lemma elem_of_equiv_L X Y : X = Y   x, x  X  x  Y.
    Proof. unfold_leibniz. apply elem_of_equiv. Qed.
    Lemma collection_equiv_spec_L X Y : X = Y  X  Y  Y  X.
    Proof. unfold_leibniz. apply collection_equiv_spec. Qed.

    (** Subset relation *)
    Global Instance collection_subseteq_partialorder :
      PartialOrder (() : relation C).
    Proof. split. apply _. intros ??. unfold_leibniz. apply (anti_symm _). Qed.

    Lemma subseteq_union_L X Y : X  Y  X  Y = Y.
    Proof. unfold_leibniz. apply subseteq_union. Qed.
    Lemma subseteq_union_1_L X Y : X  Y  X  Y = Y.
    Proof. unfold_leibniz. apply subseteq_union_1. Qed.
    Lemma subseteq_union_2_L X Y : X  Y = Y  X  Y.
    Proof. unfold_leibniz. apply subseteq_union_2. Qed.

    (** Union *)
    Global Instance union_idemp_L : IdemP (@eq C) ().
    Proof. intros ?. unfold_leibniz. apply (idemp _). Qed.
    Global Instance union_empty_l_L : LeftId (@eq C)  ().
    Proof. intros ?. unfold_leibniz. apply (left_id _ _). Qed.
    Global Instance union_empty_r_L : RightId (@eq C)  ().
    Proof. intros ?. unfold_leibniz. apply (right_id _ _). Qed.
    Global Instance union_comm_L : Comm (@eq C) ().
    Proof. intros ??. unfold_leibniz. apply (comm _). Qed.
    Global Instance union_assoc_L : Assoc (@eq C) ().
    Proof. intros ???. unfold_leibniz. apply (assoc _). Qed.

    Lemma empty_union_L X Y : X  Y =   X =   Y = .
    Proof. unfold_leibniz. apply empty_union. Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
488 489 490 491 492
    Lemma union_cancel_l_L X Y Z : Z  X  Z  Y  Z  X = Z  Y  X = Y.
    Proof. unfold_leibniz. apply union_cancel_l. Qed.
    Lemma union_cancel_r_L X Y Z : X  Z  Y  Z  X  Z = Y  Z  X = Y.
    Proof. unfold_leibniz. apply union_cancel_r. Qed.

493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545
    (** Empty *)
    Lemma elem_of_equiv_empty_L X : X =    x, x  X.
    Proof. unfold_leibniz. apply elem_of_equiv_empty. Qed.
    Lemma equiv_empty_L X : X    X = .
    Proof. unfold_leibniz. apply equiv_empty. Qed.
    Lemma union_positive_l_L X Y : X  Y =   X = .
    Proof. unfold_leibniz. apply union_positive_l. Qed.
    Lemma union_positive_l_alt_L X Y : X    X  Y  .
    Proof. unfold_leibniz. apply union_positive_l_alt. Qed.
    Lemma non_empty_inhabited_L x X : x  X  X  .
    Proof. unfold_leibniz. apply non_empty_inhabited. Qed.

    (** Singleton *)
    Lemma non_empty_singleton_L x : {[ x ]}  .
    Proof. unfold_leibniz. apply non_empty_singleton. Qed.

    (** Big unions *)
    Lemma union_list_singleton_L X :  [X] = X.
    Proof. unfold_leibniz. apply union_list_singleton. Qed.
    Lemma union_list_app_L Xs1 Xs2 :  (Xs1 ++ Xs2) =  Xs1   Xs2.
    Proof. unfold_leibniz. apply union_list_app. Qed.
    Lemma union_list_reverse_L Xs :  (reverse Xs) =  Xs.
    Proof. unfold_leibniz. apply union_list_reverse. Qed.
    Lemma empty_union_list_L Xs :  Xs =   Forall (= ) Xs.
    Proof. unfold_leibniz. by rewrite empty_union_list. Qed. 
  End leibniz.

  Section dec.
    Context `{ (X Y : C), Decision (X  Y)}.
    Lemma collection_subseteq_inv X Y : X  Y  X  Y  X  Y.
    Proof. destruct (decide (X  Y)); [by right|left;set_solver]. Qed.
    Lemma collection_not_subset_inv X Y : X  Y  X  Y  X  Y.
    Proof. destruct (decide (X  Y)); [by right|left;set_solver]. Qed.

    Lemma non_empty_union X Y : X  Y    X    Y  .
    Proof. rewrite empty_union. destruct (decide (X  )); intuition. Qed.
    Lemma non_empty_union_list Xs :  Xs    Exists ( ) Xs.
    Proof. rewrite empty_union_list. apply (not_Forall_Exists _). Qed.

    Context `{!LeibnizEquiv C}.
    Lemma collection_subseteq_inv_L X Y : X  Y  X  Y  X = Y.
    Proof. unfold_leibniz. apply collection_subseteq_inv. Qed.
    Lemma collection_not_subset_inv_L X Y : X  Y  X  Y  X = Y.
    Proof. unfold_leibniz. apply collection_not_subset_inv. Qed.
    Lemma non_empty_union_L X Y : X  Y    X    Y  .
    Proof. unfold_leibniz. apply non_empty_union. Qed.
    Lemma non_empty_union_list_L Xs :  Xs    Exists ( ) Xs.
    Proof. unfold_leibniz. apply non_empty_union_list. Qed.
  End dec.
End simple_collection.


(** * Collections with [∪], [∩], [∖], [∅] and [{[_]}] *)
Robbert Krebbers's avatar
Robbert Krebbers committed
546 547
Section collection.
  Context `{Collection A C}.
548
  Implicit Types X Y : C.
Robbert Krebbers's avatar
Robbert Krebbers committed
549

550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570
  (** Intersection *)
  Lemma subseteq_intersection X Y : X  Y  X  Y  X.
  Proof. set_solver. Qed. 
  Lemma subseteq_intersection_1 X Y : X  Y  X  Y  X.
  Proof. apply subseteq_intersection. Qed.
  Lemma subseteq_intersection_2 X Y : X  Y  X  X  Y.
  Proof. apply subseteq_intersection. Qed.

  Lemma intersection_subseteq_l X Y : X  Y  X.
  Proof. set_solver. Qed.
  Lemma intersection_subseteq_r X Y : X  Y  Y.
  Proof. set_solver. Qed.
  Lemma intersection_greatest X Y Z : Z  X  Z  Y  Z  X  Y.
  Proof. set_solver. Qed.

  Lemma intersection_preserving_l X Y1 Y2 : Y1  Y2  X  Y1  X  Y2.
  Proof. set_solver. Qed.
  Lemma intersection_preserving_r X1 X2 Y : X1  X2  X1  Y  X2  Y.
  Proof. set_solver. Qed.
  Lemma intersection_preserving X1 X2 Y1 Y2 :
    X1  X2  Y1  Y2  X1  Y1  X2  Y2.
571
  Proof. set_solver. Qed.
572 573 574 575 576 577 578 579 580 581 582 583

  Global Instance intersection_idemp : IdemP (() : relation C) ().
  Proof. intros X; set_solver. Qed.
  Global Instance intersection_comm : Comm (() : relation C) ().
  Proof. intros X Y; set_solver. Qed.
  Global Instance intersection_assoc : Assoc (() : relation C) ().
  Proof. intros X Y Z; set_solver. Qed.
  Global Instance intersection_empty_l : LeftAbsorb (() : relation C)  ().
  Proof. intros X; set_solver. Qed.
  Global Instance intersection_empty_r: RightAbsorb (() : relation C)  ().
  Proof. intros X; set_solver. Qed.

584
  Lemma intersection_singletons x : ({[x]} : C)  {[x]}  {[x]}.
585
  Proof. set_solver. Qed.
586 587 588 589 590 591 592 593 594 595 596

  Lemma union_intersection_l X Y Z : X  (Y  Z)  (X  Y)  (X  Z).
  Proof. set_solver. Qed.
  Lemma union_intersection_r X Y Z : (X  Y)  Z  (X  Z)  (Y  Z).
  Proof. set_solver. Qed.
  Lemma intersection_union_l X Y Z : X  (Y  Z)  (X  Y)  (X  Z).
  Proof. set_solver. Qed.
  Lemma intersection_union_r X Y Z : (X  Y)  Z  (X  Z)  (Y  Z).
  Proof. set_solver. Qed.

  (** Difference *)
Robbert Krebbers's avatar
Robbert Krebbers committed
597
  Lemma difference_twice X Y : (X  Y)  Y  X  Y.
598
  Proof. set_solver. Qed.
599
  Lemma subseteq_empty_difference X Y : X  Y  X  Y  .
600
  Proof. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
601
  Lemma difference_diag X : X  X  .
602
  Proof. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
603
  Lemma difference_union_distr_l X Y Z : (X  Y)  Z  X  Z  Y  Z.
604
  Proof. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
605
  Lemma difference_union_distr_r X Y Z : Z  (X  Y)  (Z  X)  (Z  Y).
606
  Proof. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
607
  Lemma difference_intersection_distr_l X Y Z : (X  Y)  Z  X  Z  Y  Z.
608
  Proof. set_solver. Qed.
609
  Lemma difference_disjoint X Y : X  Y  X  Y  X.
610
  Proof. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
611

612 613 614 615
  (** Disjointness *)
  Lemma disjoint_intersection X Y : X  Y  X  Y  .
  Proof. set_solver. Qed.

616 617
  Section leibniz.
    Context `{!LeibnizEquiv C}.
618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637

    (** Intersection *)
    Lemma subseteq_intersection_L X Y : X  Y  X  Y = X.
    Proof. unfold_leibniz. apply subseteq_intersection. Qed.
    Lemma subseteq_intersection_1_L X Y : X  Y  X  Y = X.
    Proof. unfold_leibniz. apply subseteq_intersection_1. Qed.
    Lemma subseteq_intersection_2_L X Y : X  Y = X  X  Y.
    Proof. unfold_leibniz. apply subseteq_intersection_2. Qed.

    Global Instance intersection_idemp_L : IdemP ((=) : relation C) ().
    Proof. intros ?. unfold_leibniz. apply (idemp _). Qed.
    Global Instance intersection_comm_L : Comm ((=) : relation C) ().
    Proof. intros ??. unfold_leibniz. apply (comm _). Qed.
    Global Instance intersection_assoc_L : Assoc ((=) : relation C) ().
    Proof. intros ???. unfold_leibniz. apply (assoc _). Qed.
    Global Instance intersection_empty_l_L: LeftAbsorb ((=) : relation C)  ().
    Proof. intros ?. unfold_leibniz. apply (left_absorb _ _). Qed.
    Global Instance intersection_empty_r_L: RightAbsorb ((=) : relation C)  ().
    Proof. intros ?. unfold_leibniz. apply (right_absorb _ _). Qed.

638 639
    Lemma intersection_singletons_L x : {[x]}  {[x]} = {[x]}.
    Proof. unfold_leibniz. apply intersection_singletons. Qed.
640 641 642 643 644 645 646 647 648 649 650

    Lemma union_intersection_l_L X Y Z : X  (Y  Z) = (X  Y)  (X  Z).
    Proof. unfold_leibniz; apply union_intersection_l. Qed.
    Lemma union_intersection_r_L X Y Z : (X  Y)  Z = (X  Z)  (Y  Z).
    Proof. unfold_leibniz; apply union_intersection_r. Qed.
    Lemma intersection_union_l_L X Y Z : X  (Y  Z)  (X  Y)  (X  Z).
    Proof. unfold_leibniz; apply intersection_union_l. Qed.
    Lemma intersection_union_r_L X Y Z : (X  Y)  Z  (X  Z)  (Y  Z).
    Proof. unfold_leibniz; apply intersection_union_r. Qed.

    (** Difference *)
651 652
    Lemma difference_twice_L X Y : (X  Y)  Y = X  Y.
    Proof. unfold_leibniz. apply difference_twice. Qed.
653 654
    Lemma subseteq_empty_difference_L X Y : X  Y  X  Y = .
    Proof. unfold_leibniz. apply subseteq_empty_difference. Qed.
655 656 657 658
    Lemma difference_diag_L X : X  X = .
    Proof. unfold_leibniz. apply difference_diag. Qed.
    Lemma difference_union_distr_l_L X Y Z : (X  Y)  Z = X  Z  Y  Z.
    Proof. unfold_leibniz. apply difference_union_distr_l. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
659 660
    Lemma difference_union_distr_r_L X Y Z : Z  (X  Y) = (Z  X)  (Z  Y).
    Proof. unfold_leibniz. apply difference_union_distr_r. Qed.
661 662 663
    Lemma difference_intersection_distr_l_L X Y Z :
      (X  Y)  Z = X  Z  Y  Z.
    Proof. unfold_leibniz. apply difference_intersection_distr_l. Qed.
664 665
    Lemma difference_disjoint_L X Y : X  Y  X  Y = X.
    Proof. unfold_leibniz. apply difference_disjoint. Qed.
666 667 668 669

    (** Disjointness *)
    Lemma disjoint_intersection_L X Y : X  Y  X  Y = .
    Proof. unfold_leibniz. apply disjoint_intersection. Qed.
670 671 672
  End leibniz.

  Section dec.
Robbert Krebbers's avatar
Robbert Krebbers committed
673
    Context `{ (x : A) (X : C), Decision (x  X)}.
674
    Lemma not_elem_of_intersection x X Y : x  X  Y  x  X  x  Y.
675
    Proof. rewrite elem_of_intersection. destruct (decide (x  X)); tauto. Qed.
676
    Lemma not_elem_of_difference x X Y : x  X  Y  x  X  x  Y.
677
    Proof. rewrite elem_of_difference. destruct (decide (x  Y)); tauto. Qed.
678 679
    Lemma union_difference X Y : X  Y  Y  X  Y  X.
    Proof.
680
      intros ? x; split; rewrite !elem_of_union, elem_of_difference; [|intuition].
681
      destruct (decide (x  X)); intuition.
682
    Qed.
683 684 685 686 687
    Lemma subseteq_disjoint_union X Y : X  Y   Z, Y  X  Z  X  Z.
    Proof.
      split; [|set_solver].
      exists (Y  X); split; [auto using union_difference|set_solver].
    Qed.
688
    Lemma non_empty_difference X Y : X  Y  Y  X  .
689
    Proof. intros [HXY1 HXY2] Hdiff. destruct HXY2. set_solver. Qed.
690
    Lemma empty_difference_subseteq X Y : X  Y    X  Y.
691
    Proof. set_solver. Qed.
692

693 694 695 696 697
    Context `{!LeibnizEquiv C}.
    Lemma union_difference_L X Y : X  Y  Y = X  Y  X.
    Proof. unfold_leibniz. apply union_difference. Qed.
    Lemma non_empty_difference_L X Y : X  Y  Y  X  .
    Proof. unfold_leibniz. apply non_empty_difference. Qed.
698 699
    Lemma empty_difference_subseteq_L X Y : X  Y =   X  Y.
    Proof. unfold_leibniz. apply empty_difference_subseteq. Qed.
700 701
    Lemma subseteq_disjoint_union_L X Y : X  Y   Z, Y = X  Z  X  Z.
    Proof. unfold_leibniz. apply subseteq_disjoint_union. Qed.
702 703 704
  End dec.
End collection.

705 706 707 708 709 710 711 712 713

(** * Conversion of option and list *)
Definition of_option `{Singleton A C, Empty C} (mx : option A) : C :=
  match mx with None =>  | Some x => {[ x ]} end.
Fixpoint of_list `{Singleton A C, Empty C, Union C} (l : list A) : C :=
  match l with [] =>  | x :: l => {[ x ]}  of_list l end.

Section of_option_list.
  Context `{SimpleCollection A C}.
Robbert Krebbers's avatar
Robbert Krebbers committed
714 715
  Implicit Types l : list A.

716 717
  Lemma elem_of_of_option (x : A) mx: x  of_option mx  mx = Some x.
  Proof. destruct mx; set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
718 719 720
  Lemma not_elem_of_of_option (x : A) mx: x  of_option mx  mx  Some x.
  Proof. by rewrite elem_of_of_option. Qed.

721 722 723 724 725 726 727
  Lemma elem_of_of_list (x : A) l : x  of_list l  x  l.
  Proof.
    split.
    - induction l; simpl; [by rewrite elem_of_empty|].
      rewrite elem_of_union,elem_of_singleton; intros [->|?]; constructor; auto.
    - induction 1; simpl; rewrite elem_of_union, elem_of_singleton; auto.
  Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
728 729 730
  Lemma not_elem_of_of_list (x : A) l : x  of_list l  x  l.
  Proof. by rewrite elem_of_of_list. Qed.

731 732 733 734 735 736 737
  Global Instance set_unfold_of_option (mx : option A) x :
    SetUnfold (x  of_option mx) (mx = Some x).
  Proof. constructor; apply elem_of_of_option. Qed.
  Global Instance set_unfold_of_list (l : list A) x P :
    SetUnfold (x  l) P  SetUnfold (x  of_list l) P.
  Proof. constructor. by rewrite elem_of_of_list, (set_unfold (x  l) P). Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
738 739 740 741 742 743 744 745
  Lemma of_list_nil : of_list (C:=C) [] = .
  Proof. done. Qed.
  Lemma of_list_cons x l : of_list (C:=C) (x :: l) = {[ x ]}  of_list l.
  Proof. done. Qed.
  Lemma of_list_app l1 l2 : of_list (C:=C) (l1 ++ l2)  of_list l1  of_list l2.
  Proof. set_solver. Qed.
  Global Instance of_list_perm : Proper (() ==> ()) (of_list (C:=C)).
  Proof. induction 1; set_solver. Qed.
746

Robbert Krebbers's avatar
Robbert Krebbers committed
747 748 749 750 751 752
  Context `{!LeibnizEquiv C}.
  Lemma of_list_app_L l1 l2 : of_list (C:=C) (l1 ++ l2) = of_list l1  of_list l2.
  Proof. set_solver. Qed.
  Global Instance of_list_perm_L : Proper (() ==> (=)) (of_list (C:=C)).
  Proof. induction 1; set_solver. Qed.
End of_option_list.
753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783


(** * Guard *)
Global Instance collection_guard `{CollectionMonad M} : MGuard M :=
  λ P dec A x, match dec with left H => x H | _ =>  end.

Section collection_monad_base.
  Context `{CollectionMonad M}.
  Lemma elem_of_guard `{Decision P} {A} (x : A) (X : M A) :
    x  guard P; X  P  x  X.
  Proof.
    unfold mguard, collection_guard; simpl; case_match;
      rewrite ?elem_of_empty; naive_solver.
  Qed.
  Lemma elem_of_guard_2 `{Decision P} {A} (x : A) (X : M A) :
    P  x  X  x  guard P; X.
  Proof. by rewrite elem_of_guard. Qed.
  Lemma guard_empty `{Decision P} {A} (X : M A) : guard P; X    ¬P  X  .
  Proof.
    rewrite !elem_of_equiv_empty; setoid_rewrite elem_of_guard.
    destruct (decide P); naive_solver.
  Qed.
  Global Instance set_unfold_guard `{Decision P} {A} (x : A) X Q :
    SetUnfold (x  X) Q  SetUnfold (x  guard P; X) (P  Q).
  Proof. constructor. by rewrite elem_of_guard, (set_unfold (x  X) Q). Qed.
  Lemma bind_empty {A B} (f : A  M B) X :
    X = f    X     x, x  X  f x  .
  Proof. set_solver. Qed.
End collection_monad_base.


784
(** * Quantifiers *)
785 786 787
Definition set_Forall `{ElemOf A C} (P : A  Prop) (X : C) :=  x, x  X  P x.
Definition set_Exists `{ElemOf A C} (P : A  Prop) (X : C) :=  x, x  X  P x.

Robbert Krebbers's avatar
Robbert Krebbers committed
788
Section quantifiers.
789
  Context `{SimpleCollection A B} (P : A  Prop).
Robbert Krebbers's avatar
Robbert Krebbers committed
790

791
  Lemma set_Forall_empty : set_Forall P .
792
  Proof. unfold set_Forall. set_solver. Qed.
793
  Lemma set_Forall_singleton x : set_Forall P {[ x ]}  P x.
794
  Proof. unfold set_Forall. set_solver. Qed.
795 796
  Lemma set_Forall_union X Y :
    set_Forall P X  set_Forall P Y  set_Forall P (X  Y).
797
  Proof. unfold set_Forall. set_solver. Qed.
798
  Lemma set_Forall_union_inv_1 X Y : set_Forall P (X  Y)  set_Forall P X.
799
  Proof. unfold set_Forall. set_solver. Qed.
800
  Lemma set_Forall_union_inv_2 X Y : set_Forall P (X  Y)  set_Forall P Y.
801
  Proof. unfold set_Forall. set_solver. Qed.
802

803
  Lemma set_Exists_empty : ¬set_Exists P .
804
  Proof. unfold set_Exists. set_solver. Qed.
805
  Lemma set_Exists_singleton x : set_Exists P {[ x ]}  P x.
806
  Proof. unfold set_Exists. set_solver. Qed.
807
  Lemma set_Exists_union_1 X Y : set_Exists P X  set_Exists P (X  Y).
808
  Proof. unfold set_Exists. set_solver. Qed.
809
  Lemma set_Exists_union_2 X Y : set_Exists P Y  set_Exists P (X  Y).
810
  Proof. unfold set_Exists. set_solver. Qed.
811
  Lemma set_Exists_union_inv X Y :
812
    set_Exists P (X  Y)  set_Exists P X  set_Exists P Y.
813
  Proof. unfold set_Exists. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
814 815
End quantifiers.

816
Section more_quantifiers.
817
  Context `{SimpleCollection A B}.
818

819 820 821 822 823 824
  Lemma set_Forall_weaken (P Q : A  Prop) (Hweaken :  x, P x  Q x) X :
    set_Forall P X  set_Forall Q X.
  Proof. unfold set_Forall. naive_solver. Qed.
  Lemma set_Exists_weaken (P Q : A  Prop) (Hweaken :  x, P x  Q x) X :
    set_Exists P X  set_Exists Q X.
  Proof. unfold set_Exists. naive_solver. Qed.
825 826
End more_quantifiers.

827 828 829
(** * Fresh elements *)
(** We collect some properties on the [fresh] operation. In particular we
generalize [fresh] to generate lists of fresh elements. *)
830 831 832 833 834 835 836 837 838 839
Fixpoint fresh_list `{Fresh A C, Union C, Singleton A C}
    (n : nat) (X : C) : list A :=
  match n with
  | 0 => []
  | S n => let x := fresh X in x :: fresh_list n ({[ x ]}  X)
  end.
Inductive Forall_fresh `{ElemOf A C} (X : C) : list A  Prop :=
  | Forall_fresh_nil : Forall_fresh X []
  | Forall_fresh_cons x xs :
     x  xs  x  X  Forall_fresh X xs  Forall_fresh X (x :: xs).
840

841 842
Section fresh.
  Context `{FreshSpec A C}.
843
  Implicit Types X Y : C.
844

845
  Global Instance fresh_proper: Proper (() ==> (=)) (fresh (C:=C)).
846
  Proof. intros ???. by apply fresh_proper_alt, elem_of_equiv. Qed.
847 848
  Global Instance fresh_list_proper:
    Proper ((=) ==> () ==> (=)) (fresh_list (C:=C)).
849
  Proof.
850
    intros ? n ->. induction n as [|n IH]; intros ?? E; f_equal/=; [by rewrite E|].
851
    apply IH. by rewrite E.
852
  Qed.
853

854 855
  Lemma exist_fresh X :  x, x  X.
  Proof. exists (fresh X). apply is_fresh. Qed.
856 857 858 859
  Lemma Forall_fresh_NoDup X xs : Forall_fresh X xs  NoDup xs.
  Proof. induction 1; by constructor. Qed.
  Lemma Forall_fresh_elem_of X xs x : Forall_fresh X xs  x  xs  x  X.
  Proof.
860
    intros HX; revert x; rewrite <-Forall_forall. by induction HX; constructor.
861 862 863 864 865 866 867 868
  Qed.
  Lemma Forall_fresh_alt X xs :
    Forall_fresh X xs  NoDup xs   x, x  xs  x  X.
  Proof.
    split; eauto using Forall_fresh_NoDup, Forall_fresh_elem_of.
    rewrite <-Forall_forall.
    intros [Hxs Hxs']. induction Hxs; decompose_Forall_hyps; constructor; auto.
  Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
869 870
  Lemma Forall_fresh_subseteq X Y xs :
    Forall_fresh X xs  Y  X  Forall_fresh Y xs.
871
  Proof. rewrite !Forall_fresh_alt; set_solver. Qed.
872

873 874
  Lemma fresh_list_length n X : length (fresh_list n X) = n.
  Proof. revert X. induction n; simpl; auto. Qed.
875
  Lemma fresh_list_is_fresh n X x : x  fresh_list n X  x  X.
876
  Proof.
877
    revert X. induction n as [|n IH]; intros X; simpl;[by rewrite elem_of_nil|].
878
    rewrite elem_of_cons; intros [->| Hin]; [apply is_fresh|].
879
    apply IH in Hin; set_solver.
880
  Qed.
881
  Lemma NoDup_fresh_list n X : NoDup (fresh_list n X).
882
  Proof.
883
    revert X. induction n; simpl; constructor; auto.
884
    intros Hin; apply fresh_list_is_fresh in Hin; set_solver.
885 886 887 888
  Qed.
  Lemma Forall_fresh_list X n : Forall_fresh X (fresh_list n X).
  Proof.
    rewrite Forall_fresh_alt; eauto using NoDup_fresh_list, fresh_list_is_fresh.
889 890
  Qed.
End fresh.
891

892
(** * Properties of implementations of collections that form a monad *)
893 894 895
Section collection_monad.
  Context `{CollectionMonad M}.

896 897
  Global Instance collection_fmap_mono {A B} :
    Proper (pointwise_relation _ (=) ==> () ==> ()) (@fmap M _ A B).
898
  Proof. intros f g ? X Y ?; set_solver by eauto. Qed.
899 900
  Global Instance collection_bind_mono {A B} :
    Proper (((=) ==> ()) ==> () ==> ()) (@mbind M _ A B).
901
  Proof. unfold respectful; intros f g Hfg X Y ?; set_solver. Qed.
902 903
  Global Instance collection_join_mono {A} :
    Proper (() ==> ())