base.v 43.8 KB
Newer Older
Robbert Krebbers's avatar
Robbert Krebbers committed
1
(* Copyright (c) 2012-2015, Robbert Krebbers. *)
2
3
4
5
6
(* This file is distributed under the terms of the BSD license. *)
(** This file collects type class interfaces, notations, and general theorems
that are used throughout the whole development. Most importantly it contains
abstract interfaces for ordered structures, collections, and various other data
structures. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
7
8
Global Generalizable All Variables.
Global Set Automatic Coercions Import.
Robbert Krebbers's avatar
Robbert Krebbers committed
9
Global Set Asymmetric Patterns.
10
Require Export Morphisms RelationClasses List Bool Utf8 Program Setoid.
Robbert Krebbers's avatar
Robbert Krebbers committed
11

12
(** * General *)
13
14
15
16
17
(** Zipping lists. *)
Definition zip_with {A B C} (f : A  B  C) : list A  list B  list C :=
  fix go l1 l2 :=
  match l1, l2 with x1 :: l1, x2 :: l2 => f x1 x2 :: go l1 l2 | _ , _ => [] end.
Notation zip := (zip_with pair).
18

19
20
(** Ensure that [simpl] unfolds [id], [compose], and [flip] when fully
applied. *)
21
Arguments id _ _ /.
22
Arguments compose _ _ _ _ _ _ /.
23
Arguments flip _ _ _ _ _ _ /.
24
25
Arguments const _ _ _ _ /.
Typeclasses Transparent id compose flip const.
Robbert Krebbers's avatar
Robbert Krebbers committed
26
Instance: Params (@pair) 2.
27

28
29
30
31
(** Change [True] and [False] into notations in order to enable overloading.
We will use this in the file [assertions] to give [True] and [False] a
different interpretation in [assert_scope] used for assertions of our axiomatic
semantics. *)
32
33
Notation "'True'" := True : type_scope.
Notation "'False'" := False : type_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
34

35
36
Notation curry := prod_curry.
Notation uncurry := prod_uncurry.
37
38
39
40
Definition curry3 {A B C D} (f : A  B  C  D) (p : A * B * C) : D :=
  let '(a,b,c) := p in f a b c.
Definition curry4 {A B C D E} (f : A  B  C  D  E) (p : A * B * C * D) : E :=
  let '(a,b,c,d) := p in f a b c d.
41

42
43
(** Throughout this development we use [C_scope] for all general purpose
notations that do not belong to a more specific scope. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
44
45
46
Delimit Scope C_scope with C.
Global Open Scope C_scope.

47
(** Introduce some Haskell style like notations. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
48
49
50
51
52
53
54
55
Notation "(=)" := eq (only parsing) : C_scope.
Notation "( x =)" := (eq x) (only parsing) : C_scope.
Notation "(= x )" := (λ y, eq y x) (only parsing) : C_scope.
Notation "(≠)" := (λ x y, x  y) (only parsing) : C_scope.
Notation "( x ≠)" := (λ y, x  y) (only parsing) : C_scope.
Notation "(≠ x )" := (λ y, y  x) (only parsing) : C_scope.

Hint Extern 0 (?x = ?x) => reflexivity.
56
Hint Extern 100 (_  _) => discriminate.
Robbert Krebbers's avatar
Robbert Krebbers committed
57

58
59
60
61
Notation "(→)" := (λ A B, A  B) (only parsing) : C_scope.
Notation "( A →)" := (λ B, A  B) (only parsing) : C_scope.
Notation "(→ B )" := (λ A, A  B) (only parsing) : C_scope.

62
Notation "t $ r" := (t r)
63
  (at level 65, right associativity, only parsing) : C_scope.
64
65
66
Notation "($)" := (λ f x, f x) (only parsing) : C_scope.
Notation "($ x )" := (λ f, f x) (only parsing) : C_scope.

Robbert Krebbers's avatar
Robbert Krebbers committed
67
68
69
70
Infix "∘" := compose : C_scope.
Notation "(∘)" := compose (only parsing) : C_scope.
Notation "( f ∘)" := (compose f) (only parsing) : C_scope.
Notation "(∘ f )" := (λ g, compose g f) (only parsing) : C_scope.
71

72
73
74
75
76
77
78
79
80
81
82
83
Notation "(∧)" := and (only parsing) : C_scope.
Notation "( A ∧)" := (and A) (only parsing) : C_scope.
Notation "(∧ B )" := (λ A, A  B) (only parsing) : C_scope.

Notation "(∨)" := or (only parsing) : C_scope.
Notation "( A ∨)" := (or A) (only parsing) : C_scope.
Notation "(∨ B )" := (λ A, A  B) (only parsing) : C_scope.

Notation "(↔)" := iff (only parsing) : C_scope.
Notation "( A ↔)" := (iff A) (only parsing) : C_scope.
Notation "(↔ B )" := (λ A, A  B) (only parsing) : C_scope.

84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
Hint Extern 0 (_  _) => reflexivity.
Hint Extern 0 (_  _) => symmetry; assumption.

Notation "( x ,)" := (pair x) (only parsing) : C_scope.
Notation "(, y )" := (λ x, (x,y)) (only parsing) : C_scope.

Notation "p .1" := (fst p) (at level 10, format "p .1").
Notation "p .2" := (snd p) (at level 10, format "p .2").

Definition prod_map {A A' B B'} (f : A  A') (g : B  B')
  (p : A * B) : A' * B' := (f (p.1), g (p.2)).
Arguments prod_map {_ _ _ _} _ _ !_ /.
Definition prod_zip {A A' A'' B B' B''} (f : A  A'  A'') (g : B  B'  B'')
    (p : A * B) (q : A' * B') : A'' * B'' := (f (p.1) (q.1), g (p.2) (q.2)).
Arguments prod_zip {_ _ _ _ _ _} _ _ !_ !_ /.

100
101
(** Set convenient implicit arguments for [existT] and introduce notations. *)
Arguments existT {_ _} _ _.
102
Arguments proj1_sig {_ _} _.
Robbert Krebbers's avatar
Robbert Krebbers committed
103
Notation "x ↾ p" := (exist _ x p) (at level 20) : C_scope.
104
Notation "` x" := (proj1_sig x) (at level 10, format "` x") : C_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
105

106
107
108
109
(** * Type classes *)
(** ** Provable propositions *)
(** This type class collects provable propositions. It is useful to constraint
type classes by arbitrary propositions. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
110
111
Class PropHolds (P : Prop) := prop_holds: P.

112
113
Hint Extern 0 (PropHolds _) => assumption : typeclass_instances.
Instance: Proper (iff ==> iff) PropHolds.
114
Proof. repeat intro; trivial. Qed.
115
116
117

Ltac solve_propholds :=
  match goal with
118
119
  | |- PropHolds (?P) => apply _
  | |- ?P => change (PropHolds P); apply _
120
121
122
123
124
125
126
  end.

(** ** Decidable propositions *)
(** This type class by (Spitters/van der Weegen, 2011) collects decidable
propositions. For example to declare a parameter expressing decidable equality
on a type [A] we write [`{∀ x y : A, Decision (x = y)}] and use it by writing
[decide (x = y)]. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
127
128
129
Class Decision (P : Prop) := decide : {P} + {¬P}.
Arguments decide _ {_}.

130
131
(** ** Inhabited types *)
(** This type class collects types that are inhabited. *)
132
Class Inhabited (A : Type) : Type := populate { inhabitant : A }.
133
134
135
136
137
138
Arguments populate {_} _.

Instance unit_inhabited: Inhabited unit := populate ().
Instance list_inhabited {A} : Inhabited (list A) := populate [].
Instance prod_inhabited {A B} (iA : Inhabited A)
    (iB : Inhabited B) : Inhabited (A * B) :=
139
  match iA, iB with populate x, populate y => populate (x,y) end.
140
Instance sum_inhabited_l {A B} (iA : Inhabited A) : Inhabited (A + B) :=
141
  match iA with populate x => populate (inl x) end.
142
Instance sum_inhabited_r {A B} (iB : Inhabited A) : Inhabited (A + B) :=
143
  match iB with populate y => populate (inl y) end.
144
145
Instance option_inhabited {A} : Inhabited (option A) := populate None.

146
147
148
149
150
151
(** ** Proof irrelevant types *)
(** This type class collects types that are proof irrelevant. That means, all
elements of the type are equal. We use this notion only used for propositions,
but by universe polymorphism we can generalize it. *)
Class ProofIrrel (A : Type) : Prop := proof_irrel (x y : A) : x = y.

152
153
154
(** ** Setoid equality *)
(** We define an operational type class for setoid equality. This is based on
(Spitters/van der Weegen, 2011). *)
Robbert Krebbers's avatar
Robbert Krebbers committed
155
156
157
Class Equiv A := equiv: relation A.
Infix "≡" := equiv (at level 70, no associativity) : C_scope.
Notation "(≡)" := equiv (only parsing) : C_scope.
158
159
160
161
162
163
Notation "( X ≡)" := (equiv X) (only parsing) : C_scope.
Notation "(≡ X )" := (λ Y, Y  X) (only parsing) : C_scope.
Notation "(≢)" := (λ X Y, ¬X  Y) (only parsing) : C_scope.
Notation "X ≢ Y":= (¬X  Y) (at level 70, no associativity) : C_scope.
Notation "( X ≢)" := (λ Y, X  Y) (only parsing) : C_scope.
Notation "(≢ X )" := (λ Y, Y  X) (only parsing) : C_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
164

165
166
167
168
169
Class EquivE E A := equivE: E  relation A.
Instance: Params (@equivE) 4.
Notation "X ≡{ Γ } Y" := (equivE Γ X Y)
  (at level 70, format "X  ≡{ Γ }  Y") : C_scope.
Notation "(≡{ Γ } )" := (equivE Γ) (only parsing, Γ at level 1) : C_scope.
170
171
172
173
174
Notation "X ≡{ Γ1 , Γ2 , .. , Γ3 } Y" :=
  (equivE (pair .. (Γ1, Γ2) .. Γ3) X Y)
  (at level 70, format "'[' X  ≡{ Γ1 , Γ2 , .. , Γ3 }  '/' Y ']'") : C_scope.
Notation "(≡{ Γ1 , Γ2 , .. , Γ3 } )" := (equivE (pair .. (Γ1, Γ2) .. Γ3))
  (only parsing, Γ1 at level 1) : C_scope.
175

176
177
178
179
(** The type class [LeibnizEquiv] collects setoid equalities that coincide
with Leibniz equality. We provide the tactic [fold_leibniz] to transform such
setoid equalities into Leibniz equalities, and [unfold_leibniz] for the
reverse. *)
180
181
182
183
184
Class LeibnizEquiv A `{Equiv A} := leibniz_equiv x y : x  y  x = y.
Lemma leibniz_equiv_iff `{LeibnizEquiv A, !Reflexive (@equiv A _)} (x y : A) :
  x  y  x = y.
Proof. split. apply leibniz_equiv. intros ->; reflexivity. Qed.
 
185
186
187
Ltac fold_leibniz := repeat
  match goal with
  | H : context [ @equiv ?A _ _ _ ] |- _ =>
188
    setoid_rewrite (leibniz_equiv_iff (A:=A)) in H
189
  | |- context [ @equiv ?A _ _ _ ] =>
190
    setoid_rewrite (leibniz_equiv_iff (A:=A))
191
192
193
194
  end.
Ltac unfold_leibniz := repeat
  match goal with
  | H : context [ @eq ?A _ _ ] |- _ =>
195
    setoid_rewrite <-(leibniz_equiv_iff (A:=A)) in H
196
  | |- context [ @eq ?A _ _ ] =>
197
    setoid_rewrite <-(leibniz_equiv_iff (A:=A))
198
199
  end.

200
201
Definition equivL {A} : Equiv A := (=).

202
203
204
205
206
207
208
209
(** A [Params f n] instance forces the setoid rewriting mechanism not to
rewrite in the first [n] arguments of the function [f]. We will declare such
instances for all operational type classes in this development. *)
Instance: Params (@equiv) 2.

(** The following instance forces [setoid_replace] to use setoid equality
(for types that have an [Equiv] instance) rather than the standard Leibniz
equality. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
210
Instance equiv_default_relation `{Equiv A} : DefaultRelation () | 3.
211
212
Hint Extern 0 (_  _) => reflexivity.
Hint Extern 0 (_  _) => symmetry; assumption.
213
214
Hint Extern 0 (_ {_} _) => reflexivity.
Hint Extern 0 (_ {_} _) => symmetry; assumption.
Robbert Krebbers's avatar
Robbert Krebbers committed
215

216
(** ** Operations on collections *)
217
(** We define operational type classes for the traditional operations and
218
relations on collections: the empty collection [∅], the union [(∪)],
219
220
intersection [(∩)], and difference [(∖)], the singleton [{[_]}], the subset
[(⊆)] and element of [(∈)] relation, and disjointess [(⊥)]. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
221
222
223
224
Class Empty A := empty: A.
Notation "∅" := empty : C_scope.

Class Union A := union: A  A  A.
225
Instance: Params (@union) 2.
Robbert Krebbers's avatar
Robbert Krebbers committed
226
227
228
229
Infix "∪" := union (at level 50, left associativity) : C_scope.
Notation "(∪)" := union (only parsing) : C_scope.
Notation "( x ∪)" := (union x) (only parsing) : C_scope.
Notation "(∪ x )" := (λ y, union y x) (only parsing) : C_scope.
230
231
232
233
234
235
Infix "∪*" := (zip_with ()) (at level 50, left associativity) : C_scope.
Notation "(∪*)" := (zip_with ()) (only parsing) : C_scope.
Infix "∪**" := (zip_with (zip_with ()))
  (at level 50, left associativity) : C_scope.
Infix "∪*∪**" := (zip_with (prod_zip () (*)))
  (at level 50, left associativity) : C_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
236

237
Definition union_list `{Empty A} `{Union A} : list A  A := fold_right () .
238
239
240
Arguments union_list _ _ _ !_ /.
Notation "⋃ l" := (union_list l) (at level 20, format "⋃  l") : C_scope.

Robbert Krebbers's avatar
Robbert Krebbers committed
241
Class Intersection A := intersection: A  A  A.
242
Instance: Params (@intersection) 2.
Robbert Krebbers's avatar
Robbert Krebbers committed
243
244
245
246
247
248
Infix "∩" := intersection (at level 40) : C_scope.
Notation "(∩)" := intersection (only parsing) : C_scope.
Notation "( x ∩)" := (intersection x) (only parsing) : C_scope.
Notation "(∩ x )" := (λ y, intersection y x) (only parsing) : C_scope.

Class Difference A := difference: A  A  A.
249
Instance: Params (@difference) 2.
Robbert Krebbers's avatar
Robbert Krebbers committed
250
251
252
253
Infix "∖" := difference (at level 40) : C_scope.
Notation "(∖)" := difference (only parsing) : C_scope.
Notation "( x ∖)" := (difference x) (only parsing) : C_scope.
Notation "(∖ x )" := (λ y, difference y x) (only parsing) : C_scope.
254
255
256
257
258
259
Infix "∖*" := (zip_with ()) (at level 40, left associativity) : C_scope.
Notation "(∖*)" := (zip_with ()) (only parsing) : C_scope.
Infix "∖**" := (zip_with (zip_with ()))
  (at level 40, left associativity) : C_scope.
Infix "∖*∖**" := (zip_with (prod_zip () (*)))
  (at level 50, left associativity) : C_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
260

261
262
Class Singleton A B := singleton: A  B.
Instance: Params (@singleton) 3.
263
Notation "{[ x ]}" := (singleton x) (at level 1) : C_scope.
264
Notation "{[ x ; y ; .. ; z ]}" :=
265
266
267
268
269
270
  (union .. (union (singleton x) (singleton y)) .. (singleton z))
  (at level 1) : C_scope.
Notation "{[ x , y ]}" := (singleton (x,y))
  (at level 1, y at next level) : C_scope.
Notation "{[ x , y , z ]}" := (singleton (x,y,z))
  (at level 1, y at next level, z at next level) : C_scope.
271

272
Class SubsetEq A := subseteq: relation A.
273
Instance: Params (@subseteq) 2.
Robbert Krebbers's avatar
Robbert Krebbers committed
274
275
276
Infix "⊆" := subseteq (at level 70) : C_scope.
Notation "(⊆)" := subseteq (only parsing) : C_scope.
Notation "( X ⊆ )" := (subseteq X) (only parsing) : C_scope.
277
Notation "( ⊆ X )" := (λ Y, Y  X) (only parsing) : C_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
278
279
280
281
Notation "X ⊈ Y" := (¬X  Y) (at level 70) : C_scope.
Notation "(⊈)" := (λ X Y, X  Y) (only parsing) : C_scope.
Notation "( X ⊈ )" := (λ Y, X  Y) (only parsing) : C_scope.
Notation "( ⊈ X )" := (λ Y, Y  X) (only parsing) : C_scope.
282
283
284
285
286
287
288
Infix "⊆*" := (Forall2 ()) (at level 70) : C_scope.
Notation "(⊆*)" := (Forall2 ()) (only parsing) : C_scope.
Infix "⊆**" := (Forall2 (*)) (at level 70) : C_scope.
Infix "⊆1*" := (Forall2 (λ p q, p.1  q.1)) (at level 70) : C_scope.
Infix "⊆2*" := (Forall2 (λ p q, p.2  q.2)) (at level 70) : C_scope.
Infix "⊆1**" := (Forall2 (λ p q, p.1 * q.1)) (at level 70) : C_scope.
Infix "⊆2**" := (Forall2 (λ p q, p.2 * q.2)) (at level 70) : C_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
289

290
Hint Extern 0 (_  _) => reflexivity.
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
Hint Extern 0 (_ * _) => reflexivity.
Hint Extern 0 (_ ** _) => reflexivity.

Class SubsetEqE E A := subseteqE: E  relation A.
Instance: Params (@subseteqE) 4.
Notation "X ⊆{ Γ } Y" := (subseteqE Γ X Y)
  (at level 70, format "X  ⊆{ Γ }  Y") : C_scope.
Notation "(⊆{ Γ } )" := (subseteqE Γ) (only parsing, Γ at level 1) : C_scope.
Notation "X ⊈{ Γ } Y" := (¬X {Γ} Y)
  (at level 70, format "X  ⊈{ Γ }  Y") : C_scope.
Notation "(⊈{ Γ } )" := (λ X Y, X {Γ} Y)
  (only parsing, Γ at level 1) : C_scope.
Notation "Xs ⊆{ Γ }* Ys" := (Forall2 ({Γ}) Xs Ys)
  (at level 70, format "Xs  ⊆{ Γ }*  Ys") : C_scope.
Notation "(⊆{ Γ }* )" := (Forall2 ({Γ}))
  (only parsing, Γ at level 1) : C_scope.
Notation "X ⊆{ Γ1 , Γ2 , .. , Γ3 } Y" :=
  (subseteqE (pair .. (Γ1, Γ2) .. Γ3) X Y)
  (at level 70, format "'[' X  ⊆{ Γ1 , Γ2 , .. , Γ3 }  '/' Y ']'") : C_scope.
Notation "(⊆{ Γ1 , Γ2 , .. , Γ3 } )" := (subseteqE (pair .. (Γ1, Γ2) .. Γ3))
  (only parsing, Γ1 at level 1) : C_scope.
Notation "X ⊈{ Γ1 , Γ2 , .. , Γ3 } Y" := (¬X {pair .. (Γ1, Γ2) .. Γ3} Y)
  (at level 70, format "X  ⊈{ Γ1 , Γ2 , .. , Γ3 }  Y") : C_scope.
Notation "(⊈{ Γ1 , Γ2 , .. , Γ3 } )" := (λ X Y, X {pair .. (Γ1, Γ2) .. Γ3} Y)
  (only parsing) : C_scope.
Notation "Xs ⊆{ Γ1 , Γ2 , .. , Γ3 }* Ys" :=
  (Forall2 ({pair .. (Γ1, Γ2) .. Γ3}) Xs Ys)
  (at level 70, format "Xs  ⊆{ Γ1 , Γ2 , .. , Γ3 }*  Ys") : C_scope.
Notation "(⊆{ Γ1 , Γ2 , .. , Γ3 }* )" := (Forall2 ({pair .. (Γ1, Γ2) .. Γ3}))
  (only parsing, Γ1 at level 1) : C_scope.
Hint Extern 0 (_ {_} _) => reflexivity.
322

323
324
Definition strict {A} (R : relation A) : relation A := λ X Y, R X Y  ¬R Y X.
Instance: Params (@strict) 2.
325
326
327
328
Infix "⊂" := (strict ()) (at level 70) : C_scope.
Notation "(⊂)" := (strict ()) (only parsing) : C_scope.
Notation "( X ⊂ )" := (strict () X) (only parsing) : C_scope.
Notation "( ⊂ X )" := (λ Y, Y  X) (only parsing) : C_scope.
329
330
331
332
Notation "X ⊄  Y" := (¬X  Y) (at level 70) : C_scope.
Notation "(⊄)" := (λ X Y, X  Y) (only parsing) : C_scope.
Notation "( X ⊄ )" := (λ Y, X  Y) (only parsing) : C_scope.
Notation "( ⊄ X )" := (λ Y, Y  X) (only parsing) : C_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
333

334
335
336
337
338
(** The class [Lexico A] is used for the lexicographic order on [A]. This order
is used to create finite maps, finite sets, etc, and is typically different from
the order [(⊆)]. *)
Class Lexico A := lexico: relation A.

Robbert Krebbers's avatar
Robbert Krebbers committed
339
Class ElemOf A B := elem_of: A  B  Prop.
340
Instance: Params (@elem_of) 3.
Robbert Krebbers's avatar
Robbert Krebbers committed
341
342
343
344
345
346
347
348
349
Infix "∈" := elem_of (at level 70) : C_scope.
Notation "(∈)" := elem_of (only parsing) : C_scope.
Notation "( x ∈)" := (elem_of x) (only parsing) : C_scope.
Notation "(∈ X )" := (λ x, elem_of x X) (only parsing) : C_scope.
Notation "x ∉ X" := (¬x  X) (at level 80) : C_scope.
Notation "(∉)" := (λ x X, x  X) (only parsing) : C_scope.
Notation "( x ∉)" := (λ X, x  X) (only parsing) : C_scope.
Notation "(∉ X )" := (λ x, x  X) (only parsing) : C_scope.

Robbert Krebbers's avatar
Robbert Krebbers committed
350
351
352
353
Class Disjoint A := disjoint : A  A  Prop.
Instance: Params (@disjoint) 2.
Infix "⊥" := disjoint (at level 70) : C_scope.
Notation "(⊥)" := disjoint (only parsing) : C_scope.
354
Notation "( X ⊥.)" := (disjoint X) (only parsing) : C_scope.
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
Notation "(.⊥ X )" := (λ Y, Y   X) (only parsing) : C_scope.
Infix "⊥*" := (Forall2 ()) (at level 70) : C_scope.
Notation "(⊥*)" := (Forall2 ()) (only parsing) : C_scope.
Infix "⊥**" := (Forall2 (*)) (at level 70) : C_scope.
Infix "⊥1*" := (Forall2 (λ p q, p.1  q.1)) (at level 70) : C_scope.
Infix "⊥2*" := (Forall2 (λ p q, p.2  q.2)) (at level 70) : C_scope.
Infix "⊥1**" := (Forall2 (λ p q, p.1 * q.1)) (at level 70) : C_scope.
Infix "⊥2**" := (Forall2 (λ p q, p.2 * q.2)) (at level 70) : C_scope.
Hint Extern 0 (_  _) => symmetry; eassumption.
Hint Extern 0 (_ * _) => symmetry; eassumption.

Class DisjointE E A := disjointE : E  A  A  Prop.
Instance: Params (@disjointE) 4.
Notation "X ⊥{ Γ } Y" := (disjointE Γ X Y)
  (at level 70, format "X  ⊥{ Γ }  Y") : C_scope.
Notation "(⊥{ Γ } )" := (disjointE Γ) (only parsing, Γ at level 1) : C_scope.
Notation "Xs ⊥{ Γ }* Ys" := (Forall2 ({Γ}) Xs Ys)
  (at level 70, format "Xs  ⊥{ Γ }*  Ys") : C_scope.
Notation "(⊥{ Γ }* )" := (Forall2 ({Γ}))
  (only parsing, Γ at level 1) : C_scope.
Notation "X ⊥{ Γ1 , Γ2 , .. , Γ3 } Y" := (disjoint (pair .. (Γ1, Γ2) .. Γ3) X Y)
  (at level 70, format "X  ⊥{ Γ1 , Γ2 , .. , Γ3 }  Y") : C_scope.
Notation "Xs ⊥{ Γ1 , Γ2 , .. , Γ3 }* Ys" :=
  (Forall2 (disjoint (pair .. (Γ1, Γ2) .. Γ3)) Xs Ys)
  (at level 70, format "Xs  ⊥{ Γ1 ,  Γ2 , .. , Γ3 }*  Ys") : C_scope.
Hint Extern 0 (_ {_} _) => symmetry; eassumption.
381
382
383

Class DisjointList A := disjoint_list : list A  Prop.
Instance: Params (@disjoint_list) 2.
384
Notation "⊥ Xs" := (disjoint_list Xs) (at level 20, format "⊥  Xs") : C_scope.
385

386
387
388
389
390
391
Section disjoint_list.
  Context `{Disjoint A, Union A, Empty A}.
  Inductive disjoint_list_default : DisjointList A :=
    | disjoint_nil_2 :  (@nil A)
    | disjoint_cons_2 (X : A) (Xs : list A) : X   Xs   Xs   (X :: Xs).
  Global Existing Instance disjoint_list_default.
392

393
  Lemma disjoint_list_nil  :  @nil A  True.
394
395
396
  Proof. split; constructor. Qed.
  Lemma disjoint_list_cons X Xs :  (X :: Xs)  X   Xs   Xs.
  Proof. split. inversion_clear 1; auto. intros [??]. constructor; auto. Qed.
397
End disjoint_list.
398
399

Class Filter A B := filter:  (P : A  Prop) `{ x, Decision (P x)}, B  B.
400
401
402

(** ** Monadic operations *)
(** We define operational type classes for the monadic operations bind, join 
403
404
405
and fmap. We use these type classes merely for convenient overloading of
notations and do not formalize any theory on monads (we do not even define a
class with the monad laws). *)
406
407
Class MRet (M : Type  Type) := mret:  {A}, A  M A.
Arguments mret {_ _ _} _.
408
Instance: Params (@mret) 3.
409
410
Class MBind (M : Type  Type) := mbind :  {A B}, (A  M B)  M A  M B.
Arguments mbind {_ _ _ _} _ !_ /.
411
Instance: Params (@mbind) 4.
412
Class MJoin (M : Type  Type) := mjoin:  {A}, M (M A)  M A.
413
Arguments mjoin {_ _ _} !_ /.
414
Instance: Params (@mjoin) 3.
415
416
Class FMap (M : Type  Type) := fmap :  {A B}, (A  B)  M A  M B.
Arguments fmap {_ _ _ _} _ !_ /.
417
Instance: Params (@fmap) 4.
418
419
Class OMap (M : Type  Type) := omap:  {A B}, (A  option B)  M A  M B.
Arguments omap {_ _ _ _} _ !_ /.
420
Instance: Params (@omap) 4.
421

422
423
424
425
426
427
Notation "m ≫= f" := (mbind f m) (at level 60, right associativity) : C_scope.
Notation "( m ≫=)" := (λ f, mbind f m) (only parsing) : C_scope.
Notation "(≫= f )" := (mbind f) (only parsing) : C_scope.
Notation "(≫=)" := (λ m f, mbind f m) (only parsing) : C_scope.

Notation "x ← y ; z" := (y = (λ x : _, z))
Robbert Krebbers's avatar
Robbert Krebbers committed
428
  (at level 65, only parsing, right associativity) : C_scope.
429
Infix "<$>" := fmap (at level 60, right associativity) : C_scope.
430
Notation "' ( x1 , x2 ) ← y ; z" :=
431
  (y = (λ x : _, let ' (x1, x2) := x in z))
Robbert Krebbers's avatar
Robbert Krebbers committed
432
  (at level 65, only parsing, right associativity) : C_scope.
433
Notation "' ( x1 , x2 , x3 ) ← y ; z" :=
434
  (y = (λ x : _, let ' (x1,x2,x3) := x in z))
Robbert Krebbers's avatar
Robbert Krebbers committed
435
  (at level 65, only parsing, right associativity) : C_scope.
436
Notation "' ( x1 , x2 , x3  , x4 ) ← y ; z" :=
437
  (y = (λ x : _, let ' (x1,x2,x3,x4) := x in z))
Robbert Krebbers's avatar
Robbert Krebbers committed
438
  (at level 65, only parsing, right associativity) : C_scope.
439
440
Notation "' ( x1 , x2 , x3  , x4 , x5 ) ← y ; z" :=
  (y = (λ x : _, let ' (x1,x2,x3,x4,x5) := x in z))
Robbert Krebbers's avatar
Robbert Krebbers committed
441
  (at level 65, only parsing, right associativity) : C_scope.
442
443
Notation "' ( x1 , x2 , x3  , x4 , x5 , x6 ) ← y ; z" :=
  (y = (λ x : _, let ' (x1,x2,x3,x4,x5,x6) := x in z))
Robbert Krebbers's avatar
Robbert Krebbers committed
444
  (at level 65, only parsing, right associativity) : C_scope.
445

446
447
448
449
450
Notation "ps .*1" := (fmap (M:=list) fst ps)
  (at level 10, format "ps .*1").
Notation "ps .*2" := (fmap (M:=list) snd ps)
  (at level 10, format "ps .*2").

451
Class MGuard (M : Type  Type) :=
452
453
454
  mguard:  P {dec : Decision P} {A}, (P  M A)  M A.
Arguments mguard _ _ _ !_ _ _ /.
Notation "'guard' P ; o" := (mguard P (λ _, o))
Robbert Krebbers's avatar
Robbert Krebbers committed
455
  (at level 65, only parsing, right associativity) : C_scope.
456
Notation "'guard' P 'as' H ; o" := (mguard P (λ H, o))
Robbert Krebbers's avatar
Robbert Krebbers committed
457
  (at level 65, only parsing, right associativity) : C_scope.
458

459
(** ** Operations on maps *)
460
461
(** In this section we define operational type classes for the operations
on maps. In the file [fin_maps] we will axiomatize finite maps.
462
The function look up [m !! k] should yield the element at key [k] in [m]. *)
463
Class Lookup (K A M : Type) := lookup: K  M  option A.
464
465
466
Instance: Params (@lookup) 4.
Notation "m !! i" := (lookup i m) (at level 20) : C_scope.
Notation "(!!)" := lookup (only parsing) : C_scope.
467
Notation "( m !!)" := (λ i, m !! i) (only parsing) : C_scope.
468
Notation "(!! i )" := (lookup i) (only parsing) : C_scope.
469
Arguments lookup _ _ _ _ !_ !_ / : simpl nomatch.
470

471
472
473
474
475
(** The singleton map *)
Class SingletonM K A M := singletonM: K  A  M.
Instance: Params (@singletonM) 5.
Notation "{[ x ↦ y ]}" := (singletonM x y) (at level 1) : C_scope.

476
477
(** The function insert [<[k:=a]>m] should update the element at key [k] with
value [a] in [m]. *)
478
Class Insert (K A M : Type) := insert: K  A  M  M.
Robbert Krebbers's avatar
Robbert Krebbers committed
479
Instance: Params (@insert) 5.
480
481
Notation "<[ k := a ]>" := (insert k a)
  (at level 5, right associativity, format "<[ k := a ]>") : C_scope.
482
Arguments insert _ _ _ _ !_ _ !_ / : simpl nomatch.
483

484
485
486
(** The function delete [delete k m] should delete the value at key [k] in
[m]. If the key [k] is not a member of [m], the original map should be
returned. *)
487
Class Delete (K M : Type) := delete: K  M  M.
Robbert Krebbers's avatar
Robbert Krebbers committed
488
Instance: Params (@delete) 4.
489
Arguments delete _ _ _ !_ !_ / : simpl nomatch.
490
491

(** The function [alter f k m] should update the value at key [k] using the
492
function [f], which is called with the original value. *)
493
Class Alter (K A M : Type) := alter: (A  A)  K  M  M.
494
Instance: Params (@alter) 5.
495
Arguments alter {_ _ _ _} _ !_ !_ / : simpl nomatch.
496
497

(** The function [alter f k m] should update the value at key [k] using the
498
499
500
function [f], which is called with the original value at key [k] or [None]
if [k] is not a member of [m]. The value at [k] should be deleted if [f] 
yields [None]. *)
501
502
Class PartialAlter (K A M : Type) :=
  partial_alter: (option A  option A)  K  M  M.
503
Instance: Params (@partial_alter) 4.
504
Arguments partial_alter _ _ _ _ _ !_ !_ / : simpl nomatch.
505
506
507

(** The function [dom C m] should yield the domain of [m]. That is a finite
collection of type [C] that contains the keys that are a member of [m]. *)
508
509
510
Class Dom (M C : Type) := dom: M  C.
Instance: Params (@dom) 3.
Arguments dom {_} _ {_} !_ / : simpl nomatch, clear implicits.
511
512

(** The function [merge f m1 m2] should merge the maps [m1] and [m2] by
513
514
515
516
517
constructing a new map whose value at key [k] is [f (m1 !! k) (m2 !! k)].*)
Class Merge (M : Type  Type) :=
  merge:  {A B C}, (option A  option B  option C)  M A  M B  M C.
Instance: Params (@merge) 4.
Arguments merge _ _ _ _ _ _ !_ !_ / : simpl nomatch.
518

519
520
521
522
523
(** The function [union_with f m1 m2] is supposed to yield the union of [m1]
and [m2] using the function [f] to combine values of members that are in
both [m1] and [m2]. *)
Class UnionWith (A M : Type) :=
  union_with: (A  A  option A)  M  M  M.
524
Instance: Params (@union_with) 3.
525
Arguments union_with {_ _ _} _ !_ !_ / : simpl nomatch.
526

527
528
529
(** Similarly for intersection and difference. *)
Class IntersectionWith (A M : Type) :=
  intersection_with: (A  A  option A)  M  M  M.
530
Instance: Params (@intersection_with) 3.
531
532
Arguments intersection_with {_ _ _} _ !_ !_ / : simpl nomatch.

533
534
Class DifferenceWith (A M : Type) :=
  difference_with: (A  A  option A)  M  M  M.
535
Instance: Params (@difference_with) 3.
536
Arguments difference_with {_ _ _} _ !_ !_ / : simpl nomatch.
Robbert Krebbers's avatar
Robbert Krebbers committed
537

538
539
540
541
Definition intersection_with_list `{IntersectionWith A M}
  (f : A  A  option A) : M  list M  M := fold_right (intersection_with f).
Arguments intersection_with_list _ _ _ _ _ !_ /.

542
543
544
545
546
547
548
549
Class LookupE (E K A M : Type) := lookupE: E  K  M  option A.
Instance: Params (@lookupE) 6.
Notation "m !!{ Γ } i" := (lookupE Γ i m)
  (at level 20, format "m  !!{ Γ }  i") : C_scope.
Notation "(!!{ Γ } )" := (lookupE Γ) (only parsing, Γ at level 1) : C_scope.
Arguments lookupE _ _ _ _ _ _ !_ !_ / : simpl nomatch.

Class InsertE (E K A M : Type) := insertE: E  K  A  M  M.
Robbert Krebbers's avatar
Robbert Krebbers committed
550
Instance: Params (@insertE) 6.
551
552
553
554
Notation "<[ k := a ]{ Γ }>" := (insertE Γ k a)
  (at level 5, right associativity, format "<[ k := a ]{ Γ }>") : C_scope.
Arguments insertE _ _ _ _ _ _ !_ _ !_ / : simpl nomatch.

555
556
557
558
(** ** Common properties *)
(** These operational type classes allow us to refer to common mathematical
properties in a generic way. For example, for injectivity of [(k ++)] it
allows us to write [injective (k ++)] instead of [app_inv_head k]. *)
559
560
561
562
563
Class Injective {A B} (R : relation A) (S : relation B) (f : A  B) : Prop :=
  injective:  x y, S (f x) (f y)  R x y.
Class Injective2 {A B C} (R1 : relation A) (R2 : relation B)
    (S : relation C) (f : A  B  C) : Prop :=
  injective2:  x1 x2  y1 y2, S (f x1 x2) (f y1 y2)  R1 x1 y1  R2 x2 y2.
564
565
566
567
Class Cancel {A B} (S : relation B) (f : A  B) (g : B  A) : Prop :=
  cancel:  x, S (f (g x)) x.
Class Surjective {A B} (R : relation B) (f : A  B) :=
  surjective :  y,  x, R (f x) y.
568
Class Idempotent {A} (R : relation A) (f : A  A  A) : Prop :=
569
  idempotent:  x, R (f x x) x.
570
Class Commutative {A B} (R : relation A) (f : B  B  A) : Prop :=
571
  commutative:  x y, R (f x y) (f y x).
572
Class LeftId {A} (R : relation A) (i : A) (f : A  A  A) : Prop :=
573
  left_id:  x, R (f i x) x.
574
Class RightId {A} (R : relation A) (i : A) (f : A  A  A) : Prop :=
575
  right_id:  x, R (f x i) x.
576
Class Associative {A} (R : relation A) (f : A  A  A) : Prop :=
577
  associative:  x y z, R (f x (f y z)) (f (f x y) z).
578
Class LeftAbsorb {A} (R : relation A) (i : A) (f : A  A  A) : Prop :=
579
  left_absorb:  x, R (f i x) i.
580
Class RightAbsorb {A} (R : relation A) (i : A) (f : A  A  A) : Prop :=
581
  right_absorb:  x, R (f x i) i.
582
583
584
585
Class LeftDistr {A} (R : relation A) (f g : A  A  A) : Prop :=
  left_distr:  x y z, R (f x (g y z)) (g (f x y) (f x z)).
Class RightDistr {A} (R : relation A) (f g : A  A  A) : Prop :=
  right_distr:  y z x, R (f (g y z) x) (g (f y x) (f z x)).
586
587
Class AntiSymmetric {A} (R S : relation A) : Prop :=
  anti_symmetric:  x y, S x y  S y x  R x y.
588
589
Class Total {A} (R : relation A) := total x y : R x y  R y x.
Class Trichotomy {A} (R : relation A) :=
590
  trichotomy :  x y, R x y  x = y  R y x.
591
Class TrichotomyT {A} (R : relation A) :=
592
  trichotomyT :  x y, {R x y} + {x = y} + {R y x}.
Robbert Krebbers's avatar
Robbert Krebbers committed
593

594
Arguments irreflexivity {_} _ {_} _ _.
Robbert Krebbers's avatar
Robbert Krebbers committed
595
Arguments injective {_ _ _ _} _ {_} _ _ _.
596
Arguments injective2 {_ _ _ _ _ _} _ {_} _ _ _ _ _.
597
598
Arguments cancel {_ _ _} _ _ {_} _.
Arguments surjective {_ _ _} _ {_} _.
Robbert Krebbers's avatar
Robbert Krebbers committed
599
600
601
602
603
Arguments idempotent {_ _} _ {_} _.
Arguments commutative {_ _ _} _ {_} _ _.
Arguments left_id {_ _} _ _ {_} _.
Arguments right_id {_ _} _ _ {_} _.
Arguments associative {_ _} _ {_} _ _ _.
604
605
Arguments left_absorb {_ _} _ _ {_} _.
Arguments right_absorb {_ _} _ _ {_} _.
606
607
Arguments left_distr {_ _} _ _ {_} _ _ _.
Arguments right_distr {_ _} _ _ {_} _ _ _.
608
Arguments anti_symmetric {_ _} _ {_} _ _ _ _.
609
610
611
Arguments total {_} _ {_} _ _.
Arguments trichotomy {_} _ {_} _ _.
Arguments trichotomyT {_} _ {_} _ _.
612

613
614
615
Instance id_injective {A} : Injective (=) (=) (@id A).
Proof. intros ??; auto. Qed.

616
617
618
619
(** The following lemmas are specific versions of the projections of the above
type classes for Leibniz equality. These lemmas allow us to enforce Coq not to
use the setoid rewriting mechanism. *)
Lemma idempotent_L {A} (f : A  A  A) `{!Idempotent (=) f} x : f x x = x.
620
Proof. auto. Qed.
621
Lemma commutative_L {A B} (f : B  B  A) `{!Commutative (=) f} x y :
622
  f x y = f y x.
623
Proof. auto. Qed.
624
Lemma left_id_L {A} (i : A) (f : A  A  A) `{!LeftId (=) i f} x : f i x = x.
625
Proof. auto. Qed.
626
Lemma right_id_L {A} (i : A) (f : A  A  A) `{!RightId (=) i f} x : f x i = x.
627
Proof. auto. Qed.
628
Lemma associative_L {A} (f : A  A  A) `{!Associative (=) f} x y z :
629
  f x (f y z) = f (f x y) z.
630
Proof. auto. Qed.
631
Lemma left_absorb_L {A} (i : A) (f : A  A  A) `{!LeftAbsorb (=) i f} x :
632
633
  f i x = i.
Proof. auto. Qed.
634
Lemma right_absorb_L {A} (i : A) (f : A  A  A) `{!RightAbsorb (=) i f} x :
635
636
  f x i = i.
Proof. auto. Qed.
637
Lemma left_distr_L {A} (f g : A  A  A) `{!LeftDistr (=) f g} x y z :
638
639
  f x (g y z) = g (f x y) (f x z).
Proof. auto. Qed.
640
Lemma right_distr_L {A} (f g : A  A  A) `{!RightDistr (=) f g} y z x :
641
642
  f (g y z) x = g (f y x) (f z x).
Proof. auto. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
643

644
(** ** Axiomatization of ordered structures *)
645
646
(** The classes [PreOrder], [PartialOrder], and [TotalOrder] use an arbitrary
relation [R] instead of [⊆] to support multiple orders on the same type. *)
647
Class PartialOrder {A} (R : relation A) : Prop := {
648
649
  partial_order_pre :> PreOrder R;
  partial_order_anti_symmetric :> AntiSymmetric (=) R
650
651
}.
Class TotalOrder {A} (R : relation A) : Prop := {
652
653
  total_order_partial :> PartialOrder R;
  total_order_trichotomy :> Trichotomy (strict R)
654
655
}.

656
657
658
659
660
661
(** We do not use a setoid equality in the following interfaces to avoid the
need for proofs that the relations and operations are proper. Instead, we
define setoid equality generically [λ X Y, X ⊆ Y ∧ Y ⊆ X]. *)
Class EmptySpec A `{Empty A, SubsetEq A} : Prop := subseteq_empty X :   X.
Class JoinSemiLattice A `{SubsetEq A, Union A} : Prop := {
  join_semi_lattice_pre :>> PreOrder ();
662
663
664
  union_subseteq_l X Y : X  X  Y;
  union_subseteq_r X Y : Y  X  Y;
  union_least X Y Z : X  Z  Y  Z  X  Y  Z
Robbert Krebbers's avatar
Robbert Krebbers committed
665
}.
666
667
Class MeetSemiLattice A `{SubsetEq A, Intersection A} : Prop := {
  meet_semi_lattice_pre :>> PreOrder ();
668
669
670
  intersection_subseteq_l X Y : X  Y  X;
  intersection_subseteq_r X Y : X  Y  Y;
  intersection_greatest X Y Z : Z  X  Z  Y  Z  X  Y
Robbert Krebbers's avatar
Robbert Krebbers committed
671
}.
672
673
674
675
Class Lattice A `{SubsetEq A, Union A, Intersection A} : Prop := {
  lattice_join :>> JoinSemiLattice A;
  lattice_meet :>> MeetSemiLattice A;
  lattice_distr X Y Z : (X  Y)  (X  Z)  X  (Y  Z)
676
}.
677

678
(** ** Axiomatization of collections *)
679
680
(** The class [SimpleCollection A C] axiomatizes a collection of type [C] with
elements of type [A]. *)
681
Instance: Params (@map) 3.
682
683
Class SimpleCollection A C `{ElemOf A C,
    Empty C, Singleton A C, Union C} : Prop := {
684
  not_elem_of_empty (x : A) : x  ;
685
  elem_of_singleton (x y : A) : x  {[ y ]}  x = y;
686
687
  elem_of_union X Y (x : A) : x  X  Y  x  X  x  Y
}.
688
689
Class Collection A C `{ElemOf A C, Empty C, Singleton A C,
    Union C, Intersection C, Difference C} : Prop := {
690
  collection_simple :>> SimpleCollection A C;
Robbert Krebbers's avatar
Robbert Krebbers committed
691
  elem_of_intersection X Y (x : A) : x  X  Y  x  X  x  Y;
692
693
  elem_of_difference X Y (x : A) : x  X  Y  x  X  x  Y
}.
694
695
Class CollectionOps A C `{ElemOf A C, Empty C, Singleton A C, Union C,
    Intersection C, Difference C, IntersectionWith A C, Filter A C} : Prop := {
696
  collection_ops :>> Collection A C;
697
  elem_of_intersection_with (f : A  A  option A) X Y (x : A) :
698
    x  intersection_with f X Y   x1 x2, x1  X  x2  Y  f x1 x2 = Some x;
699
  elem_of_filter X P `{ x, Decision (P x)} x : x  filter P X  P x  x  X
Robbert Krebbers's avatar
Robbert Krebbers committed
700
701
}.

702
703
704
(** We axiomative a finite collection as a collection whose elements can be
enumerated as a list. These elements, given by the [elements] function, may be
in any order and should not contain duplicates. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
705
Class Elements A C := elements: C  list A.
706
Instance: Params (@elements) 3.
707
708
709
710
711
712
713
714
715
716
717
718
719

(** We redefine the standard library's [In] and [NoDup] using type classes. *)
Inductive elem_of_list {A} : ElemOf A (list A) :=
  | elem_of_list_here (x : A) l : x  x :: l
  | elem_of_list_further (x y : A) l : x  l  x  y :: l.
Existing Instance elem_of_list.

Inductive NoDup {A} : list A  Prop :=
  | NoDup_nil_2 : NoDup []
  | NoDup_cons_2 x l : x  l  NoDup l  NoDup (x :: l).

(** Decidability of equality of the carrier set is admissible, but we add it
anyway so as to avoid cycles in type class search. *)
720
721
722
Class FinCollection A C `{ElemOf A C, Empty C, Singleton A C,
    Union C, Intersection C, Difference C,
    Elements A C,  x y : A, Decision (x = y)} : Prop := {
Robbert Krebbers's avatar
Robbert Krebbers committed
723
  fin_collection :>> Collection A C;
724
725
  elem_of_elements X x : x  elements X  x  X;
  NoDup_elements X : NoDup (elements X)
726
727
}.
Class Size C := size: C  nat.
728
Arguments size {_ _} !_ / : simpl nomatch.
729
Instance: Params (@size) 2.
Robbert Krebbers's avatar
Robbert Krebbers committed
730

731
732
733
734
735
736
737
738
(** The class [Collection M] axiomatizes a type constructor [M] that can be
used to construct a collection [M A] with elements of type [A]. The advantage
of this class, compared to [Collection], is that it also axiomatizes the
the monadic operations. The disadvantage, is that not many inhabits are
possible (we will only provide an inhabitant using unordered lists without
duplicates removed). More interesting implementations typically need
decidability of equality, or a total order on the elements, which do not fit
in a type constructor of type [Type → Type]. *)
739
740
741
Class CollectionMonad M `{ A, ElemOf A (M A),
     A, Empty (M A),  A, Singleton A (M A),  A, Union (M A),
    !MBind M, !MRet M, !FMap M, !MJoin M} : Prop := {
742
743
744
  collection_monad_simple A :> SimpleCollection A (M A);
  elem_of_bind {A B} (f : A  M B) (X : M A) (x : B) :
    x  X = f   y, x  f y  y  X;
745
  elem_of_ret {A} (x y : A) : x  mret y  x = y;
746
747
  elem_of_fmap {A B} (f : A  B) (X : M A) (x : B) :
    x  f <$> X   y, x = f y  y  X;
748
  elem_of_join {A} (X : M (M A)) (x : A) : x  mjoin X   Y, x  Y  Y  X
749
750
}.

751
752
753
(** The function [fresh X] yields an element that is not contained in [X]. We
will later prove that [fresh] is [Proper] with respect to the induced setoid
equality on collections. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
754
Class Fresh A C := fresh: C  A.
755
Instance: Params (@fresh) 3.
756
757
Class FreshSpec A C `{ElemOf A C,
    Empty C, Singleton A C, Union C, Fresh A C} : Prop := {
758
  fresh_collection_simple :>> SimpleCollection A C;
759
  fresh_proper_alt X Y : ( x, x  X  x  Y)  fresh X = fresh Y;
Robbert Krebbers's avatar
Robbert Krebbers committed
760
761
762
  is_fresh (X : C) : fresh X