base.v 26.4 KB
Newer Older
1 2 3 4 5 6
(* Copyright (c) 2012, Robbert Krebbers. *)
(* This file is distributed under the terms of the BSD license. *)
(** This file collects type class interfaces, notations, and general theorems
that are used throughout the whole development. Most importantly it contains
abstract interfaces for ordered structures, collections, and various other data
structures. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
7 8 9 10
Global Generalizable All Variables.
Global Set Automatic Coercions Import.
Require Export Morphisms RelationClasses List Bool Utf8 Program Setoid NArith.

11 12 13 14
(** * General *)
(** The following coercion allows us to use Booleans as propositions. *)
Coercion Is_true : bool >-> Sortclass.

Robbert Krebbers's avatar
Robbert Krebbers committed
15 16
(** Ensure that [simpl] unfolds [id], [compose], and [flip] when fully
applied. *)
17 18
Arguments id _ _/.
Arguments compose _ _ _ _ _ _ /.
Robbert Krebbers's avatar
Robbert Krebbers committed
19
Arguments flip _ _ _ _ _ _/.
20

21 22 23 24
(** Change [True] and [False] into notations in order to enable overloading.
We will use this in the file [assertions] to give [True] and [False] a
different interpretation in [assert_scope] used for assertions of our axiomatic
semantics. *)
25 26
Notation "'True'" := True : type_scope.
Notation "'False'" := False : type_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
27

Robbert Krebbers's avatar
Robbert Krebbers committed
28 29 30
Notation curry := prod_curry.
Notation uncurry := prod_uncurry.

31 32
(** Throughout this development we use [C_scope] for all general purpose
notations that do not belong to a more specific scope. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
33 34 35
Delimit Scope C_scope with C.
Global Open Scope C_scope.

36
(** Introduce some Haskell style like notations. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
37 38 39 40 41 42 43 44 45
Notation "(=)" := eq (only parsing) : C_scope.
Notation "( x =)" := (eq x) (only parsing) : C_scope.
Notation "(= x )" := (λ y, eq y x) (only parsing) : C_scope.
Notation "(≠)" := (λ x y, x  y) (only parsing) : C_scope.
Notation "( x ≠)" := (λ y, x  y) (only parsing) : C_scope.
Notation "(≠ x )" := (λ y, y  x) (only parsing) : C_scope.

Hint Extern 0 (?x = ?x) => reflexivity.

46 47 48
Notation "(→)" := (λ x y, x  y) (only parsing) : C_scope.
Notation "( T →)" := (λ y, T  y) (only parsing) : C_scope.
Notation "(→ T )" := (λ y, y  T) (only parsing) : C_scope.
49

50
Notation "t $ r" := (t r)
51
  (at level 65, right associativity, only parsing) : C_scope.
52 53 54
Notation "($)" := (λ f x, f x) (only parsing) : C_scope.
Notation "($ x )" := (λ f, f x) (only parsing) : C_scope.

Robbert Krebbers's avatar
Robbert Krebbers committed
55 56 57 58
Infix "∘" := compose : C_scope.
Notation "(∘)" := compose (only parsing) : C_scope.
Notation "( f ∘)" := (compose f) (only parsing) : C_scope.
Notation "(∘ f )" := (λ g, compose g f) (only parsing) : C_scope.
59 60 61

(** Set convenient implicit arguments for [existT] and introduce notations. *)
Arguments existT {_ _} _ _.
Robbert Krebbers's avatar
Robbert Krebbers committed
62 63 64
Notation "x ↾ p" := (exist _ x p) (at level 20) : C_scope.
Notation "` x" := (proj1_sig x) : C_scope.

65 66 67 68
(** * Type classes *)
(** ** Provable propositions *)
(** This type class collects provable propositions. It is useful to constraint
type classes by arbitrary propositions. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
69 70
Class PropHolds (P : Prop) := prop_holds: P.

71 72
Hint Extern 0 (PropHolds _) => assumption : typeclass_instances.
Instance: Proper (iff ==> iff) PropHolds.
73
Proof. repeat intro; trivial. Qed.
74 75 76

Ltac solve_propholds :=
  match goal with
77 78
  | |- PropHolds (?P) => apply _
  | |- ?P => change (PropHolds P); apply _
79 80 81 82 83 84 85
  end.

(** ** Decidable propositions *)
(** This type class by (Spitters/van der Weegen, 2011) collects decidable
propositions. For example to declare a parameter expressing decidable equality
on a type [A] we write [`{∀ x y : A, Decision (x = y)}] and use it by writing
[decide (x = y)]. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
86 87 88
Class Decision (P : Prop) := decide : {P} + {¬P}.
Arguments decide _ {_}.

89 90 91
(** ** Setoid equality *)
(** We define an operational type class for setoid equality. This is based on
(Spitters/van der Weegen, 2011). *)
Robbert Krebbers's avatar
Robbert Krebbers committed
92 93 94 95 96 97 98 99 100 101
Class Equiv A := equiv: relation A.
Infix "≡" := equiv (at level 70, no associativity) : C_scope.
Notation "(≡)" := equiv (only parsing) : C_scope.
Notation "( x ≡)" := (equiv x) (only parsing) : C_scope.
Notation "(≡ x )" := (λ y, y  x) (only parsing) : C_scope.
Notation "(≢)" := (λ x y, ¬x  y) (only parsing) : C_scope.
Notation "x ≢ y":= (¬x  y) (at level 70, no associativity) : C_scope.
Notation "( x ≢)" := (λ y, x  y) (only parsing) : C_scope.
Notation "(≢ x )" := (λ y, y  x) (only parsing) : C_scope.

102 103 104 105 106 107 108 109
(** A [Params f n] instance forces the setoid rewriting mechanism not to
rewrite in the first [n] arguments of the function [f]. We will declare such
instances for all operational type classes in this development. *)
Instance: Params (@equiv) 2.

(** The following instance forces [setoid_replace] to use setoid equality
(for types that have an [Equiv] instance) rather than the standard Leibniz
equality. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
110
Instance equiv_default_relation `{Equiv A} : DefaultRelation () | 3.
111 112
Hint Extern 0 (_  _) => reflexivity.
Hint Extern 0 (_  _) => symmetry; assumption.
Robbert Krebbers's avatar
Robbert Krebbers committed
113

114
(** ** Operations on collections *)
115
(** We define operational type classes for the traditional operations and
116
relations on collections: the empty collection [∅], the union [(∪)],
117 118
intersection [(∩)], and difference [(∖)], the singleton [{[_]}], the subset
[(⊆)] and element of [(∈)] relation, and disjointess [(⊥)]. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
119 120 121 122
Class Empty A := empty: A.
Notation "∅" := empty : C_scope.

Class Union A := union: A  A  A.
123
Instance: Params (@union) 2.
Robbert Krebbers's avatar
Robbert Krebbers committed
124 125 126 127 128
Infix "∪" := union (at level 50, left associativity) : C_scope.
Notation "(∪)" := union (only parsing) : C_scope.
Notation "( x ∪)" := (union x) (only parsing) : C_scope.
Notation "(∪ x )" := (λ y, union y x) (only parsing) : C_scope.

129 130 131 132 133
Definition union_list `{Empty A}
  `{Union A} : list A  A := fold_right () .
Arguments union_list _ _ _ !_ /.
Notation "⋃ l" := (union_list l) (at level 20, format "⋃  l") : C_scope.

Robbert Krebbers's avatar
Robbert Krebbers committed
134
Class Intersection A := intersection: A  A  A.
135
Instance: Params (@intersection) 2.
Robbert Krebbers's avatar
Robbert Krebbers committed
136 137 138 139 140 141
Infix "∩" := intersection (at level 40) : C_scope.
Notation "(∩)" := intersection (only parsing) : C_scope.
Notation "( x ∩)" := (intersection x) (only parsing) : C_scope.
Notation "(∩ x )" := (λ y, intersection y x) (only parsing) : C_scope.

Class Difference A := difference: A  A  A.
142
Instance: Params (@difference) 2.
Robbert Krebbers's avatar
Robbert Krebbers committed
143 144 145 146 147
Infix "∖" := difference (at level 40) : C_scope.
Notation "(∖)" := difference (only parsing) : C_scope.
Notation "( x ∖)" := (difference x) (only parsing) : C_scope.
Notation "(∖ x )" := (λ y, difference y x) (only parsing) : C_scope.

148 149 150 151 152 153
Class Singleton A B := singleton: A  B.
Instance: Params (@singleton) 3.
Notation "{[ x ]}" := (singleton x) : C_scope.
Notation "{[ x ; y ; .. ; z ]}" :=
  (union .. (union (singleton x) (singleton y)) .. (singleton z)) : C_scope.

Robbert Krebbers's avatar
Robbert Krebbers committed
154
Class SubsetEq A := subseteq: A  A  Prop.
155
Instance: Params (@subseteq) 2.
Robbert Krebbers's avatar
Robbert Krebbers committed
156 157 158 159 160 161 162 163 164
Infix "⊆" := subseteq (at level 70) : C_scope.
Notation "(⊆)" := subseteq (only parsing) : C_scope.
Notation "( X ⊆ )" := (subseteq X) (only parsing) : C_scope.
Notation "( ⊆ X )" := (λ Y, subseteq Y X) (only parsing) : C_scope.
Notation "X ⊈ Y" := (¬X  Y) (at level 70) : C_scope.
Notation "(⊈)" := (λ X Y, X  Y) (only parsing) : C_scope.
Notation "( X ⊈ )" := (λ Y, X  Y) (only parsing) : C_scope.
Notation "( ⊈ X )" := (λ Y, Y  X) (only parsing) : C_scope.

165
Hint Extern 0 (_  _) => reflexivity.
Robbert Krebbers's avatar
Robbert Krebbers committed
166

Robbert Krebbers's avatar
Robbert Krebbers committed
167 168 169 170 171 172 173 174 175 176 177
Class Subset A := subset: A  A  Prop.
Instance: Params (@subset) 2.
Infix "⊂" := subset (at level 70) : C_scope.
Notation "(⊂)" := subset (only parsing) : C_scope.
Notation "( X ⊂ )" := (subset X) (only parsing) : C_scope.
Notation "( ⊂ X )" := (λ Y, subset Y X) (only parsing) : C_scope.
Notation "X ⊄  Y" := (¬X  Y) (at level 70) : C_scope.
Notation "(⊄)" := (λ X Y, X  Y) (only parsing) : C_scope.
Notation "( X ⊄ )" := (λ Y, X  Y) (only parsing) : C_scope.
Notation "( ⊄ X )" := (λ Y, Y  X) (only parsing) : C_scope.

Robbert Krebbers's avatar
Robbert Krebbers committed
178
Class ElemOf A B := elem_of: A  B  Prop.
179
Instance: Params (@elem_of) 3.
Robbert Krebbers's avatar
Robbert Krebbers committed
180 181 182 183 184 185 186 187 188
Infix "∈" := elem_of (at level 70) : C_scope.
Notation "(∈)" := elem_of (only parsing) : C_scope.
Notation "( x ∈)" := (elem_of x) (only parsing) : C_scope.
Notation "(∈ X )" := (λ x, elem_of x X) (only parsing) : C_scope.
Notation "x ∉ X" := (¬x  X) (at level 80) : C_scope.
Notation "(∉)" := (λ x X, x  X) (only parsing) : C_scope.
Notation "( x ∉)" := (λ X, x  X) (only parsing) : C_scope.
Notation "(∉ X )" := (λ x, x  X) (only parsing) : C_scope.

Robbert Krebbers's avatar
Robbert Krebbers committed
189 190 191 192 193 194 195
Class Disjoint A := disjoint : A  A  Prop.
Instance: Params (@disjoint) 2.
Infix "⊥" := disjoint (at level 70) : C_scope.
Notation "(⊥)" := disjoint (only parsing) : C_scope.
Notation "( X ⊥)" := (disjoint X) (only parsing) : C_scope.
Notation "(⊥ X )" := (λ Y, disjoint Y X) (only parsing) : C_scope.

196 197 198 199 200 201 202 203 204 205 206 207
Inductive list_disjoint `{Disjoint A} : list A  Prop :=
  | disjoint_nil :
     list_disjoint []
  | disjoint_cons X Xs :
     Forall ( X) Xs 
     list_disjoint Xs 
     list_disjoint (X :: Xs).
Lemma list_disjoint_cons_inv `{Disjoint A} X Xs :
  list_disjoint (X :: Xs) 
  Forall ( X) Xs  list_disjoint Xs.
Proof. inversion_clear 1; auto. Qed.

208 209 210
Instance generic_disjoint `{ElemOf A B} : Disjoint B | 100 :=
  λ X Y,  x, x  X  x  Y.

Robbert Krebbers's avatar
Robbert Krebbers committed
211 212 213 214
Class Filter A B :=
  filter:  (P : A  Prop) `{ x, Decision (P x)}, B  B.
(* Arguments filter {_ _ _} _ {_} !_ / : simpl nomatch. *)

215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
(** ** Monadic operations *)
(** We define operational type classes for the monadic operations bind, join 
and fmap. These type classes are defined in a non-standard way by taking the
function as a parameter of the class. For example, we define
<<
  Class FMapD := fmap: ∀ {A B}, (A → B) → M A → M B.
>>
instead of
<<
  Class FMap {A B} (f : A → B) := fmap: M A → M B.
>>
This approach allows us to define [fmap] on lists such that [simpl] unfolds it
in the appropriate way, and so that it can be used for mutual recursion
(the mapped function [f] is not part of the fixpoint) as well. This is a hack,
and should be replaced by something more appropriate in future versions. *)

(* We use these type classes merely for convenient overloading of notations and
do not formalize any theory on monads (we do not even define a class with the
monad laws). *)
Class MRet (M : Type  Type) := mret:  {A}, A  M A.
Instance: Params (@mret) 3.
Arguments mret {_ _ _} _.

Class MBindD (M : Type  Type) {A B} (f : A  M B) := mbind: M A  M B.
Notation MBind M := ( {A B} (f : A  M B), MBindD M f)%type.
Instance: Params (@mbind) 5.
Arguments mbind {_ _ _} _ {_} !_ / : simpl nomatch.

Class MJoin (M : Type  Type) := mjoin:  {A}, M (M A)  M A.
Instance: Params (@mjoin) 3.
Arguments mjoin {_ _ _} !_ / : simpl nomatch.

Class FMapD (M : Type  Type) {A B} (f : A  B) := fmap: M A  M B.
Notation FMap M := ( {A B} (f : A  B), FMapD M f)%type.
Instance: Params (@fmap) 6.
Arguments fmap {_ _ _} _ {_} !_ / : simpl nomatch.

Notation "m ≫= f" := (mbind f m) (at level 60, right associativity) : C_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
253 254 255 256
Notation "( m ≫=)" := (λ f, mbind f m) (only parsing) : C_scope.
Notation "(≫= f )" := (mbind f) (only parsing) : C_scope.
Notation "(≫=)" := (λ m f, mbind f m) (only parsing) : C_scope.

257 258
Notation "x ← y ; z" := (y = (λ x : _, z))
  (at level 65, only parsing, next at level 35, right associativity) : C_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
259
Infix "<$>" := fmap (at level 65, right associativity) : C_scope.
260 261 262 263 264 265

Class MGuard (M : Type  Type) :=
  mguard:  P {dec : Decision P} {A}, M A  M A.
Notation "'guard' P ; o" := (mguard P o)
  (at level 65, only parsing, next at level 35, right associativity) : C_scope.

266
(** ** Operations on maps *)
267 268
(** In this section we define operational type classes for the operations
on maps. In the file [fin_maps] we will axiomatize finite maps.
269
The function lookup [m !! k] should yield the element at key [k] in [m]. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
270
Class Lookup (K A M : Type) :=
271
  lookup: K  M  option A.
272 273 274 275 276 277
Instance: Params (@lookup) 4.

Notation "m !! i" := (lookup i m) (at level 20) : C_scope.
Notation "(!!)" := lookup (only parsing) : C_scope.
Notation "( m !!)" := (λ i, lookup i m) (only parsing) : C_scope.
Notation "(!! i )" := (lookup i) (only parsing) : C_scope.
278
Arguments lookup _ _ _ _ !_ !_ / : simpl nomatch.
279 280 281

(** The function insert [<[k:=a]>m] should update the element at key [k] with
value [a] in [m]. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
282
Class Insert (K A M : Type) :=
283
  insert: K  A  M  M.
284 285 286
Instance: Params (@insert) 4.
Notation "<[ k := a ]>" := (insert k a)
  (at level 5, right associativity, format "<[ k := a ]>") : C_scope.
287
Arguments insert _ _ _ _ !_ _ !_ / : simpl nomatch.
288

289 290 291
(** The function delete [delete k m] should delete the value at key [k] in
[m]. If the key [k] is not a member of [m], the original map should be
returned. *)
292 293 294 295
Class Delete (K M : Type) :=
  delete: K  M  M.
Instance: Params (@delete) 3.
Arguments delete _ _ _ !_ !_ / : simpl nomatch.
296 297

(** The function [alter f k m] should update the value at key [k] using the
298
function [f], which is called with the original value. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
299
Class AlterD (K A M : Type) (f : A  A) :=
300
  alter: K  M  M.
Robbert Krebbers's avatar
Robbert Krebbers committed
301
Notation Alter K A M := ( (f : A  A), AlterD K A M f)%type.
302 303
Instance: Params (@alter) 5.
Arguments alter {_ _ _} _ {_} !_ !_ / : simpl nomatch.
304 305

(** The function [alter f k m] should update the value at key [k] using the
306 307 308
function [f], which is called with the original value at key [k] or [None]
if [k] is not a member of [m]. The value at [k] should be deleted if [f] 
yields [None]. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
309
Class PartialAlter (K A M : Type) :=
310
  partial_alter: (option A  option A)  K  M  M.
311
Instance: Params (@partial_alter) 4.
312
Arguments partial_alter _ _ _ _ _ !_ !_ / : simpl nomatch.
313 314 315

(** The function [dom C m] should yield the domain of [m]. That is a finite
collection of type [C] that contains the keys that are a member of [m]. *)
316 317 318 319
Class Dom (K M : Type) :=
  dom:  C `{Empty C} `{Union C} `{Singleton K C}, M  C.
Instance: Params (@dom) 7.
Arguments dom _ _ _ _ _ _ _ !_ / : simpl nomatch.
320 321 322 323

(** The function [merge f m1 m2] should merge the maps [m1] and [m2] by
constructing a new map whose value at key [k] is [f (m1 !! k) (m2 !! k)]
provided that [k] is a member of either [m1] or [m2].*)
Robbert Krebbers's avatar
Robbert Krebbers committed
324 325
Class Merge (A M : Type) :=
  merge: (option A  option A  option A)  M  M  M.
326
Instance: Params (@merge) 3.
327
Arguments merge _ _ _ _ !_ !_ / : simpl nomatch.
328 329

(** We lift the insert and delete operation to lists of elements. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
330
Definition insert_list `{Insert K A M} (l : list (K * A)) (m : M) : M :=
331 332
  fold_right (λ p, <[ fst p := snd p ]>) m l.
Instance: Params (@insert_list) 4.
333
Definition delete_list `{Delete K M} (l : list K) (m : M) : M :=
334
  fold_right delete m l.
335 336
Instance: Params (@delete_list) 3.

Robbert Krebbers's avatar
Robbert Krebbers committed
337
Definition insert_consecutive `{Insert nat A M}
338 339 340
    (i : nat) (l : list A) (m : M) : M :=
  fold_right (λ x f i, <[i:=x]>(f (S i))) (λ _, m) l i.
Instance: Params (@insert_consecutive) 3.
341

Robbert Krebbers's avatar
Robbert Krebbers committed
342 343 344 345 346
(** The function [union_with f m1 m2] is supposed to yield the union of [m1]
and [m2] using the function [f] to combine values of members that are in
both [m1] and [m2]. *)
Class UnionWith (A M : Type) :=
  union_with: (A  A  option A)  M  M  M.
347 348
Instance: Params (@union_with) 3.

Robbert Krebbers's avatar
Robbert Krebbers committed
349 350 351
(** Similarly for intersection and difference. *)
Class IntersectionWith (A M : Type) :=
  intersection_with: (A  A  option A)  M  M  M.
352
Instance: Params (@intersection_with) 3.
Robbert Krebbers's avatar
Robbert Krebbers committed
353 354
Class DifferenceWith (A M : Type) :=
  difference_with: (A  A  option A)  M  M  M.
355
Instance: Params (@difference_with) 3.
Robbert Krebbers's avatar
Robbert Krebbers committed
356

Robbert Krebbers's avatar
Robbert Krebbers committed
357 358 359 360
Definition intersection_with_list `{IntersectionWith A M}
  (f : A  A  option A) : M  list M  M := fold_right (intersection_with f).
Arguments intersection_with_list _ _ _ _ _ !_ /.

361 362 363 364
(** ** Common properties *)
(** These operational type classes allow us to refer to common mathematical
properties in a generic way. For example, for injectivity of [(k ++)] it
allows us to write [injective (k ++)] instead of [app_inv_head k]. *)
365 366 367 368 369 370 371 372 373 374 375 376
Class Injective {A B} R S (f : A  B) :=
  injective:  x y : A, S (f x) (f y)  R x y.
Class Idempotent {A} R (f : A  A  A) :=
  idempotent:  x, R (f x x) x.
Class Commutative {A B} R (f : B  B  A) :=
  commutative:  x y, R (f x y) (f y x).
Class LeftId {A} R (i : A) (f : A  A  A) :=
  left_id:  x, R (f i x) x.
Class RightId {A} R (i : A) (f : A  A  A) :=
  right_id:  x, R (f x i) x.
Class Associative {A} R (f : A  A  A) :=
  associative:  x y z, R (f x (f y z)) (f (f x y) z).
377 378 379 380
Class LeftAbsorb {A} R (i : A) (f : A  A  A) :=
  left_absorb:  x, R (f i x) i.
Class RightAbsorb {A} R (i : A) (f : A  A  A) :=
  right_absorb:  x, R (f x i) i.
Robbert Krebbers's avatar
Robbert Krebbers committed
381 382
Class AntiSymmetric {A} (R : A  A  Prop) :=
  anti_symmetric:  x y, R x y  R y x  x = y.
Robbert Krebbers's avatar
Robbert Krebbers committed
383 384 385 386 387 388 389

Arguments injective {_ _ _ _} _ {_} _ _ _.
Arguments idempotent {_ _} _ {_} _.
Arguments commutative {_ _ _} _ {_} _ _.
Arguments left_id {_ _} _ _ {_} _.
Arguments right_id {_ _} _ _ {_} _.
Arguments associative {_ _} _ {_} _ _ _.
390 391
Arguments left_absorb {_ _} _ _ {_} _.
Arguments right_absorb {_ _} _ _ {_} _.
Robbert Krebbers's avatar
Robbert Krebbers committed
392
Arguments anti_symmetric {_} _ {_} _ _ _ _.
Robbert Krebbers's avatar
Robbert Krebbers committed
393

394 395 396
(** The following lemmas are more specific versions of the projections of the
above type classes. These lemmas allow us to enforce Coq not to use the setoid
rewriting mechanism. *)
397 398
Lemma idempotent_eq {A} (f : A  A  A) `{!Idempotent (=) f} x :
  f x x = x.
399
Proof. auto. Qed.
400 401
Lemma commutative_eq {A B} (f : B  B  A) `{!Commutative (=) f} x y :
  f x y = f y x.
402
Proof. auto. Qed.
403 404
Lemma left_id_eq {A} (i : A) (f : A  A  A) `{!LeftId (=) i f} x :
  f i x = x.
405
Proof. auto. Qed.
406 407
Lemma right_id_eq {A} (i : A) (f : A  A  A) `{!RightId (=) i f} x :
  f x i = x.
408
Proof. auto. Qed.
409 410
Lemma associative_eq {A} (f : A  A  A) `{!Associative (=) f} x y z :
  f x (f y z) = f (f x y) z.
411
Proof. auto. Qed.
412 413 414 415 416 417
Lemma left_absorb_eq {A} (i : A) (f : A  A  A) `{!LeftAbsorb (=) i f} x :
  f i x = i.
Proof. auto. Qed.
Lemma right_absorb_eq {A} (i : A) (f : A  A  A) `{!RightAbsorb (=) i f} x :
  f x i = i.
Proof. auto. Qed.
418

419 420
(** ** Axiomatization of ordered structures *)
(** A pre-order equiped with a smallest element. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
421 422 423 424
Class BoundedPreOrder A `{Empty A} `{SubsetEq A} := {
  bounded_preorder :>> PreOrder ();
  subseteq_empty x :   x
}.
Robbert Krebbers's avatar
Robbert Krebbers committed
425 426 427 428
Class PartialOrder A `{SubsetEq A} := {
  po_preorder :>> PreOrder ();
  po_antisym :> AntiSymmetric ()
}.
Robbert Krebbers's avatar
Robbert Krebbers committed
429

430 431 432 433
(** We do not include equality in the following interfaces so as to avoid the
need for proofs that the  relations and operations respect setoid equality.
Instead, we will define setoid equality in a generic way as
[λ X Y, X ⊆ Y ∧ Y ⊆ X]. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
434
Class BoundedJoinSemiLattice A `{Empty A} `{SubsetEq A} `{Union A} := {
435
  bjsl_preorder :>> BoundedPreOrder A;
Robbert Krebbers's avatar
Robbert Krebbers committed
436 437 438 439 440 441 442 443 444 445
  subseteq_union_l x y : x  x  y;
  subseteq_union_r x y : y  x  y;
  union_least x y z : x  z  y  z  x  y  z
}.
Class MeetSemiLattice A `{Empty A} `{SubsetEq A} `{Intersection A} := {
  msl_preorder :>> BoundedPreOrder A;
  subseteq_intersection_l x y : x  y  x;
  subseteq_intersection_r x y : x  y  y;
  intersection_greatest x y z : z  x  z  y  z  x  y
}.
446 447 448 449 450
Class LowerBoundedLattice A `{Empty A} `{SubsetEq A}
    `{Union A} `{Intersection A} := {
  lbl_bjsl :>> BoundedJoinSemiLattice A;
  lbl_msl :>> MeetSemiLattice A
}.
451
(** ** Axiomatization of collections *)
452 453
(** The class [SimpleCollection A C] axiomatizes a collection of type [C] with
elements of type [A]. *)
454
Instance: Params (@map) 3.
455 456
Class SimpleCollection A C `{ElemOf A C}
  `{Empty C} `{Singleton A C} `{Union C} := {
457
  not_elem_of_empty (x : A) : x  ;
458
  elem_of_singleton (x y : A) : x  {[ y ]}  x = y;
459 460
  elem_of_union X Y (x : A) : x  X  Y  x  X  x  Y
}.
Robbert Krebbers's avatar
Robbert Krebbers committed
461 462
Class Collection A C `{ElemOf A C} `{Empty C} `{Singleton A C}
    `{Union C} `{Intersection C} `{Difference C} `{IntersectionWith A C} := {
463
  collection_simple :>> SimpleCollection A C;
Robbert Krebbers's avatar
Robbert Krebbers committed
464
  elem_of_intersection X Y (x : A) : x  X  Y  x  X  x  Y;
Robbert Krebbers's avatar
Robbert Krebbers committed
465 466 467
  elem_of_difference X Y (x : A) : x  X  Y  x  X  x  Y;
  elem_of_intersection_with (f : A  A  option A) X Y (x : A) :
    x  intersection_with f X Y   x1 x2, x1  X  x2  Y  f x1 x2 = Some x
Robbert Krebbers's avatar
Robbert Krebbers committed
468 469
}.

470 471 472
(** We axiomative a finite collection as a collection whose elements can be
enumerated as a list. These elements, given by the [elements] function, may be
in any order and should not contain duplicates. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
473
Class Elements A C := elements: C  list A.
474
Instance: Params (@elements) 3.
475

476 477 478 479 480 481 482 483 484 485
(** We redefine the standard library's [In] and [NoDup] using type classes. *)
Inductive elem_of_list {A} : ElemOf A (list A) :=
  | elem_of_list_here (x : A) l : x  x :: l
  | elem_of_list_further (x y : A) l : x  l  x  y :: l.
Existing Instance elem_of_list.

Inductive NoDup {A} : list A  Prop :=
  | NoDup_nil_2 : NoDup []
  | NoDup_cons_2 x l : x  l  NoDup l  NoDup (x :: l).

486 487
(** Decidability of equality of the carrier set is admissible, but we add it
anyway so as to avoid cycles in type class search. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
488 489 490
Class FinCollection A C `{ElemOf A C} `{Empty C} `{Singleton A C}
    `{Union C} `{Intersection C} `{Difference C} `{IntersectionWith A C}
    `{Filter A C} `{Elements A C} `{ x y : A, Decision (x = y)} := {
Robbert Krebbers's avatar
Robbert Krebbers committed
491
  fin_collection :>> Collection A C;
Robbert Krebbers's avatar
Robbert Krebbers committed
492 493
  elem_of_filter X P `{ x, Decision (P x)} x :
    x  filter P X  P x  x  X;
494
  elements_spec X x : x  X  x  elements X;
Robbert Krebbers's avatar
Robbert Krebbers committed
495
  elements_nodup X : NoDup (elements X)
496 497
}.
Class Size C := size: C  nat.
498
Arguments size {_ _} !_ / : simpl nomatch.
499
Instance: Params (@size) 2.
Robbert Krebbers's avatar
Robbert Krebbers committed
500

501 502 503 504 505 506 507 508 509 510 511 512
(** The class [Collection M] axiomatizes a type constructor [M] that can be
used to construct a collection [M A] with elements of type [A]. The advantage
of this class, compared to [Collection], is that it also axiomatizes the
the monadic operations. The disadvantage, is that not many inhabits are
possible (we will only provide an inhabitant using unordered lists without
duplicates removed). More interesting implementations typically need
decidability of equality, or a total order on the elements, which do not fit
in a type constructor of type [Type → Type]. *)
Class CollectionMonad M `{ A, ElemOf A (M A)}
    `{ A, Empty (M A)} `{ A, Singleton A (M A)} `{ A, Union (M A)}
    `{!MBind M} `{!MRet M} `{!FMap M} `{!MJoin M} := {
  collection_monad_simple A :> SimpleCollection A (M A);
Robbert Krebbers's avatar
Robbert Krebbers committed
513
  elem_of_bind {A B} (f : A  M B) (X : M A) (x : B) :
514 515 516
    x  X = f   y, x  f y  y  X;
  elem_of_ret {A} (x y : A) :
    x  mret y  x = y;
Robbert Krebbers's avatar
Robbert Krebbers committed
517
  elem_of_fmap {A B} (f : A  B) (X : M A) (x : B) :
518
    x  f <$> X   y, x = f y  y  X;
Robbert Krebbers's avatar
Robbert Krebbers committed
519
  elem_of_join {A} (X : M (M A)) (x : A) :
520 521 522
    x  mjoin X   Y, x  Y  Y  X
}.

523 524 525
(** The function [fresh X] yields an element that is not contained in [X]. We
will later prove that [fresh] is [Proper] with respect to the induced setoid
equality on collections. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
526
Class Fresh A C := fresh: C  A.
527
Instance: Params (@fresh) 3.
528 529 530
Class FreshSpec A C `{ElemOf A C}
    `{Empty C} `{Singleton A C} `{Union C} `{Fresh A C} := {
  fresh_collection_simple :>> SimpleCollection A C;
531
  fresh_proper_alt X Y : ( x, x  X  x  Y)  fresh X = fresh Y;
Robbert Krebbers's avatar
Robbert Krebbers committed
532 533 534
  is_fresh (X : C) : fresh X  X
}.

535 536 537
(** * Miscellaneous *)
Lemma proj1_sig_inj {A} (P : A  Prop) x (Px : P x) y (Py : P y) :
  xPx = yPy  x = y.
538
Proof. injection 1; trivial. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
539

540 541 542 543
Lemma symmetry_iff `(R : relation A) `{!Symmetric R} (x y : A) :
  R x y  R y x.
Proof. intuition. Qed.

544 545 546
(** ** Pointwise relations *)
(** These instances are in Coq trunk since revision 15455, but are not in Coq
8.4 yet. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
547 548 549 550 551 552 553 554 555 556
Instance pointwise_reflexive {A} `{R : relation B} :
  Reflexive R  Reflexive (pointwise_relation A R) | 9.
Proof. firstorder. Qed.
Instance pointwise_symmetric {A} `{R : relation B} :
  Symmetric R  Symmetric (pointwise_relation A R) | 9.
Proof. firstorder. Qed.
Instance pointwise_transitive {A} `{R : relation B} :
  Transitive R  Transitive (pointwise_relation A R) | 9.
Proof. firstorder. Qed.

557
(** ** Products *)
558 559 560 561
Definition fst_map {A A' B} (f : A  A') (p : A * B) : A' * B :=
  (f (fst p), snd p).
Definition snd_map {A B B'} (f : B  B') (p : A * B) : A * B' :=
  (fst p, f (snd p)).
Robbert Krebbers's avatar
Robbert Krebbers committed
562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579
Arguments fst_map {_ _ _} _ !_ /.
Arguments snd_map {_ _ _} _ !_ /.

Instance:  {A A' B} (f : A  A'),
  Injective (=) (=) f  Injective (=) (=) (@fst_map A A' B f).
Proof.
  intros ????? [??] [??]; simpl; intro; f_equal.
  * apply (injective f). congruence.
  * congruence.
Qed.
Instance:  {A B B'} (f : B  B'),
  Injective (=) (=) f  Injective (=) (=) (@snd_map A B B' f).
Proof.
  intros ????? [??] [??]; simpl; intro; f_equal.
  * congruence.
  * apply (injective f). congruence.
Qed.

580 581
Definition prod_relation {A B} (R1 : relation A) (R2 : relation B) :
  relation (A * B) := λ x y, R1 (fst x) (fst y)  R2 (snd x) (snd y).
Robbert Krebbers's avatar
Robbert Krebbers committed
582 583 584

Section prod_relation.
  Context `{R1 : relation A} `{R2 : relation B}.
585 586
  Global Instance:
    Reflexive R1  Reflexive R2  Reflexive (prod_relation R1 R2).
Robbert Krebbers's avatar
Robbert Krebbers committed
587
  Proof. firstorder eauto. Qed.
588 589
  Global Instance:
    Symmetric R1  Symmetric R2  Symmetric (prod_relation R1 R2).
Robbert Krebbers's avatar
Robbert Krebbers committed
590
  Proof. firstorder eauto. Qed.
591 592
  Global Instance:
    Transitive R1  Transitive R2  Transitive (prod_relation R1 R2).
Robbert Krebbers's avatar
Robbert Krebbers committed
593
  Proof. firstorder eauto. Qed.
594 595
  Global Instance:
    Equivalence R1  Equivalence R2  Equivalence (prod_relation R1 R2).
Robbert Krebbers's avatar
Robbert Krebbers committed
596 597 598 599 600 601 602 603 604
  Proof. split; apply _. Qed.
  Global Instance: Proper (R1 ==> R2 ==> prod_relation R1 R2) pair.
  Proof. firstorder eauto. Qed.
  Global Instance: Proper (prod_relation R1 R2 ==> R1) fst.
  Proof. firstorder eauto. Qed.
  Global Instance: Proper (prod_relation R1 R2 ==> R2) snd.
  Proof. firstorder eauto. Qed.
End prod_relation.

605
(** ** Other *)
606 607
Definition lift_relation {A B} (R : relation A)
  (f : B  A) : relation B := λ x y, R (f x) (f y).
Robbert Krebbers's avatar
Robbert Krebbers committed
608 609
Definition lift_relation_equivalence {A B} (R : relation A) (f : B  A) :
  Equivalence R  Equivalence (lift_relation R f).
610
Proof. unfold lift_relation. firstorder auto. Qed.
611 612
Hint Extern 0 (Equivalence (lift_relation _ _)) =>
  eapply @lift_relation_equivalence : typeclass_instances.
Robbert Krebbers's avatar
Robbert Krebbers committed
613 614

Instance:  A B (x : B), Commutative (=) (λ _ _ : A, x).
615
Proof. red. trivial. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
616
Instance:  A (x : A), Associative (=) (λ _ _ : A, x).
617
Proof. red. trivial. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
618
Instance:  A, Associative (=) (λ x _ : A, x).
619
Proof. red. trivial. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
620
Instance:  A, Associative (=) (λ _ x : A, x).
621
Proof. red. trivial. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
622
Instance:  A, Idempotent (=) (λ x _ : A, x).
623
Proof. red. trivial. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
624
Instance:  A, Idempotent (=) (λ _ x : A, x).
625
Proof. red. trivial. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
626

627 628
Instance left_id_propholds {A} (R : relation A) i f :
  LeftId R i f   x, PropHolds (R (f i x) x).
629
Proof. red. trivial. Qed.
630 631
Instance right_id_propholds {A} (R : relation A) i f :
  RightId R i f   x, PropHolds (R (f x i) x).
632
Proof. red. trivial. Qed.
633 634
Instance idem_propholds {A} (R : relation A) f :
  Idempotent R f   x, PropHolds (R (f x x) x).
635
Proof. red. trivial. Qed.