list.v 159 KB
Newer Older
Robbert Krebbers's avatar
Robbert Krebbers committed
1
(* Copyright (c) 2012-2015, Robbert Krebbers. *)
2 3 4
(* This file is distributed under the terms of the BSD license. *)
(** This file collects general purpose definitions and theorems on lists that
are not in the Coq standard library. *)
5
From Coq Require Export Permutation.
6
From stdpp Require Export numbers base option.
Robbert Krebbers's avatar
Robbert Krebbers committed
7

8
Arguments length {_} _.
Robbert Krebbers's avatar
Robbert Krebbers committed
9 10
Arguments cons {_} _ _.
Arguments app {_} _ _.
11 12 13 14

Instance: Params (@length) 1.
Instance: Params (@cons) 1.
Instance: Params (@app) 1.
Robbert Krebbers's avatar
Robbert Krebbers committed
15

16 17 18
Notation tail := tl.
Notation take := firstn.
Notation drop := skipn.
19

20
Arguments tail {_} _.
21 22 23
Arguments take {_} !_ !_ /.
Arguments drop {_} !_ !_ /.

24 25 26 27 28 29 30
Instance: Params (@tail) 1.
Instance: Params (@take) 1.
Instance: Params (@drop) 1.

Arguments Permutation {_} _ _.
Arguments Forall_cons {_} _ _ _ _ _.

Robbert Krebbers's avatar
Robbert Krebbers committed
31 32 33 34 35 36 37
Notation "(::)" := cons (only parsing) : C_scope.
Notation "( x ::)" := (cons x) (only parsing) : C_scope.
Notation "(:: l )" := (λ x, cons x l) (only parsing) : C_scope.
Notation "(++)" := app (only parsing) : C_scope.
Notation "( l ++)" := (app l) (only parsing) : C_scope.
Notation "(++ k )" := (λ l, app l k) (only parsing) : C_scope.

38 39 40 41 42 43 44 45 46
Infix "≡ₚ" := Permutation (at level 70, no associativity) : C_scope.
Notation "(≡ₚ)" := Permutation (only parsing) : C_scope.
Notation "( x ≡ₚ)" := (Permutation x) (only parsing) : C_scope.
Notation "(≡ₚ x )" := (λ y, y  x) (only parsing) : C_scope.
Notation "(≢ₚ)" := (λ x y, ¬x  y) (only parsing) : C_scope.
Notation "x ≢ₚ y":= (¬x  y) (at level 70, no associativity) : C_scope.
Notation "( x ≢ₚ)" := (λ y, x ≢ₚ y) (only parsing) : C_scope.
Notation "(≢ₚ x )" := (λ y, y ≢ₚ x) (only parsing) : C_scope.

Robbert Krebbers's avatar
Robbert Krebbers committed
47 48 49
Instance maybe_cons {A} : Maybe2 (@cons A) := λ l,
  match l with x :: l => Some (x,l) | _ => None end.

50
(** * Definitions *)
51 52 53 54 55 56
(** Setoid equality lifted to lists *)
Inductive list_equiv `{Equiv A} : Equiv (list A) :=
  | nil_equiv : []  []
  | cons_equiv x y l k : x  y  l  k  x :: l  y :: k.
Existing Instance list_equiv.

57 58
(** The operation [l !! i] gives the [i]th element of the list [l], or [None]
in case [i] is out of bounds. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
59
Instance list_lookup {A} : Lookup nat A (list A) :=
60
  fix go i l {struct l} : option A := let _ : Lookup _ _ _ := @go in
61
  match l with
62
  | [] => None | x :: l => match i with 0 => Some x | S i => l !! i end
63
  end.
64 65 66

(** The operation [alter f i l] applies the function [f] to the [i]th element
of [l]. In case [i] is out of bounds, the list is returned unchanged. *)
67 68
Instance list_alter {A} : Alter nat A (list A) := λ f,
  fix go i l {struct l} :=
69 70
  match l with
  | [] => []
71
  | x :: l => match i with 0 => f x :: l | S i => x :: go i l end
72
  end.
73

74 75
(** The operation [<[i:=x]> l] overwrites the element at position [i] with the
value [x]. In case [i] is out of bounds, the list is returned unchanged. *)
76 77 78 79 80 81
Instance list_insert {A} : Insert nat A (list A) :=
  fix go i y l {struct l} := let _ : Insert _ _ _ := @go in
  match l with
  | [] => []
  | x :: l => match i with 0 => y :: l | S i => x :: <[i:=y]>l end
  end.
82 83 84 85 86
Fixpoint list_inserts {A} (i : nat) (k l : list A) : list A :=
  match k with
  | [] => l
  | y :: k => <[i:=y]>(list_inserts (S i) k l)
  end.
87
Instance: Params (@list_inserts) 1.
88

89 90 91
(** The operation [delete i l] removes the [i]th element of [l] and moves
all consecutive elements one position ahead. In case [i] is out of bounds,
the list is returned unchanged. *)
92 93
Instance list_delete {A} : Delete nat (list A) :=
  fix go (i : nat) (l : list A) {struct l} : list A :=
94 95
  match l with
  | [] => []
96
  | x :: l => match i with 0 => l | S i => x :: @delete _ _ go i l end
97
  end.
98 99 100

(** The function [option_list o] converts an element [Some x] into the
singleton list [[x]], and [None] into the empty list [[]]. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
101
Definition option_list {A} : option A  list A := option_rect _ (λ x, [x]) [].
102 103
Instance: Params (@option_list) 1.
Instance maybe_list_singleton {A} : Maybe (λ x : A, [x]) := λ l,
104
  match l with [x] => Some x | _ => None end.
Robbert Krebbers's avatar
Robbert Krebbers committed
105 106 107 108

(** The function [filter P l] returns the list of elements of [l] that
satisfies [P]. The order remains unchanged. *)
Instance list_filter {A} : Filter A (list A) :=
109
  fix go P _ l := let _ : Filter _ _ := @go in
Robbert Krebbers's avatar
Robbert Krebbers committed
110 111
  match l with
  | [] => []
112
  | x :: l => if decide (P x) then x :: filter P l else filter P l
113 114 115 116
  end.

(** The function [list_find P l] returns the first index [i] whose element
satisfies the predicate [P]. *)
117
Definition list_find {A} P `{ x, Decision (P x)} : list A  option (nat * A) :=
118 119
  fix go l :=
  match l with
120 121
  | [] => None
  | x :: l => if decide (P x) then Some (0,x) else prod_map S id <$> go l
122
  end.
123
Instance: Params (@list_find) 3.
Robbert Krebbers's avatar
Robbert Krebbers committed
124 125 126 127

(** The function [replicate n x] generates a list with length [n] of elements
with value [x]. *)
Fixpoint replicate {A} (n : nat) (x : A) : list A :=
128
  match n with 0 => [] | S n => x :: replicate n x end.
129
Instance: Params (@replicate) 2.
Robbert Krebbers's avatar
Robbert Krebbers committed
130 131 132

(** The function [reverse l] returns the elements of [l] in reverse order. *)
Definition reverse {A} (l : list A) : list A := rev_append l [].
133
Instance: Params (@reverse) 1.
Robbert Krebbers's avatar
Robbert Krebbers committed
134

135 136 137 138
(** The function [last l] returns the last element of the list [l], or [None]
if the list [l] is empty. *)
Fixpoint last {A} (l : list A) : option A :=
  match l with [] => None | [x] => Some x | _ :: l => last l end.
139
Instance: Params (@last) 1.
140

Robbert Krebbers's avatar
Robbert Krebbers committed
141 142 143 144 145 146
(** The function [resize n y l] takes the first [n] elements of [l] in case
[length l ≤ n], and otherwise appends elements with value [x] to [l] to obtain
a list of length [n]. *)
Fixpoint resize {A} (n : nat) (y : A) (l : list A) : list A :=
  match l with
  | [] => replicate n y
147
  | x :: l => match n with 0 => [] | S n => x :: resize n y l end
Robbert Krebbers's avatar
Robbert Krebbers committed
148 149
  end.
Arguments resize {_} !_ _ !_.
150
Instance: Params (@resize) 2.
Robbert Krebbers's avatar
Robbert Krebbers committed
151

152 153 154
(** The function [reshape k l] transforms [l] into a list of lists whose sizes
are specified by [k]. In case [l] is too short, the resulting list will be
padded with empty lists. In case [l] is too long, it will be truncated. *)
155 156
Fixpoint reshape {A} (szs : list nat) (l : list A) : list (list A) :=
  match szs with
157
  | [] => [] | sz :: szs => take sz l :: reshape szs (drop sz l)
158
  end.
159
Instance: Params (@reshape) 2.
160

161
Definition sublist_lookup {A} (i n : nat) (l : list A) : option (list A) :=
162 163 164 165
  guard (i + n  length l); Some (take n (drop i l)).
Definition sublist_alter {A} (f : list A  list A)
    (i n : nat) (l : list A) : list A :=
  take i l ++ f (take n (drop i l)) ++ drop (i + n) l.
166

167 168 169 170
(** Functions to fold over a list. We redefine [foldl] with the arguments in
the same order as in Haskell. *)
Notation foldr := fold_right.
Definition foldl {A B} (f : A  B  A) : A  list B  A :=
171
  fix go a l := match l with [] => a | x :: l => go (f a x) l end.
172 173 174

(** The monadic operations. *)
Instance list_ret: MRet list := λ A x, x :: @nil A.
175 176
Instance list_fmap : FMap list := λ A B f,
  fix go (l : list A) := match l with [] => [] | x :: l => f x :: go l end.
177 178 179 180 181 182
Instance list_omap : OMap list := λ A B f,
  fix go (l : list A) :=
  match l with
  | [] => []
  | x :: l => match f x with Some y => y :: go l | None => go l end
  end.
183 184
Instance list_bind : MBind list := λ A B f,
  fix go (l : list A) := match l with [] => [] | x :: l => f x ++ go l end.
185 186
Instance list_join: MJoin list :=
  fix go A (ls : list (list A)) : list A :=
187
  match ls with [] => [] | l :: ls => l ++ @mjoin _ go _ ls end.
188
Definition mapM `{MBind M, MRet M} {A B} (f : A  M B) : list A  M (list B) :=
189
  fix go l :=
190
  match l with [] => mret [] | x :: l => y  f x; k  go l; mret (y :: k) end.
191 192 193 194 195

(** We define stronger variants of map and fold that allow the mapped
function to use the index of the elements. *)
Definition imap_go {A B} (f : nat  A  B) : nat  list A  list B :=
  fix go (n : nat) (l : list A) :=
196
  match l with [] => [] | x :: l => f n x :: go (S n) l end.
197
Definition imap {A B} (f : nat  A  B) : list A  list B := imap_go f 0.
198 199 200 201
Definition zipped_map {A B} (f : list A  list A  A  B) :
  list A  list A  list B := fix go l k :=
  match k with [] => [] | x :: k => f l k x :: go (x :: l) k end.

Robbert Krebbers's avatar
Robbert Krebbers committed
202 203 204 205 206 207 208 209 210
Definition imap2_go {A B C} (f : nat  A  B  C) :
    nat  list A  list B  list C:=
  fix go (n : nat) (l : list A) (k : list B) :=
  match l, k with
  | [], _ |_, [] => [] | x :: l, y :: k => f n x y :: go (S n) l k
  end.
Definition imap2 {A B C} (f : nat  A  B  C) :
  list A  list B  list C := imap2_go f 0.

211 212 213 214 215 216 217
Inductive zipped_Forall {A} (P : list A  list A  A  Prop) :
    list A  list A  Prop :=
  | zipped_Forall_nil l : zipped_Forall P l []
  | zipped_Forall_cons l k x :
     P l k x  zipped_Forall P (x :: l) k  zipped_Forall P l (x :: k).
Arguments zipped_Forall_nil {_ _} _.
Arguments zipped_Forall_cons {_ _} _ _ _ _ _.
218

219 220 221 222 223 224 225
(** The function [mask f βs l] applies the function [f] to elements in [l] at
positions that are [true] in [βs]. *)
Fixpoint mask {A} (f : A  A) (βs : list bool) (l : list A) : list A :=
  match βs, l with
  | β :: βs, x :: l => (if β then f x else x) :: mask f βs l
  | _, _ => l
  end.
226 227 228 229

(** The function [permutations l] yields all permutations of [l]. *)
Fixpoint interleave {A} (x : A) (l : list A) : list (list A) :=
  match l with
230
  | [] => [[x]]| y :: l => (x :: y :: l) :: ((y ::) <$> interleave x l)
231 232
  end.
Fixpoint permutations {A} (l : list A) : list (list A) :=
233
  match l with [] => [[]] | x :: l => permutations l = interleave x end.
234

235 236
(** The predicate [suffix_of] holds if the first list is a suffix of the second.
The predicate [prefix_of] holds if the first list is a prefix of the second. *)
237 238
Definition suffix_of {A} : relation (list A) := λ l1 l2,  k, l2 = k ++ l1.
Definition prefix_of {A} : relation (list A) := λ l1 l2,  k, l2 = l1 ++ k.
239 240
Infix "`suffix_of`" := suffix_of (at level 70) : C_scope.
Infix "`prefix_of`" := prefix_of (at level 70) : C_scope.
241 242
Hint Extern 0 (_ `prefix_of` _) => reflexivity.
Hint Extern 0 (_ `suffix_of` _) => reflexivity.
Robbert Krebbers's avatar
Robbert Krebbers committed
243

244 245 246 247 248 249 250 251
Section prefix_suffix_ops.
  Context `{ x y : A, Decision (x = y)}.
  Definition max_prefix_of : list A  list A  list A * list A * list A :=
    fix go l1 l2 :=
    match l1, l2 with
    | [], l2 => ([], l2, [])
    | l1, [] => (l1, [], [])
    | x1 :: l1, x2 :: l2 =>
252
      if decide_rel (=) x1 x2
253
      then prod_map id (x1 ::) (go l1 l2) else (x1 :: l1, x2 :: l2, [])
254 255 256 257 258
    end.
  Definition max_suffix_of (l1 l2 : list A) : list A * list A * list A :=
    match max_prefix_of (reverse l1) (reverse l2) with
    | (k1, k2, k3) => (reverse k1, reverse k2, reverse k3)
    end.
259 260
  Definition strip_prefix (l1 l2 : list A) := (max_prefix_of l1 l2).1.2.
  Definition strip_suffix (l1 l2 : list A) := (max_suffix_of l1 l2).1.2.
261
End prefix_suffix_ops.
Robbert Krebbers's avatar
Robbert Krebbers committed
262

263
(** A list [l1] is a sublist of [l2] if [l2] is obtained by removing elements
264 265 266
from [l1] without changing the order. *)
Inductive sublist {A} : relation (list A) :=
  | sublist_nil : sublist [] []
267
  | sublist_skip x l1 l2 : sublist l1 l2  sublist (x :: l1) (x :: l2)
268
  | sublist_cons x l1 l2 : sublist l1 l2  sublist l1 (x :: l2).
269
Infix "`sublist`" := sublist (at level 70) : C_scope.
270
Hint Extern 0 (_ `sublist` _) => reflexivity.
271 272

(** A list [l2] contains a list [l1] if [l2] is obtained by removing elements
273
from [l1] while possiblity changing the order. *)
274 275 276 277
Inductive contains {A} : relation (list A) :=
  | contains_nil : contains [] []
  | contains_skip x l1 l2 : contains l1 l2  contains (x :: l1) (x :: l2)
  | contains_swap x y l : contains (y :: x :: l) (x :: y :: l)
278
  | contains_cons x l1 l2 : contains l1 l2  contains l1 (x :: l2)
279 280
  | contains_trans l1 l2 l3 : contains l1 l2  contains l2 l3  contains l1 l3.
Infix "`contains`" := contains (at level 70) : C_scope.
281
Hint Extern 0 (_ `contains` _) => reflexivity.
282 283 284 285 286 287 288 289 290 291

Section contains_dec_help.
  Context {A} {dec :  x y : A, Decision (x = y)}.
  Fixpoint list_remove (x : A) (l : list A) : option (list A) :=
    match l with
    | [] => None
    | y :: l => if decide (x = y) then Some l else (y ::) <$> list_remove x l
    end.
  Fixpoint list_remove_list (k : list A) (l : list A) : option (list A) :=
    match k with
292
    | [] => Some l | x :: k => list_remove x l = list_remove_list k
293 294
    end.
End contains_dec_help.
295

296 297 298 299 300
Inductive Forall3 {A B C} (P : A  B  C  Prop) :
     list A  list B  list C  Prop :=
  | Forall3_nil : Forall3 P [] [] []
  | Forall3_cons x y z l k k' :
     P x y z  Forall3 P l k k'  Forall3 P (x :: l) (y :: k) (z :: k').
301 302

(** Set operations on lists *)
303 304 305
Definition included {A} (l1 l2 : list A) :=  x, x  l1  x  l2.
Infix "`included`" := included (at level 70) : C_scope.

306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328
Section list_set.
  Context {A} {dec :  x y : A, Decision (x = y)}.
  Global Instance elem_of_list_dec {dec :  x y : A, Decision (x = y)}
    (x : A) :  l, Decision (x  l).
  Proof.
   refine (
    fix go l :=
    match l return Decision (x  l) with
    | [] => right _
    | y :: l => cast_if_or (decide (x = y)) (go l)
    end); clear go dec; subst; try (by constructor); abstract by inversion 1.
  Defined.
  Fixpoint remove_dups (l : list A) : list A :=
    match l with
    | [] => []
    | x :: l =>
      if decide_rel () x l then remove_dups l else x :: remove_dups l
    end.
  Fixpoint list_difference (l k : list A) : list A :=
    match l with
    | [] => []
    | x :: l =>
      if decide_rel () x k
329
      then list_difference l k else x :: list_difference l k
330
    end.
331
  Definition list_union (l k : list A) : list A := list_difference l k ++ k.
332 333 334 335 336
  Fixpoint list_intersection (l k : list A) : list A :=
    match l with
    | [] => []
    | x :: l =>
      if decide_rel () x k
337
      then x :: list_intersection l k else list_intersection l k
338 339 340 341 342 343 344 345 346
    end.
  Definition list_intersection_with (f : A  A  option A) :
    list A  list A  list A := fix go l k :=
    match l with
    | [] => []
    | x :: l => foldr (λ y,
        match f x y with None => id | Some z => (z ::) end) (go l k) k
    end.
End list_set.
347 348

(** * Basic tactics on lists *)
349
(** The tactic [discriminate_list] discharges a goal if it contains
350 351
a list equality involving [(::)] and [(++)] of two lists that have a different
length as one of its hypotheses. *)
352
Tactic Notation "discriminate_list" hyp(H) :=
353
  apply (f_equal length) in H;
354
  repeat (csimpl in H || rewrite app_length in H); exfalso; lia.
355 356
Tactic Notation "discriminate_list" :=
  match goal with H : @eq (list _) _ _ |- _ => discriminate_list H end.
357

358
(** The tactic [simplify_list_eq] simplifies hypotheses involving
359 360
equalities on lists using injectivity of [(::)] and [(++)]. Also, it simplifies
lookups in singleton lists. *)
361
Lemma app_inj_1 {A} (l1 k1 l2 k2 : list A) :
362 363
  length l1 = length k1  l1 ++ l2 = k1 ++ k2  l1 = k1  l2 = k2.
Proof. revert k1. induction l1; intros [|??]; naive_solver. Qed.
364
Lemma app_inj_2 {A} (l1 k1 l2 k2 : list A) :
365 366
  length l2 = length k2  l1 ++ l2 = k1 ++ k2  l1 = k1  l2 = k2.
Proof.
367
  intros ? Hl. apply app_inj_1; auto.
368 369
  apply (f_equal length) in Hl. rewrite !app_length in Hl. lia.
Qed.
370
Ltac simplify_list_eq :=
371
  repeat match goal with
372
  | _ => progress simplify_eq/=
373
  | H : _ ++ _ = _ ++ _ |- _ => first
374
    [ apply app_inv_head in H | apply app_inv_tail in H
375 376
    | apply app_inj_1 in H; [destruct H|done]
    | apply app_inj_2 in H; [destruct H|done] ]
Robbert Krebbers's avatar
Robbert Krebbers committed
377
  | H : [?x] !! ?i = Some ?y |- _ =>
378
    destruct i; [change (Some x = Some y) in H | discriminate]
379
  end.
380

381 382
(** * General theorems *)
Section general_properties.
Robbert Krebbers's avatar
Robbert Krebbers committed
383
Context {A : Type}.
384 385
Implicit Types x y z : A.
Implicit Types l k : list A.
Robbert Krebbers's avatar
Robbert Krebbers committed
386

387
Global Instance: Inj2 (=) (=) (=) (@cons A).
388
Proof. by injection 1. Qed.
389
Global Instance:  k, Inj (=) (=) (k ++).
390
Proof. intros ???. apply app_inv_head. Qed.
391
Global Instance:  k, Inj (=) (=) (++ k).
392
Proof. intros ???. apply app_inv_tail. Qed.
393
Global Instance: Assoc (=) (@app A).
394 395 396 397 398
Proof. intros ???. apply app_assoc. Qed.
Global Instance: LeftId (=) [] (@app A).
Proof. done. Qed.
Global Instance: RightId (=) [] (@app A).
Proof. intro. apply app_nil_r. Qed.
399

400
Lemma app_nil l1 l2 : l1 ++ l2 = []  l1 = []  l2 = [].
401
Proof. split. apply app_eq_nil. by intros [-> ->]. Qed.
402 403
Lemma app_singleton l1 l2 x :
  l1 ++ l2 = [x]  l1 = []  l2 = [x]  l1 = [x]  l2 = [].
404
Proof. split. apply app_eq_unit. by intros [[-> ->]|[-> ->]]. Qed.
405 406 407
Lemma cons_middle x l1 l2 : l1 ++ x :: l2 = l1 ++ [x] ++ l2.
Proof. done. Qed.
Lemma list_eq l1 l2 : ( i, l1 !! i = l2 !! i)  l1 = l2.
408
Proof.
409
  revert l2. induction l1 as [|x l1 IH]; intros [|y l2] H.
410 411 412
  - done.
  - discriminate (H 0).
  - discriminate (H 0).
413
  - f_equal; [by injection (H 0)|]. apply (IH _ $ λ i, H (S i)).
414
Qed.
415
Global Instance list_eq_dec {dec :  x y, Decision (x = y)} :  l k,
416
  Decision (l = k) := list_eq_dec dec.
417 418 419
Global Instance list_eq_nil_dec l : Decision (l = []).
Proof. by refine match l with [] => left _ | _ => right _ end. Defined.
Lemma list_singleton_reflect l :
420
  option_reflect (λ x, l = [x]) (length l  1) (maybe (λ x, [x]) l).
421 422 423 424
Proof. by destruct l as [|? []]; constructor. Defined.

Definition nil_length : length (@nil A) = 0 := eq_refl.
Definition cons_length x l : length (x :: l) = S (length l) := eq_refl.
425
Lemma nil_or_length_pos l : l = []  length l  0.
426
Proof. destruct l; simpl; auto with lia. Qed.
427
Lemma nil_length_inv l : length l = 0  l = [].
428 429
Proof. by destruct l. Qed.
Lemma lookup_nil i : @nil A !! i = None.
430
Proof. by destruct i. Qed.
431
Lemma lookup_tail l i : tail l !! i = l !! S i.
432
Proof. by destruct l. Qed.
433
Lemma lookup_lt_Some l i x : l !! i = Some x  i < length l.
434
Proof. revert i. induction l; intros [|?] ?; naive_solver auto with arith. Qed.
435 436 437
Lemma lookup_lt_is_Some_1 l i : is_Some (l !! i)  i < length l.
Proof. intros [??]; eauto using lookup_lt_Some. Qed.
Lemma lookup_lt_is_Some_2 l i : i < length l  is_Some (l !! i).
438
Proof. revert i. induction l; intros [|?] ?; naive_solver eauto with lia. Qed.
439 440 441 442 443 444 445 446
Lemma lookup_lt_is_Some l i : is_Some (l !! i)  i < length l.
Proof. split; auto using lookup_lt_is_Some_1, lookup_lt_is_Some_2. Qed.
Lemma lookup_ge_None l i : l !! i = None  length l  i.
Proof. rewrite eq_None_not_Some, lookup_lt_is_Some. lia. Qed.
Lemma lookup_ge_None_1 l i : l !! i = None  length l  i.
Proof. by rewrite lookup_ge_None. Qed.
Lemma lookup_ge_None_2 l i : length l  i  l !! i = None.
Proof. by rewrite lookup_ge_None. Qed.
447 448 449
Lemma list_eq_same_length l1 l2 n :
  length l2 = n  length l1 = n 
  ( i x y, i < n  l1 !! i = Some x  l2 !! i = Some y  x = y)  l1 = l2.
Robbert Krebbers's avatar
Robbert Krebbers committed
450
Proof.
451
  intros <- Hlen Hl; apply list_eq; intros i. destruct (l2 !! i) as [x|] eqn:Hx.
452
  - destruct (lookup_lt_is_Some_2 l1 i) as [y Hy].
453 454
    { rewrite Hlen; eauto using lookup_lt_Some. }
    rewrite Hy; f_equal; apply (Hl i); eauto using lookup_lt_Some.
455
  - by rewrite lookup_ge_None, Hlen, <-lookup_ge_None.
Robbert Krebbers's avatar
Robbert Krebbers committed
456
Qed.
457
Lemma lookup_app_l l1 l2 i : i < length l1  (l1 ++ l2) !! i = l1 !! i.
458
Proof. revert i. induction l1; intros [|?]; naive_solver auto with lia. Qed.
459 460
Lemma lookup_app_l_Some l1 l2 i x : l1 !! i = Some x  (l1 ++ l2) !! i = Some x.
Proof. intros. rewrite lookup_app_l; eauto using lookup_lt_Some. Qed.
461
Lemma lookup_app_r l1 l2 i :
462
  length l1  i  (l1 ++ l2) !! i = l2 !! (i - length l1).
463 464 465 466 467 468
Proof. revert i. induction l1; intros [|?]; simpl; auto with lia. Qed.
Lemma lookup_app_Some l1 l2 i x :
  (l1 ++ l2) !! i = Some x 
    l1 !! i = Some x  length l1  i  l2 !! (i - length l1) = Some x.
Proof.
  split.
469
  - revert i. induction l1 as [|y l1 IH]; intros [|i] ?;
470
      simplify_eq/=; auto with lia.
471
    destruct (IH i) as [?|[??]]; auto with lia.
472
  - intros [?|[??]]; auto using lookup_app_l_Some. by rewrite lookup_app_r.
473
Qed.
474 475 476
Lemma list_lookup_middle l1 l2 x n :
  n = length l1  (l1 ++ x :: l2) !! n = Some x.
Proof. intros ->. by induction l1. Qed.
477

478
Lemma list_insert_alter l i x : <[i:=x]>l = alter (λ _, x) i l.
479
Proof. by revert i; induction l; intros []; intros; f_equal/=. Qed.
480
Lemma alter_length f l i : length (alter f i l) = length l.
481
Proof. revert i. by induction l; intros [|?]; f_equal/=. Qed.
482
Lemma insert_length l i x : length (<[i:=x]>l) = length l.
483
Proof. revert i. by induction l; intros [|?]; f_equal/=. Qed.
484
Lemma list_lookup_alter f l i : alter f i l !! i = f <$> l !! i.
485
Proof. revert i. induction l. done. intros [|i]. done. apply (IHl i). Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
486
Lemma list_lookup_alter_ne f l i j : i  j  alter f i l !! j = l !! j.
487
Proof. revert i j. induction l; [done|]. intros [] []; naive_solver. Qed.
488
Lemma list_lookup_insert l i x : i < length l  <[i:=x]>l !! i = Some x.
489
Proof. revert i. induction l; intros [|?] ?; f_equal/=; auto with lia. Qed.
490
Lemma list_lookup_insert_ne l i j x : i  j  <[i:=x]>l !! j = l !! j.
491
Proof. revert i j. induction l; [done|]. intros [] []; naive_solver. Qed.
492 493 494 495 496 497
Lemma list_lookup_insert_Some l i x j y :
  <[i:=x]>l !! j = Some y 
    i = j  x = y  j < length l  i  j  l !! j = Some y.
Proof.
  destruct (decide (i = j)) as [->|];
    [split|rewrite list_lookup_insert_ne by done; tauto].
498
  - intros Hy. assert (j < length l).
499 500
    { rewrite <-(insert_length l j x); eauto using lookup_lt_Some. }
    rewrite list_lookup_insert in Hy by done; naive_solver.
501
  - intros [(?&?&?)|[??]]; rewrite ?list_lookup_insert; naive_solver.
502 503 504
Qed.
Lemma list_insert_commute l i j x y :
  i  j  <[i:=x]>(<[j:=y]>l) = <[j:=y]>(<[i:=x]>l).
505
Proof. revert i j. by induction l; intros [|?] [|?] ?; f_equal/=; auto. Qed.
506 507
Lemma list_lookup_other l i x :
  length l  1  l !! i = Some x   j y, j  i  l !! j = Some y.
Robbert Krebbers's avatar
Robbert Krebbers committed
508
Proof.
509
  intros. destruct i, l as [|x0 [|x1 l]]; simplify_eq/=.
510 511
  - by exists 1, x1.
  - by exists 0, x0.
Robbert Krebbers's avatar
Robbert Krebbers committed
512
Qed.
513 514
Lemma alter_app_l f l1 l2 i :
  i < length l1  alter f i (l1 ++ l2) = alter f i l1 ++ l2.
515
Proof. revert i. induction l1; intros [|?] ?; f_equal/=; auto with lia. Qed.
516
Lemma alter_app_r f l1 l2 i :
517
  alter f (length l1 + i) (l1 ++ l2) = l1 ++ alter f i l2.
518
Proof. revert i. induction l1; intros [|?]; f_equal/=; auto. Qed.
519 520
Lemma alter_app_r_alt f l1 l2 i :
  length l1  i  alter f i (l1 ++ l2) = l1 ++ alter f (i - length l1) l2.
521 522 523 524
Proof.
  intros. assert (i = length l1 + (i - length l1)) as Hi by lia.
  rewrite Hi at 1. by apply alter_app_r.
Qed.
525
Lemma list_alter_id f l i : ( x, f x = x)  alter f i l = l.
526
Proof. intros ?. revert i. induction l; intros [|?]; f_equal/=; auto. Qed.
527 528
Lemma list_alter_ext f g l k i :
  ( x, l !! i = Some x  f x = g x)  l = k  alter f i l = alter g i k.
529
Proof. intros H ->. revert i H. induction k; intros [|?] ?; f_equal/=; auto. Qed.
530 531
Lemma list_alter_compose f g l i :
  alter (f  g) i l = alter f i (alter g i l).
532
Proof. revert i. induction l; intros [|?]; f_equal/=; auto. Qed.
533 534
Lemma list_alter_commute f g l i j :
  i  j  alter f i (alter g j l) = alter g j (alter f i l).
535
Proof. revert i j. induction l; intros [|?][|?] ?; f_equal/=; auto with lia. Qed.
536 537
Lemma insert_app_l l1 l2 i x :
  i < length l1  <[i:=x]>(l1 ++ l2) = <[i:=x]>l1 ++ l2.
538
Proof. revert i. induction l1; intros [|?] ?; f_equal/=; auto with lia. Qed.
539
Lemma insert_app_r l1 l2 i x : <[length l1+i:=x]>(l1 ++ l2) = l1 ++ <[i:=x]>l2.
540
Proof. revert i. induction l1; intros [|?]; f_equal/=; auto. Qed.
541 542
Lemma insert_app_r_alt l1 l2 i x :
  length l1  i  <[i:=x]>(l1 ++ l2) = l1 ++ <[i - length l1:=x]>l2.
543 544 545 546
Proof.
  intros. assert (i = length l1 + (i - length l1)) as Hi by lia.
  rewrite Hi at 1. by apply insert_app_r.
Qed.
547
Lemma delete_middle l1 l2 x : delete (length l1) (l1 ++ x :: l2) = l1 ++ l2.
548
Proof. induction l1; f_equal/=; auto. Qed.
549

550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586
Lemma inserts_length l i k : length (list_inserts i k l) = length l.
Proof.
  revert i. induction k; intros ?; csimpl; rewrite ?insert_length; auto.
Qed.
Lemma list_lookup_inserts l i k j :
  i  j < i + length k  j < length l 
  list_inserts i k l !! j = k !! (j - i).
Proof.
  revert i j. induction k as [|y k IH]; csimpl; intros i j ??; [lia|].
  destruct (decide (i = j)) as [->|].
  { by rewrite list_lookup_insert, Nat.sub_diag
      by (rewrite inserts_length; lia). }
  rewrite list_lookup_insert_ne, IH by lia.
  by replace (j - i) with (S (j - S i)) by lia.
Qed.
Lemma list_lookup_inserts_lt l i k j :
  j < i  list_inserts i k l !! j = l !! j.
Proof.
  revert i j. induction k; intros i j ?; csimpl;
    rewrite ?list_lookup_insert_ne by lia; auto with lia.
Qed.
Lemma list_lookup_inserts_ge l i k j :
  i + length k  j  list_inserts i k l !! j = l !! j.
Proof.
  revert i j. induction k; csimpl; intros i j ?;
    rewrite ?list_lookup_insert_ne by lia; auto with lia.
Qed.
Lemma list_lookup_inserts_Some l i k j y :
  list_inserts i k l !! j = Some y 
    (j < i  i + length k  j)  l !! j = Some y 
    i  j < i + length k  j < length l  k !! (j - i) = Some y.
Proof.
  destruct (decide (j < i)).
  { rewrite list_lookup_inserts_lt by done; intuition lia. }
  destruct (decide (i + length k  j)).
  { rewrite list_lookup_inserts_ge by done; intuition lia. }
  split.
587
  - intros Hy. assert (j < length l).
588 589
    { rewrite <-(inserts_length l i k); eauto using lookup_lt_Some. }
    rewrite list_lookup_inserts in Hy by lia. intuition lia.
590
  - intuition. by rewrite list_lookup_inserts by lia.
591 592 593 594 595 596 597 598
Qed.
Lemma list_insert_inserts_lt l i j x k :
  i < j  <[i:=x]>(list_inserts j k l) = list_inserts j k (<[i:=x]>l).
Proof.
  revert i j. induction k; intros i j ?; simpl;
    rewrite 1?list_insert_commute by lia; auto with f_equal.
Qed.

599
(** ** Properties of the [elem_of] predicate *)
600
Lemma not_elem_of_nil x : x  [].
601
Proof. by inversion 1. Qed.
602
Lemma elem_of_nil x : x  []  False.
603
Proof. intuition. by destruct (not_elem_of_nil x). Qed.
604
Lemma elem_of_nil_inv l : ( x, x  l)  l = [].
605
Proof. destruct l. done. by edestruct 1; constructor. Qed.
606 607
Lemma elem_of_not_nil x l : x  l  l  [].
Proof. intros ? ->. by apply (elem_of_nil x). Qed.
608
Lemma elem_of_cons l x y : x  y :: l  x = y  x  l.
Robbert Krebbers's avatar
Robbert Krebbers committed
609
Proof. by split; [inversion 1; subst|intros [->|?]]; constructor. Qed.
610
Lemma not_elem_of_cons l x y : x  y :: l  x  y  x  l.
Robbert Krebbers's avatar
Robbert Krebbers committed
611
Proof. rewrite elem_of_cons. tauto. Qed.
612
Lemma elem_of_app l1 l2 x : x  l1 ++ l2  x  l1  x  l2.
613
Proof.
614
  induction l1.
615 616
  - split; [by right|]. intros [Hx|]; [|done]. by destruct (elem_of_nil x).
  - simpl. rewrite !elem_of_cons, IHl1. tauto.
617
Qed.
618
Lemma not_elem_of_app l1 l2 x : x  l1 ++ l2  x  l1  x  l2.
Robbert Krebbers's avatar
Robbert Krebbers committed
619
Proof. rewrite elem_of_app. tauto. Qed.
620
Lemma elem_of_list_singleton x y : x  [y]  x = y.
621
Proof. rewrite elem_of_cons, elem_of_nil. tauto. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
622
Global Instance elem_of_list_permutation_proper x : Proper (() ==> iff) (x ).
623
Proof. induction 1; rewrite ?elem_of_nil, ?elem_of_cons; intuition. Qed.
624
Lemma elem_of_list_split l x : x  l   l1 l2, l = l1 ++ x :: l2.
625
Proof.
626
  induction 1 as [x l|x y l ? [l1 [l2 ->]]]; [by eexists [], l|].
627
  by exists (y :: l1), l2.
628
Qed.
629
Lemma elem_of_list_lookup_1 l x : x  l   i, l !! i = Some x.
630
Proof.
631 632
  induction 1 as [|???? IH]; [by exists 0 |].
  destruct IH as [i ?]; auto. by exists (S i).
633
Qed.
634
Lemma elem_of_list_lookup_2 l i x : l !! i = Some x  x  l.
635
Proof.
636
  revert i. induction l; intros [|i] ?; simplify_eq/=; constructor; eauto.
637
Qed.
638 639
Lemma elem_of_list_lookup l x : x  l   i, l !! i = Some x.
Proof. firstorder eauto using elem_of_list_lookup_1, elem_of_list_lookup_2. Qed.
640 641 642 643
Lemma elem_of_list_omap {B} (f : A  option B) l (y : B) :
  y  omap f l   x, x  l  f x = Some y.
Proof.
  split.
644
  - induction l as [|x l]; csimpl; repeat case_match; inversion 1; subst;
645
      setoid_rewrite elem_of_cons; naive_solver.
646
  - intros (x&Hx&?). by induction Hx; csimpl; repeat case_match;
647
      simplify_eq; try constructor; auto.
648
Qed.
649

650
(** ** Properties of the [NoDup] predicate *)
651 652
Lemma NoDup_nil : NoDup (@nil A)  True.
Proof. split; constructor. Qed.
653
Lemma NoDup_cons x l : NoDup (x :: l)  x  l  NoDup l.
654
Proof. split. by inversion 1. intros [??]. by constructor. Qed.
655
Lemma NoDup_cons_11 x l : NoDup (x :: l)  x  l.
656
Proof. rewrite NoDup_cons. by intros [??]. Qed.
657
Lemma NoDup_cons_12 x l : NoDup (x :: l)  NoDup l.
658
Proof. rewrite NoDup_cons. by intros [??]. Qed.
659
Lemma NoDup_singleton x : NoDup [x].
660
Proof. constructor. apply not_elem_of_nil. constructor. Qed.
661
Lemma NoDup_app l k : NoDup (l ++ k)  NoDup l  ( x, x  l  x  k)  NoDup k.
Robbert Krebbers's avatar
Robbert Krebbers committed
662
Proof.
663
  induction l; simpl.
664 665
  - rewrite NoDup_nil. setoid_rewrite elem_of_nil. naive_solver.
  - rewrite !NoDup_cons.
Robbert Krebbers's avatar
Robbert Krebbers committed
666
    setoid_rewrite elem_of_cons. setoid_rewrite elem_of_app. naive_solver.
Robbert Krebbers's avatar
Robbert Krebbers committed
667
Qed.
668
Global Instance NoDup_proper: Proper (() ==> iff) (@NoDup A).
669 670
Proof.
  induction 1 as [|x l k Hlk IH | |].
671 672 673 674
  - by rewrite !NoDup_nil.
  - by rewrite !NoDup_cons, IH, Hlk.
  - rewrite !NoDup_cons, !elem_of_cons. intuition.
  - intuition.
675
Qed.
676 677
Lemma NoDup_lookup l i j x :
  NoDup l  l !! i = Some x  l !! j = Some x  i = j.
678 679
Proof.
  intros Hl. revert i j. induction Hl as [|x' l Hx Hl IH].
680 681
  { intros; simplify_eq. }
  intros [|i] [|j] ??; simplify_eq/=; eauto with f_equal;
682 683
    exfalso; eauto using elem_of_list_lookup_2.
Qed.
684 685
Lemma NoDup_alt l :
  NoDup l   i j x, l !! i = Some x  l !! j = Some x  i = j.
686
Proof.
687 688
  split; eauto using NoDup_lookup.
  induction l as [|x l IH]; intros Hl; constructor.
689
  - rewrite elem_of_list_lookup. intros [i ?].
690
    by feed pose proof (Hl (S i) 0 x); auto.
691
  - apply IH. intros i j x' ??. by apply (inj S), (Hl (S i) (S j) x').
692
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
693

694 695 696 697 698 699
Section no_dup_dec.
  Context `{! x y, Decision (x = y)}.
  Global Instance NoDup_dec:  l, Decision (NoDup l) :=
    fix NoDup_dec l :=
    match l return Decision (NoDup l) with
    | [] => left NoDup_nil_2
700
    | x :: l =>
701 702 703 704 705 706 707 708
      match decide_rel () x l with
      | left Hin => right (λ H, NoDup_cons_11 _ _ H Hin)
      | right Hin =>
        match NoDup_dec l with
        | left H => left (NoDup_cons_2 _ _ Hin H)
        | right H => right (H  NoDup_cons_12 _ _)
        end
      end
709
    end.
710
  Lemma elem_of_remove_dups l x : x  remove_dups l  x  l.
711 712
  Proof.
    split; induction l; simpl; repeat case_decide;
713
      rewrite ?elem_of_cons; intuition (simplify_eq; auto).
714
  Qed.
715
  Lemma NoDup_remove_dups l : NoDup (remove_dups l).
716 717 718 719
  Proof.
    induction l; simpl; repeat case_decide; try constructor; auto.
    by rewrite elem_of_remove_dups.
  Qed.
720
End no_dup_dec.
721

722 723 724 725 726 727 728 729 730 731 732
(** ** Set operations on lists *)
Section list_set.
  Context {dec :  x y, Decision (x = y)}.
  Lemma elem_of_list_difference l k x : x  list_difference l k  x  l  x  k.
  Proof.
    split; induction l; simpl; try case_decide;
      rewrite ?elem_of_nil, ?elem_of_cons; intuition congruence.
  Qed.
  Lemma NoDup_list_difference l k : NoDup l  NoDup (list_difference l k).
  Proof.
    induction 1; simpl; try case_decide.
733 734 735
    - constructor.
    - done.
    - constructor. rewrite elem_of_list_difference; intuition. done.
736 737 738 739 740 741 742 743 744
  Qed.
  Lemma elem_of_list_union l k x :<