collections.v 31.8 KB
Newer Older
Robbert Krebbers's avatar
Robbert Krebbers committed
1
(* Copyright (c) 2012-2015, Robbert Krebbers. *)
2 3 4 5
(* This file is distributed under the terms of the BSD license. *)
(** This file collects definitions and theorems on collections. Most
importantly, it implements some tactics to automatically solve goals involving
collections. *)
6
From stdpp Require Export base tactics orders.
7

8 9
Instance collection_subseteq `{ElemOf A C} : SubsetEq C := λ X Y,
   x, x  X  x  Y.
10
Typeclasses Opaque collection_subseteq.
11

12
(** * Basic theorems *)
13 14
Section simple_collection.
  Context `{SimpleCollection A C}.
15 16
  Implicit Types x y : A.
  Implicit Types X Y : C.
Robbert Krebbers's avatar
Robbert Krebbers committed
17

18
  Lemma elem_of_empty x : x    False.
19
  Proof. split. apply not_elem_of_empty. done. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
20 21 22 23
  Lemma elem_of_union_l x X Y : x  X  x  X  Y.
  Proof. intros. apply elem_of_union. auto. Qed.
  Lemma elem_of_union_r x X Y : x  Y  x  X  Y.
  Proof. intros. apply elem_of_union. auto. Qed.
24 25 26
  Global Instance: EmptySpec C.
  Proof. firstorder auto. Qed.
  Global Instance: JoinSemiLattice C.
27
  Proof. firstorder auto. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
28 29
  Global Instance: AntiSymm () (@collection_subseteq A C _).
  Proof. done. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
30
  Lemma elem_of_subseteq X Y : X  Y   x, x  X  x  Y.
31
  Proof. done. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
32 33
  Lemma elem_of_equiv X Y : X  Y   x, x  X  x  Y.
  Proof. firstorder. Qed.
34 35
  Lemma elem_of_equiv_alt X Y :
    X  Y  ( x, x  X  x  Y)  ( x, x  Y  x  X).
Robbert Krebbers's avatar
Robbert Krebbers committed
36
  Proof. firstorder. Qed.
37 38
  Lemma elem_of_equiv_empty X : X     x, x  X.
  Proof. firstorder. Qed.
39 40 41 42 43 44
  Lemma collection_positive_l X Y : X  Y    X  .
  Proof.
    rewrite !elem_of_equiv_empty. setoid_rewrite elem_of_union. naive_solver.
  Qed.
  Lemma collection_positive_l_alt X Y : X    X  Y  .
  Proof. eauto using collection_positive_l. Qed.
45 46 47 48
  Lemma elem_of_singleton_1 x y : x  {[y]}  x = y.
  Proof. by rewrite elem_of_singleton. Qed.
  Lemma elem_of_singleton_2 x y : x = y  x  {[y]}.
  Proof. by rewrite elem_of_singleton. Qed.
49 50 51
  Lemma elem_of_subseteq_singleton x X : x  X  {[ x ]}  X.
  Proof.
    split.
52 53
    - intros ??. rewrite elem_of_singleton. by intros ->.
    - intros Ex. by apply (Ex x), elem_of_singleton.
54
  Qed.
55
  Global Instance singleton_proper : Proper ((=) ==> ()) (singleton (B:=C)).
56
  Proof. by repeat intro; subst. Qed.
57 58
  Global Instance elem_of_proper :
    Proper ((=) ==> () ==> iff) (() : A  C  Prop) | 5.
59
  Proof. intros ???; subst. firstorder. Qed.
60
  Lemma elem_of_union_list Xs x : x   Xs   X, X  Xs  x  X.
61 62
  Proof.
    split.
63
    - induction Xs; simpl; intros HXs; [by apply elem_of_empty in HXs|].
64
      setoid_rewrite elem_of_cons. apply elem_of_union in HXs. naive_solver.
65
    - intros [X []]. induction 1; simpl; [by apply elem_of_union_l |].
66
      intros. apply elem_of_union_r; auto.
67
  Qed.
68
  Lemma non_empty_singleton x : ({[ x ]} : C)  .
69 70 71 72 73 74
  Proof. intros [E _]. by apply (elem_of_empty x), E, elem_of_singleton. Qed.
  Lemma not_elem_of_singleton x y : x  {[ y ]}  x  y.
  Proof. by rewrite elem_of_singleton. Qed.
  Lemma not_elem_of_union x X Y : x  X  Y  x  X  x  Y.
  Proof. rewrite elem_of_union. tauto. Qed.

75 76 77 78 79 80 81 82 83
  Section leibniz.
    Context `{!LeibnizEquiv C}.
    Lemma elem_of_equiv_L X Y : X = Y   x, x  X  x  Y.
    Proof. unfold_leibniz. apply elem_of_equiv. Qed.
    Lemma elem_of_equiv_alt_L X Y :
      X = Y  ( x, x  X  x  Y)  ( x, x  Y  x  X).
    Proof. unfold_leibniz. apply elem_of_equiv_alt. Qed.
    Lemma elem_of_equiv_empty_L X : X =    x, x  X.
    Proof. unfold_leibniz. apply elem_of_equiv_empty. Qed.
84 85 86 87
    Lemma collection_positive_l_L X Y : X  Y =   X = .
    Proof. unfold_leibniz. apply collection_positive_l. Qed.
    Lemma collection_positive_l_alt_L X Y : X    X  Y  .
    Proof. unfold_leibniz. apply collection_positive_l_alt. Qed.
88 89 90 91 92 93 94 95 96 97 98 99
    Lemma non_empty_singleton_L x : {[ x ]}  .
    Proof. unfold_leibniz. apply non_empty_singleton. Qed.
  End leibniz.

  Section dec.
    Context `{ X Y : C, Decision (X  Y)}.
    Global Instance elem_of_dec_slow (x : A) (X : C) : Decision (x  X) | 100.
    Proof.
      refine (cast_if (decide_rel () {[ x ]} X));
        by rewrite elem_of_subseteq_singleton.
    Defined.
  End dec.
100 101
End simple_collection.

102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
(** * Tactics *)
(** The tactic [set_unfold] transforms all occurrences of [(∪)], [(∩)], [(∖)],
[(<$>)], [∅], [{[_]}], [(≡)], and [(⊆)] into logically equivalent propositions
involving just [∈]. For example, [A → x ∈ X ∪ ∅] becomes [A → x ∈ X ∨ False].

This transformation is implemented using type classes instead of [rewrite]ing
to ensure that we traverse each term at most once. *)
Class SetUnfold (P Q : Prop) := { set_unfold : P  Q }.
Arguments set_unfold _ _ {_}.
Hint Mode SetUnfold + - : typeclass_instances.

Class SetUnfoldSimpl (P Q : Prop) := { set_unfold_simpl : SetUnfold P Q }.
Hint Extern 0 (SetUnfoldSimpl _ _) => csimpl; constructor : typeclass_instances.

Instance set_unfold_fallthrough P : SetUnfold P P | 1000. done. Qed.
Definition set_unfold_1 `{SetUnfold P Q} : P  Q := proj1 (set_unfold P Q).
Definition set_unfold_2 `{SetUnfold P Q} : Q  P := proj2 (set_unfold P Q).

Lemma set_unfold_impl P Q P' Q' :
  SetUnfold P P'  SetUnfold Q Q'  SetUnfold (P  Q) (P'  Q').
Proof. constructor. by rewrite (set_unfold P P'), (set_unfold Q Q'). Qed.
Lemma set_unfold_and P Q P' Q' :
  SetUnfold P P'  SetUnfold Q Q'  SetUnfold (P  Q) (P'  Q').
Proof. constructor. by rewrite (set_unfold P P'), (set_unfold Q Q'). Qed.
Lemma set_unfold_or P Q P' Q' :
  SetUnfold P P'  SetUnfold Q Q'  SetUnfold (P  Q) (P'  Q').
Proof. constructor. by rewrite (set_unfold P P'), (set_unfold Q Q'). Qed.
Lemma set_unfold_iff P Q P' Q' :
  SetUnfold P P'  SetUnfold Q Q'  SetUnfold (P  Q) (P'  Q').
Proof. constructor. by rewrite (set_unfold P P'), (set_unfold Q Q'). Qed.
Lemma set_unfold_not P P' : SetUnfold P P'  SetUnfold (¬P) (¬P').
Proof. constructor. by rewrite (set_unfold P P'). Qed.
Lemma set_unfold_forall {A} (P P' : A  Prop) :
  ( x, SetUnfold (P x) (P' x))  SetUnfold ( x, P x) ( x, P' x).
Proof. constructor. naive_solver. Qed.
Lemma set_unfold_exist {A} (P P' : A  Prop) :
  ( x, SetUnfold (P x) (P' x))  SetUnfold ( x, P x) ( x, P' x).
Proof. constructor. naive_solver. Qed.

(* Avoid too eager application of the above instances (and thus too eager
unfolding of type class transparent definitions). *)
Hint Extern 0 (SetUnfold (_  _) _) =>
  class_apply set_unfold_impl : typeclass_instances.
Hint Extern 0 (SetUnfold (_  _) _) =>
  class_apply set_unfold_and : typeclass_instances.
Hint Extern 0 (SetUnfold (_  _) _) =>
  class_apply set_unfold_or : typeclass_instances.
Hint Extern 0 (SetUnfold (_  _) _) =>
  class_apply set_unfold_iff : typeclass_instances.
Hint Extern 0 (SetUnfold (¬ _) _) =>
  class_apply set_unfold_not : typeclass_instances.
Hint Extern 1 (SetUnfold ( _, _) _) =>
  class_apply set_unfold_forall : typeclass_instances.
Hint Extern 0 (SetUnfold ( _, _) _) =>
  class_apply set_unfold_exist : typeclass_instances.

Section set_unfold_simple.
  Context `{SimpleCollection A C}.
  Implicit Types x y : A.
  Implicit Types X Y : C.

  Global Instance set_unfold_empty x : SetUnfold (x  ) False.
  Proof. constructor; apply elem_of_empty. Qed.
  Global Instance set_unfold_singleton x y : SetUnfold (x  {[ y ]}) (x = y).
  Proof. constructor; apply elem_of_singleton. Qed.
  Global Instance set_unfold_union x X Y P Q :
    SetUnfold (x  X) P  SetUnfold (x  Y) Q  SetUnfold (x  X  Y) (P  Q).
  Proof.
    intros ??; constructor.
    by rewrite elem_of_union, (set_unfold (x  X) P), (set_unfold (x  Y) Q).
  Qed.
  Global Instance set_unfold_equiv_same X : SetUnfold (X  X) True | 1.
  Proof. done. Qed.
  Global Instance set_unfold_equiv_empty_l X (P : A  Prop) :
    ( x, SetUnfold (x  X) (P x))  SetUnfold (  X) ( x, ¬P x) | 5.
  Proof.
    intros ?; constructor.
    rewrite (symmetry_iff equiv), elem_of_equiv_empty; naive_solver.
  Qed.
  Global Instance set_unfold_equiv_empty_r (P : A  Prop) :
    ( x, SetUnfold (x  X) (P x))  SetUnfold (X  ) ( x, ¬P x) | 5.
  Proof. constructor. rewrite elem_of_equiv_empty; naive_solver. Qed.
  Global Instance set_unfold_equiv (P Q : A  Prop) :
    ( x, SetUnfold (x  X) (P x))  ( x, SetUnfold (x  Y) (Q x)) 
    SetUnfold (X  Y) ( x, P x  Q x) | 10.
  Proof. constructor. rewrite elem_of_equiv; naive_solver. Qed.
  Global Instance set_unfold_subseteq (P Q : A  Prop) :
    ( x, SetUnfold (x  X) (P x))  ( x, SetUnfold (x  Y) (Q x)) 
    SetUnfold (X  Y) ( x, P x  Q x).
  Proof. constructor. rewrite elem_of_subseteq; naive_solver. Qed.
  Global Instance set_unfold_subset (P Q : A  Prop) :
    ( x, SetUnfold (x  X) (P x))  ( x, SetUnfold (x  Y) (Q x)) 
    SetUnfold (X  Y) (( x, P x  Q x)  ¬∀ x, P x  Q x).
  Proof.
    constructor. rewrite subset_spec, elem_of_subseteq, elem_of_equiv.
    repeat f_equiv; naive_solver.
  Qed.

  Context `{!LeibnizEquiv C}.
  Global Instance set_unfold_equiv_same_L X : SetUnfold (X = X) True | 1.
  Proof. done. Qed.
  Global Instance set_unfold_equiv_empty_l_L X (P : A  Prop) :
    ( x, SetUnfold (x  X) (P x))  SetUnfold ( = X) ( x, ¬P x) | 5.
  Proof.
    constructor. rewrite (symmetry_iff eq), elem_of_equiv_empty_L; naive_solver.
  Qed.
  Global Instance set_unfold_equiv_empty_r_L (P : A  Prop) :
    ( x, SetUnfold (x  X) (P x))  SetUnfold (X = ) ( x, ¬P x) | 5.
  Proof. constructor. rewrite elem_of_equiv_empty_L; naive_solver. Qed.
  Global Instance set_unfold_equiv_L (P Q : A  Prop) :
    ( x, SetUnfold (x  X) (P x))  ( x, SetUnfold (x  Y) (Q x)) 
    SetUnfold (X = Y) ( x, P x  Q x) | 10.
  Proof. constructor. rewrite elem_of_equiv_L; naive_solver. Qed.
End set_unfold_simple.

Section set_unfold.
  Context `{Collection A C}.
  Implicit Types x y : A.
  Implicit Types X Y : C.

  Global Instance set_unfold_intersection x X Y P Q :
    SetUnfold (x  X) P  SetUnfold (x  Y) Q  SetUnfold (x  X  Y) (P  Q).
  Proof.
    intros ??; constructor. by rewrite elem_of_intersection,
      (set_unfold (x  X) P), (set_unfold (x  Y) Q).
  Qed.
  Global Instance set_unfold_difference x X Y P Q :
    SetUnfold (x  X) P  SetUnfold (x  Y) Q  SetUnfold (x  X  Y) (P  ¬Q).
  Proof.
    intros ??; constructor. by rewrite elem_of_difference,
      (set_unfold (x  X) P), (set_unfold (x  Y) Q).
  Qed.
End set_unfold.

Section set_unfold_monad.
  Context `{CollectionMonad M} {A : Type}.
  Implicit Types x y : A.

  Global Instance set_unfold_ret x y : SetUnfold (x  mret y) (x = y).
  Proof. constructor; apply elem_of_ret. Qed.
  Global Instance set_unfold_bind {B} (f : A  M B) X (P Q : A  Prop) :
    ( y, SetUnfold (y  X) (P y))  ( y, SetUnfold (x  f y) (Q y)) 
    SetUnfold (x  X = f) ( y, Q y  P y).
  Proof. constructor. rewrite elem_of_bind; naive_solver. Qed.
  Global Instance set_unfold_fmap {B} (f : A  B) X (P : A  Prop) :
    ( y, SetUnfold (y  X) (P y)) 
    SetUnfold (x  f <$> X) ( y, x = f y  P y).
  Proof. constructor. rewrite elem_of_fmap; naive_solver. Qed.
  Global Instance set_unfold_join (X : M (M A)) (P : M A  Prop) :
    ( Y, SetUnfold (Y  X) (P Y))  SetUnfold (x  mjoin X) ( Y, x  Y  P Y).
  Proof. constructor. rewrite elem_of_join; naive_solver. Qed.
End set_unfold_monad.

Ltac set_unfold :=
  let rec unfold_hyps :=
    try match goal with
    | H : _ |- _ =>
       apply set_unfold_1 in H; revert H;
       first [unfold_hyps; intros H | intros H; fail 1]
    end in
  apply set_unfold_2; unfold_hyps; csimpl in *.

(** Since [firstorder] fails or loops on very small goals generated by
[set_solver] already. We use the [naive_solver] tactic as a substitute.
This tactic either fails or proves the goal. *)
Tactic Notation "set_solver" "by" tactic3(tac) :=
268
  try (reflexivity || eassumption);
269 270 271 272 273 274 275 276 277 278 279 280 281
  intros; setoid_subst;
  set_unfold;
  intros; setoid_subst;
  try match goal with |- _  _ => apply dec_stable end;
  naive_solver tac.
Tactic Notation "set_solver" "-" hyp_list(Hs) "by" tactic3(tac) :=
  clear Hs; set_solver by tac.
Tactic Notation "set_solver" "+" hyp_list(Hs) "by" tactic3(tac) :=
  clear -Hs; set_solver by tac.
Tactic Notation "set_solver" := set_solver by idtac.
Tactic Notation "set_solver" "-" hyp_list(Hs) := clear Hs; set_solver.
Tactic Notation "set_solver" "+" hyp_list(Hs) := clear -Hs; set_solver.

282 283 284 285
Hint Extern 1000 (_  _) => set_solver : set_solver.
Hint Extern 1000 (_  _) => set_solver : set_solver.
Hint Extern 1000 (_  _) => set_solver : set_solver.

286 287 288
(** * Conversion of option and list *)
Definition of_option `{Singleton A C, Empty C} (mx : option A) : C :=
  match mx with None =>  | Some x => {[ x ]} end.
289 290
Fixpoint of_list `{Singleton A C, Empty C, Union C} (l : list A) : C :=
  match l with [] =>  | x :: l => {[ x ]}  of_list l end.
291

292 293
Section of_option_list.
  Context `{SimpleCollection A C}.
294 295
  Lemma elem_of_of_option (x : A) mx: x  of_option mx  mx = Some x.
  Proof. destruct mx; set_solver. Qed.
296 297 298
  Lemma elem_of_of_list (x : A) l : x  of_list l  x  l.
  Proof.
    split.
299
    - induction l; simpl; [by rewrite elem_of_empty|].
Robbert Krebbers's avatar
Robbert Krebbers committed
300
      rewrite elem_of_union,elem_of_singleton; intros [->|?]; constructor; auto.
301
    - induction 1; simpl; rewrite elem_of_union, elem_of_singleton; auto.
302
  Qed.
303 304 305
  Global Instance set_unfold_of_option (mx : option A) x :
    SetUnfold (x  of_option mx) (mx = Some x).
  Proof. constructor; apply elem_of_of_option. Qed.
306 307 308
  Global Instance set_unfold_of_list (l : list A) x P :
    SetUnfold (x  l) P  SetUnfold (x  of_list l) P.
  Proof. constructor. by rewrite elem_of_of_list, (set_unfold (x  l) P). Qed.
309
End of_option_list.
310

311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
Section list_unfold.
  Context {A : Type}.
  Implicit Types x : A.
  Implicit Types l : list A.

  Global Instance set_unfold_nil x : SetUnfold (x  []) False.
  Proof. constructor; apply elem_of_nil. Qed.
  Global Instance set_unfold_cons x y l P :
    SetUnfold (x  l) P  SetUnfold (x  y :: l) (x = y  P).
  Proof. constructor. by rewrite elem_of_cons, (set_unfold (x  l) P). Qed.
  Global Instance set_unfold_app x l k P Q :
    SetUnfold (x  l) P  SetUnfold (x  k) Q  SetUnfold (x  l ++ k) (P  Q).
  Proof.
    intros ??; constructor.
    by rewrite elem_of_app, (set_unfold (x  l) P), (set_unfold (x  k) Q).
  Qed.
327 328 329 330
  Global Instance set_unfold_included l k (P Q : A  Prop) :
    ( x, SetUnfold (x  l) (P x))  ( x, SetUnfold (x  k) (Q x)) 
    SetUnfold (l `included` k) ( x, P x  Q x).
  Proof. by constructor; unfold included; set_unfold. Qed.
331 332
End list_unfold.

333
(** * Guard *)
334 335
Global Instance collection_guard `{CollectionMonad M} : MGuard M :=
  λ P dec A x, match dec with left H => x H | _ =>  end.
336 337 338 339 340 341 342 343 344

Section collection_monad_base.
  Context `{CollectionMonad M}.
  Lemma elem_of_guard `{Decision P} {A} (x : A) (X : M A) :
    x  guard P; X  P  x  X.
  Proof.
    unfold mguard, collection_guard; simpl; case_match;
      rewrite ?elem_of_empty; naive_solver.
  Qed.
345 346 347
  Lemma elem_of_guard_2 `{Decision P} {A} (x : A) (X : M A) :
    P  x  X  x  guard P; X.
  Proof. by rewrite elem_of_guard. Qed.
348 349 350 351 352
  Lemma guard_empty `{Decision P} {A} (X : M A) : guard P; X    ¬P  X  .
  Proof.
    rewrite !elem_of_equiv_empty; setoid_rewrite elem_of_guard.
    destruct (decide P); naive_solver.
  Qed.
353 354 355
  Global Instance set_unfold_guard `{Decision P} {A} (x : A) X Q :
    SetUnfold (x  X) Q  SetUnfold (x  guard P; X) (P  Q).
  Proof. constructor. by rewrite elem_of_guard, (set_unfold (x  X) Q). Qed.
356 357
  Lemma bind_empty {A B} (f : A  M B) X :
    X = f    X     x, x  X  f x  .
358
  Proof. set_solver. Qed.
359
End collection_monad_base.
360

361
(** * More theorems *)
Robbert Krebbers's avatar
Robbert Krebbers committed
362 363
Section collection.
  Context `{Collection A C}.
364
  Implicit Types X Y : C.
Robbert Krebbers's avatar
Robbert Krebbers committed
365

366
  Global Instance: Lattice C.
367
  Proof. split. apply _. firstorder auto. set_solver. Qed.
368 369
  Global Instance difference_proper :
     Proper (() ==> () ==> ()) (@difference C _).
Robbert Krebbers's avatar
Robbert Krebbers committed
370 371 372 373
  Proof.
    intros X1 X2 HX Y1 Y2 HY; apply elem_of_equiv; intros x.
    by rewrite !elem_of_difference, HX, HY.
  Qed.
374
  Lemma non_empty_inhabited x X : x  X  X  .
375
  Proof. set_solver. Qed.
376
  Lemma intersection_singletons x : ({[x]} : C)  {[x]}  {[x]}.
377
  Proof. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
378
  Lemma difference_twice X Y : (X  Y)  Y  X  Y.
379
  Proof. set_solver. Qed.
380
  Lemma subseteq_empty_difference X Y : X  Y  X  Y  .
381
  Proof. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
382
  Lemma difference_diag X : X  X  .
383
  Proof. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
384
  Lemma difference_union_distr_l X Y Z : (X  Y)  Z  X  Z  Y  Z.
385
  Proof. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
386
  Lemma difference_union_distr_r X Y Z : Z  (X  Y)  (Z  X)  (Z  Y).
387
  Proof. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
388
  Lemma difference_intersection_distr_l X Y Z : (X  Y)  Z  X  Z  Y  Z.
389
  Proof. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
390
  Lemma disjoint_union_difference X Y : X  Y    (X  Y)  X  Y.
391
  Proof. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
392

393 394 395 396 397 398
  Section leibniz.
    Context `{!LeibnizEquiv C}.
    Lemma intersection_singletons_L x : {[x]}  {[x]} = {[x]}.
    Proof. unfold_leibniz. apply intersection_singletons. Qed.
    Lemma difference_twice_L X Y : (X  Y)  Y = X  Y.
    Proof. unfold_leibniz. apply difference_twice. Qed.
399 400
    Lemma subseteq_empty_difference_L X Y : X  Y  X  Y = .
    Proof. unfold_leibniz. apply subseteq_empty_difference. Qed.
401 402 403 404
    Lemma difference_diag_L X : X  X = .
    Proof. unfold_leibniz. apply difference_diag. Qed.
    Lemma difference_union_distr_l_L X Y Z : (X  Y)  Z = X  Z  Y  Z.
    Proof. unfold_leibniz. apply difference_union_distr_l. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
405 406
    Lemma difference_union_distr_r_L X Y Z : Z  (X  Y) = (Z  X)  (Z  Y).
    Proof. unfold_leibniz. apply difference_union_distr_r. Qed.
407 408 409
    Lemma difference_intersection_distr_l_L X Y Z :
      (X  Y)  Z = X  Z  Y  Z.
    Proof. unfold_leibniz. apply difference_intersection_distr_l. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
410 411
    Lemma disjoint_union_difference_L X Y : X  Y =   (X  Y)  X = Y.
    Proof. unfold_leibniz. apply disjoint_union_difference. Qed.
412 413 414
  End leibniz.

  Section dec.
Robbert Krebbers's avatar
Robbert Krebbers committed
415
    Context `{ (x : A) (X : C), Decision (x  X)}.
416
    Lemma not_elem_of_intersection x X Y : x  X  Y  x  X  x  Y.
417
    Proof. rewrite elem_of_intersection. destruct (decide (x  X)); tauto. Qed.
418
    Lemma not_elem_of_difference x X Y : x  X  Y  x  X  x  Y.
419
    Proof. rewrite elem_of_difference. destruct (decide (x  Y)); tauto. Qed.
420 421
    Lemma union_difference X Y : X  Y  Y  X  Y  X.
    Proof.
422 423
      split; intros x; rewrite !elem_of_union, elem_of_difference; [|intuition].
      destruct (decide (x  X)); intuition.
424 425
    Qed.
    Lemma non_empty_difference X Y : X  Y  Y  X  .
426
    Proof. intros [HXY1 HXY2] Hdiff. destruct HXY2. set_solver. Qed.
427
    Lemma empty_difference_subseteq X Y : X  Y    X  Y.
428
    Proof. set_solver. Qed.
429 430 431 432 433
    Context `{!LeibnizEquiv C}.
    Lemma union_difference_L X Y : X  Y  Y = X  Y  X.
    Proof. unfold_leibniz. apply union_difference. Qed.
    Lemma non_empty_difference_L X Y : X  Y  Y  X  .
    Proof. unfold_leibniz. apply non_empty_difference. Qed.
434 435
    Lemma empty_difference_subseteq_L X Y : X  Y =   X  Y.
    Proof. unfold_leibniz. apply empty_difference_subseteq. Qed.
436 437 438 439 440 441
  End dec.
End collection.

Section collection_ops.
  Context `{CollectionOps A C}.

Robbert Krebbers's avatar
Robbert Krebbers committed
442 443 444 445 446
  Lemma elem_of_intersection_with_list (f : A  A  option A) Xs Y x :
    x  intersection_with_list f Y Xs   xs y,
      Forall2 () xs Xs  y  Y  foldr (λ x, (= f x)) (Some y) xs = Some x.
  Proof.
    split.
447
    - revert x. induction Xs; simpl; intros x HXs; [eexists [], x; intuition|].
448 449
      rewrite elem_of_intersection_with in HXs; destruct HXs as (x1&x2&?&?&?).
      destruct (IHXs x2) as (xs & y & hy & ? & ?); trivial.
450
      eexists (x1 :: xs), y. intuition (simplify_option_eq; auto).
451
    - intros (xs & y & Hxs & ? & Hx). revert x Hx.
452
      induction Hxs; intros; simplify_option_eq; [done |].
Robbert Krebbers's avatar
Robbert Krebbers committed
453 454 455 456 457 458 459 460 461
      rewrite elem_of_intersection_with. naive_solver.
  Qed.

  Lemma intersection_with_list_ind (P Q : A  Prop) f Xs Y :
    ( y, y  Y  P y) 
    Forall (λ X,  x, x  X  Q x) Xs 
    ( x y z, Q x  P y  f x y = Some z  P z) 
     x, x  intersection_with_list f Y Xs  P x.
  Proof.
462
    intros HY HXs Hf. induction Xs; simplify_option_eq; [done |].
Robbert Krebbers's avatar
Robbert Krebbers committed
463 464 465
    intros x Hx. rewrite elem_of_intersection_with in Hx.
    decompose_Forall. destruct Hx as (? & ? & ? & ? & ?). eauto.
  Qed.
466
End collection_ops.
Robbert Krebbers's avatar
Robbert Krebbers committed
467

468
(** * Sets without duplicates up to an equivalence *)
469
Section NoDup.
470
  Context `{SimpleCollection A B} (R : relation A) `{!Equivalence R}.
Robbert Krebbers's avatar
Robbert Krebbers committed
471 472

  Definition elem_of_upto (x : A) (X : B) :=  y, y  X  R x y.
473
  Definition set_NoDup (X : B) :=  x y, x  X  y  X  R x y  x = y.
Robbert Krebbers's avatar
Robbert Krebbers committed
474 475

  Global Instance: Proper (() ==> iff) (elem_of_upto x).
Robbert Krebbers's avatar
Robbert Krebbers committed
476
  Proof. intros ??? E. unfold elem_of_upto. by setoid_rewrite E. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
477 478 479
  Global Instance: Proper (R ==> () ==> iff) elem_of_upto.
  Proof.
    intros ?? E1 ?? E2. split; intros [z [??]]; exists z.
480 481
    - rewrite <-E1, <-E2; intuition.
    - rewrite E1, E2; intuition.
Robbert Krebbers's avatar
Robbert Krebbers committed
482
  Qed.
483
  Global Instance: Proper (() ==> iff) set_NoDup.
Robbert Krebbers's avatar
Robbert Krebbers committed
484 485 486
  Proof. firstorder. Qed.

  Lemma elem_of_upto_elem_of x X : x  X  elem_of_upto x X.
487
  Proof. unfold elem_of_upto. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
488
  Lemma elem_of_upto_empty x : ¬elem_of_upto x .
489
  Proof. unfold elem_of_upto. set_solver. Qed.
490
  Lemma elem_of_upto_singleton x y : elem_of_upto x {[ y ]}  R x y.
491
  Proof. unfold elem_of_upto. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
492

493 494
  Lemma elem_of_upto_union X Y x :
    elem_of_upto x (X  Y)  elem_of_upto x X  elem_of_upto x Y.
495
  Proof. unfold elem_of_upto. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
496
  Lemma not_elem_of_upto x X : ¬elem_of_upto x X   y, y  X  ¬R x y.
497
  Proof. unfold elem_of_upto. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
498

499
  Lemma set_NoDup_empty: set_NoDup .
500
  Proof. unfold set_NoDup. set_solver. Qed.
501 502
  Lemma set_NoDup_add x X :
    ¬elem_of_upto x X  set_NoDup X  set_NoDup ({[ x ]}  X).
503
  Proof. unfold set_NoDup, elem_of_upto. set_solver. Qed.
504 505
  Lemma set_NoDup_inv_add x X :
    x  X  set_NoDup ({[ x ]}  X)  ¬elem_of_upto x X.
506 507
  Proof.
    intros Hin Hnodup [y [??]].
508
    rewrite (Hnodup x y) in Hin; set_solver.
509
  Qed.
510
  Lemma set_NoDup_inv_union_l X Y : set_NoDup (X  Y)  set_NoDup X.
511
  Proof. unfold set_NoDup. set_solver. Qed.
512
  Lemma set_NoDup_inv_union_r X Y : set_NoDup (X  Y)  set_NoDup Y.
513
  Proof. unfold set_NoDup. set_solver. Qed.
514
End NoDup.
Robbert Krebbers's avatar
Robbert Krebbers committed
515

516
(** * Quantifiers *)
Robbert Krebbers's avatar
Robbert Krebbers committed
517
Section quantifiers.
518
  Context `{SimpleCollection A B} (P : A  Prop).
Robbert Krebbers's avatar
Robbert Krebbers committed
519

520 521 522 523
  Definition set_Forall X :=  x, x  X  P x.
  Definition set_Exists X :=  x, x  X  P x.

  Lemma set_Forall_empty : set_Forall .
524
  Proof. unfold set_Forall. set_solver. Qed.
525
  Lemma set_Forall_singleton x : set_Forall {[ x ]}  P x.
526
  Proof. unfold set_Forall. set_solver. Qed.
527
  Lemma set_Forall_union X Y : set_Forall X  set_Forall Y  set_Forall (X  Y).
528
  Proof. unfold set_Forall. set_solver. Qed.
529
  Lemma set_Forall_union_inv_1 X Y : set_Forall (X  Y)  set_Forall X.
530
  Proof. unfold set_Forall. set_solver. Qed.
531
  Lemma set_Forall_union_inv_2 X Y : set_Forall (X  Y)  set_Forall Y.
532
  Proof. unfold set_Forall. set_solver. Qed.
533 534

  Lemma set_Exists_empty : ¬set_Exists .
535
  Proof. unfold set_Exists. set_solver. Qed.
536
  Lemma set_Exists_singleton x : set_Exists {[ x ]}  P x.
537
  Proof. unfold set_Exists. set_solver. Qed.
538
  Lemma set_Exists_union_1 X Y : set_Exists X  set_Exists (X  Y).
539
  Proof. unfold set_Exists. set_solver. Qed.
540
  Lemma set_Exists_union_2 X Y : set_Exists Y  set_Exists (X  Y).
541
  Proof. unfold set_Exists. set_solver. Qed.
542 543
  Lemma set_Exists_union_inv X Y :
    set_Exists (X  Y)  set_Exists X  set_Exists Y.
544
  Proof. unfold set_Exists. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
545 546
End quantifiers.

547
Section more_quantifiers.
548
  Context `{SimpleCollection A B}.
549

550 551 552 553 554 555
  Lemma set_Forall_weaken (P Q : A  Prop) (Hweaken :  x, P x  Q x) X :
    set_Forall P X  set_Forall Q X.
  Proof. unfold set_Forall. naive_solver. Qed.
  Lemma set_Exists_weaken (P Q : A  Prop) (Hweaken :  x, P x  Q x) X :
    set_Exists P X  set_Exists Q X.
  Proof. unfold set_Exists. naive_solver. Qed.
556 557
End more_quantifiers.

558 559 560
(** * Fresh elements *)
(** We collect some properties on the [fresh] operation. In particular we
generalize [fresh] to generate lists of fresh elements. *)
561 562 563 564 565 566 567 568 569 570
Fixpoint fresh_list `{Fresh A C, Union C, Singleton A C}
    (n : nat) (X : C) : list A :=
  match n with
  | 0 => []
  | S n => let x := fresh X in x :: fresh_list n ({[ x ]}  X)
  end.
Inductive Forall_fresh `{ElemOf A C} (X : C) : list A  Prop :=
  | Forall_fresh_nil : Forall_fresh X []
  | Forall_fresh_cons x xs :
     x  xs  x  X  Forall_fresh X xs  Forall_fresh X (x :: xs).
571

572 573
Section fresh.
  Context `{FreshSpec A C}.
574
  Implicit Types X Y : C.
575

576
  Global Instance fresh_proper: Proper (() ==> (=)) (fresh (C:=C)).
577
  Proof. intros ???. by apply fresh_proper_alt, elem_of_equiv. Qed.
578 579
  Global Instance fresh_list_proper:
    Proper ((=) ==> () ==> (=)) (fresh_list (C:=C)).
580
  Proof.
581
    intros ? n ->. induction n as [|n IH]; intros ?? E; f_equal/=; [by rewrite E|].
582
    apply IH. by rewrite E.
583
  Qed.
584 585 586 587 588 589 590 591 592 593 594 595 596 597 598

  Lemma Forall_fresh_NoDup X xs : Forall_fresh X xs  NoDup xs.
  Proof. induction 1; by constructor. Qed.
  Lemma Forall_fresh_elem_of X xs x : Forall_fresh X xs  x  xs  x  X.
  Proof.
    intros HX; revert x; rewrite <-Forall_forall.
    by induction HX; constructor.
  Qed.
  Lemma Forall_fresh_alt X xs :
    Forall_fresh X xs  NoDup xs   x, x  xs  x  X.
  Proof.
    split; eauto using Forall_fresh_NoDup, Forall_fresh_elem_of.
    rewrite <-Forall_forall.
    intros [Hxs Hxs']. induction Hxs; decompose_Forall_hyps; constructor; auto.
  Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
599 600
  Lemma Forall_fresh_subseteq X Y xs :
    Forall_fresh X xs  Y  X  Forall_fresh Y xs.
601
  Proof. rewrite !Forall_fresh_alt; set_solver. Qed.
602

603 604
  Lemma fresh_list_length n X : length (fresh_list n X) = n.
  Proof. revert X. induction n; simpl; auto. Qed.
605
  Lemma fresh_list_is_fresh n X x : x  fresh_list n X  x  X.
606
  Proof.
607
    revert X. induction n as [|n IH]; intros X; simpl;[by rewrite elem_of_nil|].
608
    rewrite elem_of_cons; intros [->| Hin]; [apply is_fresh|].
609
    apply IH in Hin; set_solver.
610
  Qed.
611
  Lemma NoDup_fresh_list n X : NoDup (fresh_list n X).
612
  Proof.
613
    revert X. induction n; simpl; constructor; auto.
614
    intros Hin; apply fresh_list_is_fresh in Hin; set_solver.
615 616 617 618
  Qed.
  Lemma Forall_fresh_list X n : Forall_fresh X (fresh_list n X).
  Proof.
    rewrite Forall_fresh_alt; eauto using NoDup_fresh_list, fresh_list_is_fresh.
619 620
  Qed.
End fresh.
621

622
(** * Properties of implementations of collections that form a monad *)
623 624 625
Section collection_monad.
  Context `{CollectionMonad M}.

626 627
  Global Instance collection_fmap_mono {A B} :
    Proper (pointwise_relation _ (=) ==> () ==> ()) (@fmap M _ A B).
628
  Proof. intros f g ? X Y ?; set_solver by eauto. Qed.
629 630
  Global Instance collection_fmap_proper {A B} :
    Proper (pointwise_relation _ (=) ==> () ==> ()) (@fmap M _ A B).
631
  Proof. intros f g ? X Y [??]; split; set_solver by eauto. Qed.
632 633
  Global Instance collection_bind_mono {A B} :
    Proper (((=) ==> ()) ==> () ==> ()) (@mbind M _ A B).
634
  Proof. unfold respectful; intros f g Hfg X Y ?; set_solver. Qed.
635 636
  Global Instance collection_bind_proper {A B} :
    Proper (((=) ==> ()) ==> () ==> ()) (@mbind M _ A B).
637
  Proof. unfold respectful; intros f g Hfg X Y [??]; split; set_solver. Qed.
638 639
  Global Instance collection_join_mono {A} :
    Proper (() ==> ()) (@mjoin M _ A).
640
  Proof. intros X Y ?; set_solver. Qed.
641 642
  Global Instance collection_join_proper {A} :
    Proper (() ==> ()) (@mjoin M _ A).
643
  Proof. intros X Y [??]; split; set_solver. Qed.
644

645
  Lemma collection_bind_singleton {A B} (f : A  M B) x : {[ x ]} = f  f x.
646
  Proof. set_solver. Qed.
647
  Lemma collection_guard_True {A} `{Decision P} (X : M A) : P  guard P; X  X.
648
  Proof. set_solver. Qed.
649
  Lemma collection_fmap_compose {A B C} (f : A  B) (g : B  C) (X : M A) :
650
    g  f <$> X  g <$> (f <$> X).
651
  Proof. set_solver. Qed.
652 653
  Lemma elem_of_fmap_1 {A B} (f : A  B) (X : M A) (y : B) :
    y  f <$> X   x, y = f x  x  X.
654
  Proof. set_solver. Qed.
655 656
  Lemma elem_of_fmap_2 {A B} (f : A  B) (X : M A) (x : A) :
    x  X  f x  f <$> X.
657
  Proof. set_solver. Qed.
658 659
  Lemma elem_of_fmap_2_alt {A B} (f : A  B) (X : M A) (x : A) (y : B) :
    x  X  y = f x  y  f <$> X.
660
  Proof. set_solver. Qed.
661 662 663 664 665

  Lemma elem_of_mapM {A B} (f : A  M B) l k :
    l  mapM f k  Forall2 (λ x y, x  f y) l k.
  Proof.
    split.
666
    - revert l. induction k; set_solver by eauto.
667
    - induction 1; set_solver.
668
  Qed.
669
  Lemma collection_mapM_length {A B} (f : A  M B) l k :
670
    l  mapM f k  length l = length k.
671
  Proof. revert l; induction k; set_solver by eauto. Qed.
672
  Lemma elem_of_mapM_fmap {A B} (f : A  B) (g : B  M A) l k :
673
    Forall (λ x,  y, y  g x  f y = x) l  k  mapM g l  fmap f k = l.
674
  Proof. intros Hl. revert k. induction Hl; set_solver. Qed.
675
  Lemma elem_of_mapM_Forall {A B} (f : A  M B) (P : B  Prop) l k :
676
    l  mapM f k  Forall (λ x,  y, y  f x  P y) k  Forall P l.
Robbert Krebbers's avatar
Robbert Krebbers committed
677
  Proof. rewrite elem_of_mapM. apply Forall2_Forall_l. Qed.
678 679
  Lemma elem_of_mapM_Forall2_l {A B C} (f : A  M B) (P: B  C  Prop) l1 l2 k :
    l1  mapM f k  Forall2 (λ x y,  z, z  f x  P z y) k l2 
Robbert Krebbers's avatar
Robbert Krebbers committed
680 681 682 683 684
    Forall2 P l1 l2.
  Proof.
    rewrite elem_of_mapM. intros Hl1. revert l2.
    induction Hl1; inversion_clear 1; constructor; auto.
  Qed.
685
End collection_monad.
686 687 688 689 690 691

(** Finite collections *)
Definition set_finite `{ElemOf A B} (X : B) :=  l : list A,  x, x  X  x  l.

Section finite.
  Context `{SimpleCollection A B}.
692 693
  Global Instance set_finite_subseteq :
     Proper (flip () ==> impl) (@set_finite A B _).
694
  Proof. intros X Y HX [l Hl]; exists l; set_solver. Qed.
695 696
  Global Instance set_finite_proper : Proper (() ==> iff) (@set_finite A B _).
  Proof. by intros X Y [??]; split; apply set_finite_subseteq. Qed.
697 698 699
  Lemma empty_finite : set_finite .
  Proof. by exists []; intros ?; rewrite elem_of_empty. Qed.
  Lemma singleton_finite (x : A) : set_finite {[ x ]}.
Ralf Jung's avatar
Ralf Jung committed
700
  Proof. exists [x]; intros y ->%elem_of_singleton; left. Qed.
701 702 703 704 705 706
  Lemma union_finite X Y : set_finite X  set_finite Y  set_finite (X  Y).
  Proof.
    intros [lX ?] [lY ?]; exists (lX ++ lY); intros x.
    rewrite elem_of_union, elem_of_app; naive_solver.
  Qed.
  Lemma union_finite_inv_l X Y : set_finite (X  Y)  set_finite X.
707
  Proof. intros [l ?]; exists l; set_solver. Qed.
708
  Lemma union_finite_inv_r X Y : set_finite (X  Y)  set_finite Y.
709
  Proof. intros [l ?]; exists l; set_solver. Qed.
710 711 712 713 714
End finite.

Section more_finite.
  Context `{Collection A B}.
  Lemma intersection_finite_l X Y : set_finite X  set_finite (X  Y).
Ralf Jung's avatar
Ralf Jung committed
715
  Proof. intros [l ?]; exists l; intros x [??]%elem_of_intersection; auto. Qed.
716
  Lemma intersection_finite_r X Y : set_finite Y  set_finite (X  Y).
Ralf Jung's avatar
Ralf Jung committed
717
  Proof. intros [l ?]; exists l; intros x [??]%elem_of_intersection; auto. Qed.
718
  Lemma difference_finite X Y : set_finite X  set_finite (X  Y).
Ralf Jung's avatar
Ralf Jung committed
719
  Proof. intros [l ?]; exists l; intros x [??]%elem_of_difference; auto. Qed.
720 721 722 723
  Lemma difference_finite_inv X Y `{ x, Decision (x  Y)} :
    set_finite Y  set_finite (X  Y)  set_finite X.
  Proof.
    intros [l ?] [k ?]; exists (l ++ k).
724
    intros x ?; destruct (decide (x  Y)); rewrite elem_of_app; set_solver.
725
  Qed.
726
End more_finite.