fin_maps.v 69 KB
Newer Older
Robbert Krebbers's avatar
Robbert Krebbers committed
1
(* Copyright (c) 2012-2015, Robbert Krebbers. *)
2
3
4
(* This file is distributed under the terms of the BSD license. *)
(** Finite maps associate data to keys. This file defines an interface for
finite maps and collects some theory on it. Most importantly, it proves useful
5
6
induction principles for finite maps and implements the tactic
[simplify_map_equality] to simplify goals involving finite maps. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
7
Require Import Permutation.
8
Require Export prelude.relations prelude.vector prelude.orders.
9

10
11
(** * Axiomatization of finite maps *)
(** We require Leibniz equality to be extensional on finite maps. This of
12
13
14
15
16
course limits the space of finite map implementations, but since we are mainly
interested in finite maps with numbers as indexes, we do not consider this to
be a serious limitation. The main application of finite maps is to implement
the memory, where extensionality of Leibniz equality is very important for a
convenient use in the assertions of our axiomatic semantics. *)
17

Robbert Krebbers's avatar
Robbert Krebbers committed
18
19
(** Finiteness is axiomatized by requiring that each map can be translated
to an association list. The translation to association lists is used to
20
prove well founded recursion on finite maps. *)
21

22
23
24
(** Finite map implementations are required to implement the [merge] function
which enables us to give a generic implementation of [union_with],
[intersection_with], and [difference_with]. *)
25

26
Class FinMapToList K A M := map_to_list: M  list (K * A).
Robbert Krebbers's avatar
Robbert Krebbers committed
27

28
29
30
Class FinMap K M `{FMap M,  A, Lookup K A (M A),  A, Empty (M A),  A,
    PartialAlter K A (M A), OMap M, Merge M,  A, FinMapToList K A (M A),
     i j : K, Decision (i = j)} := {
31
32
  map_eq {A} (m1 m2 : M A) : ( i, m1 !! i = m2 !! i)  m1 = m2;
  lookup_empty {A} i : ( : M A) !! i = None;
33
34
35
36
  lookup_partial_alter {A} f (m : M A) i :
    partial_alter f i m !! i = f (m !! i);
  lookup_partial_alter_ne {A} f (m : M A) i j :
    i  j  partial_alter f i m !! j = m !! j;
37
  lookup_fmap {A B} (f : A  B) (m : M A) i : (f <$> m) !! i = f <$> m !! i;
38
  NoDup_map_to_list {A} (m : M A) : NoDup (map_to_list m);
39
40
  elem_of_map_to_list {A} (m : M A) i x :
    (i,x)  map_to_list m  m !! i = Some x;
41
  lookup_omap {A B} (f : A  option B) m i : omap f m !! i = m !! i = f;
42
43
44
  lookup_merge {A B C} (f : option A  option B  option C)
      `{!PropHolds (f None None = None)} m1 m2 i :
    merge f m1 m2 !! i = f (m1 !! i) (m2 !! i)
Robbert Krebbers's avatar
Robbert Krebbers committed
45
46
}.

47
48
49
(** * Derived operations *)
(** All of the following functions are defined in a generic way for arbitrary
finite map implementations. These generic implementations do not cause a
50
51
significant performance loss to make including them in the finite map interface
worthwhile. *)
52
53
54
55
56
Instance map_insert `{PartialAlter K A M} : Insert K A M :=
  λ i x, partial_alter (λ _, Some x) i.
Instance map_alter `{PartialAlter K A M} : Alter K A M :=
  λ f, partial_alter (fmap f).
Instance map_delete `{PartialAlter K A M} : Delete K M :=
57
  partial_alter (λ _, None).
58
Instance map_singleton `{PartialAlter K A M, Empty M} :
59
  SingletonM K A M := λ i x, <[i:=x]> .
Robbert Krebbers's avatar
Robbert Krebbers committed
60

61
Definition map_of_list `{Insert K A M, Empty M} : list (K * A)  M :=
62
  fold_right (λ p, <[p.1:=p.2]>) .
63
64
65
Definition map_of_collection `{Elements K C, Insert K A M, Empty M}
    (f : K  option A) (X : C) : M :=
  map_of_list (omap (λ i, (i,) <$> f i) (elements X)).
Robbert Krebbers's avatar
Robbert Krebbers committed
66

67
68
69
70
71
72
Instance map_union_with `{Merge M} {A} : UnionWith A (M A) :=
  λ f, merge (union_with f).
Instance map_intersection_with `{Merge M} {A} : IntersectionWith A (M A) :=
  λ f, merge (intersection_with f).
Instance map_difference_with `{Merge M} {A} : DifferenceWith A (M A) :=
  λ f, merge (difference_with f).
Robbert Krebbers's avatar
Robbert Krebbers committed
73

74
75
Instance map_equiv `{ A, Lookup K A (M A), Equiv A} : Equiv (M A) | 18 :=
  λ m1 m2,  i, m1 !! i  m2 !! i.
Robbert Krebbers's avatar
Robbert Krebbers committed
76

77
78
(** The relation [intersection_forall R] on finite maps describes that the
relation [R] holds for each pair in the intersection. *)
79
Definition map_Forall `{Lookup K A M} (P : K  A  Prop) : M  Prop :=
Robbert Krebbers's avatar
Robbert Krebbers committed
80
  λ m,  i x, m !! i = Some x  P i x.
Robbert Krebbers's avatar
Robbert Krebbers committed
81
82
83
Definition map_relation `{ A, Lookup K A (M A)} {A B} (R : A  B  Prop)
    (P : A  Prop) (Q : B  Prop) (m1 : M A) (m2 : M B) : Prop :=  i,
  option_relation R P Q (m1 !! i) (m2 !! i).
84
Definition map_included `{ A, Lookup K A (M A)} {A}
Robbert Krebbers's avatar
Robbert Krebbers committed
85
86
87
88
89
90
91
  (R : relation A) : relation (M A) := map_relation R (λ _, False) (λ _, True).
Definition map_disjoint `{ A, Lookup K A (M A)} {A} : relation (M A) :=
  map_relation (λ _ _, False) (λ _, True) (λ _, True).
Infix "⊥ₘ" := map_disjoint (at level 70) : C_scope.
Hint Extern 0 (_  _) => symmetry; eassumption.
Notation "( m ⊥ₘ.)" := (map_disjoint m) (only parsing) : C_scope.
Notation "(.⊥ₘ m )" := (λ m2, m2  m) (only parsing) : C_scope.
92
Instance map_subseteq `{ A, Lookup K A (M A)} {A} : SubsetEq (M A) :=
Robbert Krebbers's avatar
Robbert Krebbers committed
93
  map_included (=).
Robbert Krebbers's avatar
Robbert Krebbers committed
94
95
96
97
98

(** The union of two finite maps only has a meaningful definition for maps
that are disjoint. However, as working with partial functions is inconvenient
in Coq, we define the union as a total function. In case both finite maps
have a value at the same index, we take the value of the first map. *)
99
Instance map_union `{Merge M} {A} : Union (M A) := union_with (λ x _, Some x).
100
101
102
Instance map_intersection `{Merge M} {A} : Intersection (M A) :=
  intersection_with (λ x _, Some x).

103
104
(** The difference operation removes all values from the first map whose
index contains a value in the second map as well. *)
105
Instance map_difference `{Merge M} {A} : Difference (M A) :=
106
  difference_with (λ _ _, None).
Robbert Krebbers's avatar
Robbert Krebbers committed
107

108
109
110
111
112
113
(** A stronger variant of map that allows the mapped function to use the index
of the elements. Implemented by conversion to lists, so not very efficient. *)
Definition map_imap `{ A, Insert K A (M A),  A, Empty (M A),
     A, FinMapToList K A (M A)} {A B} (f : K  A  option B) (m : M A) : M B :=
  map_of_list (omap (λ ix, (fst ix,) <$> curry f ix) (map_to_list m)).

114
115
116
117
(** * Theorems *)
Section theorems.
Context `{FinMap K M}.

Robbert Krebbers's avatar
Robbert Krebbers committed
118
119
(** ** Setoids *)
Section setoid.
120
121
  Context `{Equiv A} `{!Equivalence (() : relation A)}.
  Global Instance map_equivalence : Equivalence (() : relation (M A)).
Robbert Krebbers's avatar
Robbert Krebbers committed
122
123
124
125
126
127
128
129
130
131
  Proof.
    split.
    * by intros m i.
    * by intros m1 m2 ? i.
    * by intros m1 m2 m3 ?? i; transitivity (m2 !! i).
  Qed.
  Global Instance lookup_proper (i : K) :
    Proper (() ==> ()) (lookup (M:=M A) i).
  Proof. by intros m1 m2 Hm. Qed.
  Global Instance partial_alter_proper :
132
    Proper ((() ==> ()) ==> (=) ==> () ==> ()) (partial_alter (M:=M A)).
Robbert Krebbers's avatar
Robbert Krebbers committed
133
134
135
136
137
138
139
140
  Proof.
    by intros f1 f2 Hf i ? <- m1 m2 Hm j; destruct (decide (i = j)) as [->|];
      rewrite ?lookup_partial_alter, ?lookup_partial_alter_ne by done;
      try apply Hf; apply lookup_proper.
  Qed.
  Global Instance insert_proper (i : K) :
    Proper (() ==> () ==> ()) (insert (M:=M A) i).
  Proof. by intros ???; apply partial_alter_proper; [constructor|]. Qed.
141
142
143
  Global Instance singleton_proper k :
    Proper (() ==> ()) (singletonM k : A  M A).
  Proof. by intros ???; apply insert_proper. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
144
145
146
147
148
149
150
151
152
153
154
155
  Global Instance delete_proper (i : K) :
    Proper (() ==> ()) (delete (M:=M A) i).
  Proof. by apply partial_alter_proper; [constructor|]. Qed.
  Global Instance alter_proper :
    Proper ((() ==> ()) ==> (=) ==> () ==> ()) (alter (A:=A) (M:=M A)).
  Proof.
    intros ?? Hf; apply partial_alter_proper.
    by destruct 1; constructor; apply Hf.
  Qed.
  Lemma merge_ext f g
      `{!PropHolds (f None None = None), !PropHolds (g None None = None)} :
    (() ==> () ==> ())%signature f g 
156
    (() ==> () ==> ())%signature (merge (M:=M) f) (merge g).
Robbert Krebbers's avatar
Robbert Krebbers committed
157
158
159
160
  Proof.
    by intros Hf ?? Hm1 ?? Hm2 i; rewrite !lookup_merge by done; apply Hf.
  Qed.
  Global Instance union_with_proper :
161
    Proper ((() ==> () ==> ()) ==> () ==> () ==>()) (union_with (M:=M A)).
Robbert Krebbers's avatar
Robbert Krebbers committed
162
163
164
165
166
167
  Proof.
    intros ?? Hf ?? Hm1 ?? Hm2 i; apply (merge_ext _ _); auto.
    by do 2 destruct 1; first [apply Hf | constructor].
  Qed.    
  Global Instance map_leibniz `{!LeibnizEquiv A} : LeibnizEquiv (M A).
  Proof.
168
169
    intros m1 m2 Hm; apply map_eq; intros i.
    by unfold_leibniz; apply lookup_proper.
Robbert Krebbers's avatar
Robbert Krebbers committed
170
  Qed.
171
172
173
174
175
176
177
178
179
180
  Lemma map_equiv_empty (m : M A) : m    m = .
  Proof.
    split; [intros Hm; apply map_eq; intros i|by intros ->].
    by rewrite lookup_empty, <-equiv_None, Hm, lookup_empty.
  Qed.
  Lemma map_equiv_lookup (m1 m2 : M A) i x :
    m1  m2  m1 !! i = Some x   y, m2 !! i = Some y  x  y.
  Proof.
    intros Hm ?. destruct (equiv_Some (m1 !! i) (m2 !! i) x) as (y&?&?); eauto.
  Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
181
182
183
End setoid.

(** ** General properties *)
184
185
186
187
188
Lemma map_eq_iff {A} (m1 m2 : M A) : m1 = m2   i, m1 !! i = m2 !! i.
Proof. split. by intros ->. apply map_eq. Qed.
Lemma map_subseteq_spec {A} (m1 m2 : M A) :
  m1  m2   i x, m1 !! i = Some x  m2 !! i = Some x.
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
189
  unfold subseteq, map_subseteq, map_relation. split; intros Hm i;
190
191
    specialize (Hm i); destruct (m1 !! i), (m2 !! i); naive_solver.
Qed.
192
Global Instance: EmptySpec (M A).
193
Proof.
194
195
  intros A m. rewrite !map_subseteq_spec.
  intros i x. by rewrite lookup_empty.
196
Qed.
197
198
Global Instance:  {A} (R : relation A), PreOrder R  PreOrder (map_included R).
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
199
  split; [intros m i; by destruct (m !! i); simpl|].
200
  intros m1 m2 m3 Hm12 Hm23 i; specialize (Hm12 i); specialize (Hm23 i).
Robbert Krebbers's avatar
Robbert Krebbers committed
201
202
  destruct (m1 !! i), (m2 !! i), (m3 !! i); simplify_equality';
    done || etransitivity; eauto.
203
Qed.
204
Global Instance: PartialOrder (() : relation (M A)).
205
Proof.
206
207
208
  split; [apply _|].
  intros m1 m2; rewrite !map_subseteq_spec.
  intros; apply map_eq; intros i; apply option_eq; naive_solver.
209
210
211
Qed.
Lemma lookup_weaken {A} (m1 m2 : M A) i x :
  m1 !! i = Some x  m1  m2  m2 !! i = Some x.
212
Proof. rewrite !map_subseteq_spec. auto. Qed.
213
214
215
216
217
218
Lemma lookup_weaken_is_Some {A} (m1 m2 : M A) i :
  is_Some (m1 !! i)  m1  m2  is_Some (m2 !! i).
Proof. inversion 1. eauto using lookup_weaken. Qed.
Lemma lookup_weaken_None {A} (m1 m2 : M A) i :
  m2 !! i = None  m1  m2  m1 !! i = None.
Proof.
219
220
  rewrite map_subseteq_spec, !eq_None_not_Some.
  intros Hm2 Hm [??]; destruct Hm2; eauto.
221
222
Qed.
Lemma lookup_weaken_inv {A} (m1 m2 : M A) i x y :
223
224
  m1 !! i = Some x  m1  m2  m2 !! i = Some y  x = y.
Proof. intros Hm1 ? Hm2. eapply lookup_weaken in Hm1; eauto. congruence. Qed.
225
226
227
228
229
230
231
232
233
Lemma lookup_ne {A} (m : M A) i j : m !! i  m !! j  i  j.
Proof. congruence. Qed.
Lemma map_empty {A} (m : M A) : ( i, m !! i = None)  m = .
Proof. intros Hm. apply map_eq. intros. by rewrite Hm, lookup_empty. Qed.
Lemma lookup_empty_is_Some {A} i : ¬is_Some (( : M A) !! i).
Proof. rewrite lookup_empty. by inversion 1. Qed.
Lemma lookup_empty_Some {A} i (x : A) : ¬ !! i = Some x.
Proof. by rewrite lookup_empty. Qed.
Lemma map_subset_empty {A} (m : M A) : m  .
234
235
236
Proof.
  intros [_ []]. rewrite map_subseteq_spec. intros ??. by rewrite lookup_empty.
Qed.
237
238
Lemma map_fmap_empty {A B} (f : A  B) : f <$> ( : M A) = .
Proof. by apply map_eq; intros i; rewrite lookup_fmap, !lookup_empty. Qed.
239
240

(** ** Properties of the [partial_alter] operation *)
241
242
243
Lemma partial_alter_ext {A} (f g : option A  option A) (m : M A) i :
  ( x, m !! i = x  f x = g x)  partial_alter f i m = partial_alter g i m.
Proof.
244
245
  intros. apply map_eq; intros j. by destruct (decide (i = j)) as [->|?];
    rewrite ?lookup_partial_alter, ?lookup_partial_alter_ne; auto.
246
247
Qed.
Lemma partial_alter_compose {A} f g (m : M A) i:
248
249
  partial_alter (f  g) i m = partial_alter f i (partial_alter g i m).
Proof.
250
251
  intros. apply map_eq. intros ii. by destruct (decide (i = ii)) as [->|?];
    rewrite ?lookup_partial_alter, ?lookup_partial_alter_ne.
252
Qed.
253
Lemma partial_alter_commute {A} f g (m : M A) i j :
254
  i  j  partial_alter f i (partial_alter g j m) =
255
256
    partial_alter g j (partial_alter f i m).
Proof.
257
258
259
260
261
262
263
  intros. apply map_eq; intros jj. destruct (decide (jj = j)) as [->|?].
  { by rewrite lookup_partial_alter_ne,
      !lookup_partial_alter, lookup_partial_alter_ne. }
  destruct (decide (jj = i)) as [->|?].
  * by rewrite lookup_partial_alter,
     !lookup_partial_alter_ne, lookup_partial_alter by congruence.
  * by rewrite !lookup_partial_alter_ne by congruence.
264
265
266
267
Qed.
Lemma partial_alter_self_alt {A} (m : M A) i x :
  x = m !! i  partial_alter (λ _, x) i m = m.
Proof.
268
269
  intros. apply map_eq. intros ii. by destruct (decide (i = ii)) as [->|];
    rewrite ?lookup_partial_alter, ?lookup_partial_alter_ne.
270
Qed.
271
Lemma partial_alter_self {A} (m : M A) i : partial_alter (λ _, m !! i) i m = m.
272
Proof. by apply partial_alter_self_alt. Qed.
273
Lemma partial_alter_subseteq {A} f (m : M A) i :
274
  m !! i = None  m  partial_alter f i m.
275
276
277
278
Proof.
  rewrite map_subseteq_spec. intros Hi j x Hj.
  rewrite lookup_partial_alter_ne; congruence.
Qed.
279
Lemma partial_alter_subset {A} f (m : M A) i :
280
  m !! i = None  is_Some (f (m !! i))  m  partial_alter f i m.
281
Proof.
282
283
284
285
  intros Hi Hfi. split; [by apply partial_alter_subseteq|].
  rewrite !map_subseteq_spec. inversion Hfi as [x Hx]. intros Hm.
  apply (Some_ne_None x). rewrite <-(Hm i x); [done|].
  by rewrite lookup_partial_alter.
286
287
288
Qed.

(** ** Properties of the [alter] operation *)
289
290
Lemma alter_ext {A} (f g : A  A) (m : M A) i :
  ( x, m !! i = Some x  f x = g x)  alter f i m = alter g i m.
291
Proof. intro. apply partial_alter_ext. intros [x|] ?; f_equal'; auto. Qed.
292
Lemma lookup_alter {A} (f : A  A) m i : alter f i m !! i = f <$> m !! i.
293
Proof. unfold alter. apply lookup_partial_alter. Qed.
294
Lemma lookup_alter_ne {A} (f : A  A) m i j : i  j  alter f i m !! j = m !! j.
295
Proof. unfold alter. apply lookup_partial_alter_ne. Qed.
296
297
298
299
300
301
302
303
304
Lemma alter_compose {A} (f g : A  A) (m : M A) i:
  alter (f  g) i m = alter f i (alter g i m).
Proof.
  unfold alter, map_alter. rewrite <-partial_alter_compose.
  apply partial_alter_ext. by intros [?|].
Qed.
Lemma alter_commute {A} (f g : A  A) (m : M A) i j :
  i  j  alter f i (alter g j m) = alter g j (alter f i m).
Proof. apply partial_alter_commute. Qed.
305
306
307
308
Lemma lookup_alter_Some {A} (f : A  A) m i j y :
  alter f i m !! j = Some y 
    (i = j   x, m !! j = Some x  y = f x)  (i  j  m !! j = Some y).
Proof.
309
  destruct (decide (i = j)) as [->|?].
310
311
312
313
314
315
  * rewrite lookup_alter. naive_solver (simplify_option_equality; eauto).
  * rewrite lookup_alter_ne by done. naive_solver.
Qed.
Lemma lookup_alter_None {A} (f : A  A) m i j :
  alter f i m !! j = None  m !! j = None.
Proof.
316
317
  by destruct (decide (i = j)) as [->|?];
    rewrite ?lookup_alter, ?fmap_None, ?lookup_alter_ne.
318
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
319
320
Lemma alter_id {A} (f : A  A) m i :
  ( x, m !! i = Some x  f x = x)  alter f i m = m.
321
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
322
323
324
  intros Hi; apply map_eq; intros j; destruct (decide (i = j)) as [->|?].
  { rewrite lookup_alter; destruct (m !! j); f_equal'; auto. }
  by rewrite lookup_alter_ne by done.
325
326
327
328
329
330
331
332
333
334
335
Qed.

(** ** Properties of the [delete] operation *)
Lemma lookup_delete {A} (m : M A) i : delete i m !! i = None.
Proof. apply lookup_partial_alter. Qed.
Lemma lookup_delete_ne {A} (m : M A) i j : i  j  delete i m !! j = m !! j.
Proof. apply lookup_partial_alter_ne. Qed.
Lemma lookup_delete_Some {A} (m : M A) i j y :
  delete i m !! j = Some y  i  j  m !! j = Some y.
Proof.
  split.
336
  * destruct (decide (i = j)) as [->|?];
337
338
339
340
341
342
      rewrite ?lookup_delete, ?lookup_delete_ne; intuition congruence.
  * intros [??]. by rewrite lookup_delete_ne.
Qed.
Lemma lookup_delete_None {A} (m : M A) i j :
  delete i m !! j = None  i = j  m !! j = None.
Proof.
343
344
  destruct (decide (i = j)) as [->|?];
    rewrite ?lookup_delete, ?lookup_delete_ne; tauto.
345
346
347
Qed.
Lemma delete_empty {A} i : delete i ( : M A) = .
Proof. rewrite <-(partial_alter_self ) at 2. by rewrite lookup_empty. Qed.
348
Lemma delete_singleton {A} i (x : A) : delete i {[i  x]} = .
349
350
351
352
353
354
355
Proof. setoid_rewrite <-partial_alter_compose. apply delete_empty. Qed.
Lemma delete_commute {A} (m : M A) i j :
  delete i (delete j m) = delete j (delete i m).
Proof. destruct (decide (i = j)). by subst. by apply partial_alter_commute. Qed.
Lemma delete_insert_ne {A} (m : M A) i j x :
  i  j  delete i (<[j:=x]>m) = <[j:=x]>(delete i m).
Proof. intro. by apply partial_alter_commute. Qed.
356
Lemma delete_notin {A} (m : M A) i : m !! i = None  delete i m = m.
357
Proof.
358
359
  intros. apply map_eq. intros j. by destruct (decide (i = j)) as [->|?];
    rewrite ?lookup_delete, ?lookup_delete_ne.
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
Qed.
Lemma delete_partial_alter {A} (m : M A) i f :
  m !! i = None  delete i (partial_alter f i m) = m.
Proof.
  intros. unfold delete, map_delete. rewrite <-partial_alter_compose.
  unfold compose. by apply partial_alter_self_alt.
Qed.
Lemma delete_insert {A} (m : M A) i x :
  m !! i = None  delete i (<[i:=x]>m) = m.
Proof. apply delete_partial_alter. Qed.
Lemma insert_delete {A} (m : M A) i x :
  m !! i = Some x  <[i:=x]>(delete i m) = m.
Proof.
  intros Hmi. unfold delete, map_delete, insert, map_insert.
  rewrite <-partial_alter_compose. unfold compose. rewrite <-Hmi.
  by apply partial_alter_self_alt.
Qed.
377
Lemma delete_subseteq {A} (m : M A) i : delete i m  m.
378
379
380
Proof.
  rewrite !map_subseteq_spec. intros j x. rewrite lookup_delete_Some. tauto.
Qed.
381
Lemma delete_subseteq_compat {A} (m1 m2 : M A) i :
382
  m1  m2  delete i m1  delete i m2.
383
384
385
386
Proof.
  rewrite !map_subseteq_spec. intros ? j x.
  rewrite !lookup_delete_Some. intuition eauto.
Qed.
387
Lemma delete_subset_alt {A} (m : M A) i x : m !! i = Some x  delete i m  m.
388
Proof.
389
390
391
  split; [apply delete_subseteq|].
  rewrite !map_subseteq_spec. intros Hi. apply (None_ne_Some x).
  by rewrite <-(lookup_delete m i), (Hi i x).
392
Qed.
393
Lemma delete_subset {A} (m : M A) i : is_Some (m !! i)  delete i m  m.
394
395
396
397
398
Proof. inversion 1. eauto using delete_subset_alt. Qed.

(** ** Properties of the [insert] operation *)
Lemma lookup_insert {A} (m : M A) i x : <[i:=x]>m !! i = Some x.
Proof. unfold insert. apply lookup_partial_alter. Qed.
399
Lemma lookup_insert_rev {A}  (m : M A) i x y : <[i:=x]>m !! i = Some y  x = y.
400
Proof. rewrite lookup_insert. congruence. Qed.
401
Lemma lookup_insert_ne {A} (m : M A) i j x : i  j  <[i:=x]>m !! j = m !! j.
402
403
404
405
406
407
408
409
Proof. unfold insert. apply lookup_partial_alter_ne. Qed.
Lemma insert_commute {A} (m : M A) i j x y :
  i  j  <[i:=x]>(<[j:=y]>m) = <[j:=y]>(<[i:=x]>m).
Proof. apply partial_alter_commute. Qed.
Lemma lookup_insert_Some {A} (m : M A) i j x y :
  <[i:=x]>m !! j = Some y  (i = j  x = y)  (i  j  m !! j = Some y).
Proof.
  split.
410
  * destruct (decide (i = j)) as [->|?];
411
      rewrite ?lookup_insert, ?lookup_insert_ne; intuition congruence.
412
  * intros [[-> ->]|[??]]; [apply lookup_insert|]. by rewrite lookup_insert_ne.
413
414
415
416
Qed.
Lemma lookup_insert_None {A} (m : M A) i j x :
  <[i:=x]>m !! j = None  m !! j = None  i  j.
Proof.
417
418
419
  split; [|by intros [??]; rewrite lookup_insert_ne].
  destruct (decide (i = j)) as [->|];
    rewrite ?lookup_insert, ?lookup_insert_ne; intuition congruence.
420
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
421
Lemma insert_id {A} (m : M A) i x : m !! i = Some x  <[i:=x]>m = m.
422
423
424
425
426
427
428
429
Proof.
  intros; apply map_eq; intros j; destruct (decide (i = j)) as [->|];
    by rewrite ?lookup_insert, ?lookup_insert_ne by done.
Qed.
Lemma insert_included {A} R `{!Reflexive R} (m : M A) i x :
  ( y, m !! i = Some y  R y x)  map_included R m (<[i:=x]>m).
Proof.
  intros ? j; destruct (decide (i = j)) as [->|].
Robbert Krebbers's avatar
Robbert Krebbers committed
430
431
  * rewrite lookup_insert. destruct (m !! j); simpl; eauto.
  * rewrite lookup_insert_ne by done. by destruct (m !! j); simpl.
432
Qed.
433
Lemma insert_subseteq {A} (m : M A) i x : m !! i = None  m  <[i:=x]>m.
434
Proof. apply partial_alter_subseteq. Qed.
435
Lemma insert_subset {A} (m : M A) i x : m !! i = None  m  <[i:=x]>m.
436
437
Proof. intro. apply partial_alter_subset; eauto. Qed.
Lemma insert_subseteq_r {A} (m1 m2 : M A) i x :
438
  m1 !! i = None  m1  m2  m1  <[i:=x]>m2.
439
Proof.
440
441
442
  rewrite !map_subseteq_spec. intros ?? j ?.
  destruct (decide (j = i)) as [->|?]; [congruence|].
  rewrite lookup_insert_ne; auto.
443
444
Qed.
Lemma insert_delete_subseteq {A} (m1 m2 : M A) i x :
445
  m1 !! i = None  <[i:=x]> m1  m2  m1  delete i m2.
446
Proof.
447
448
449
450
  rewrite !map_subseteq_spec. intros Hi Hix j y Hj.
  destruct (decide (i = j)) as [->|]; [congruence|].
  rewrite lookup_delete_ne by done.
  apply Hix; by rewrite lookup_insert_ne by done.
451
452
Qed.
Lemma delete_insert_subseteq {A} (m1 m2 : M A) i x :
453
  m1 !! i = Some x  delete i m1  m2  m1  <[i:=x]> m2.
454
Proof.
455
456
  rewrite !map_subseteq_spec.
  intros Hix Hi j y Hj. destruct (decide (i = j)) as [->|?].
457
  * rewrite lookup_insert. congruence.
458
  * rewrite lookup_insert_ne by done. apply Hi. by rewrite lookup_delete_ne.
459
460
Qed.
Lemma insert_delete_subset {A} (m1 m2 : M A) i x :
461
  m1 !! i = None  <[i:=x]> m1  m2  m1  delete i m2.
462
Proof.
463
464
465
  intros ? [Hm12 Hm21]; split; [eauto using insert_delete_subseteq|].
  contradict Hm21. apply delete_insert_subseteq; auto.
  eapply lookup_weaken, Hm12. by rewrite lookup_insert.
466
467
Qed.
Lemma insert_subset_inv {A} (m1 m2 : M A) i x :
468
  m1 !! i = None  <[i:=x]> m1  m2 
469
470
471
   m2', m2 = <[i:=x]>m2'  m1  m2'  m2' !! i = None.
Proof.
  intros Hi Hm1m2. exists (delete i m2). split_ands.
472
  * rewrite insert_delete. done. eapply lookup_weaken, strict_include; eauto.
473
474
475
476
    by rewrite lookup_insert.
  * eauto using insert_delete_subset.
  * by rewrite lookup_delete.
Qed.
477
478
479
480
481
482
483
Lemma fmap_insert {A B} (f : A  B) (m : M A) i x :
  f <$> <[i:=x]>m = <[i:=f x]>(f <$> m).
Proof.
  apply map_eq; intros i'; destruct (decide (i' = i)) as [->|].
  * by rewrite lookup_fmap, !lookup_insert.
  * by rewrite lookup_fmap, !lookup_insert_ne, lookup_fmap by done.
Qed.
484
Lemma insert_empty {A} i (x : A) : <[i:=x]> = {[i  x]}.
485
Proof. done. Qed.
486
487
488

(** ** Properties of the singleton maps *)
Lemma lookup_singleton_Some {A} i j (x y : A) :
489
  {[i  x]} !! j = Some y  i = j  x = y.
490
Proof.
491
  rewrite <-insert_empty,lookup_insert_Some, lookup_empty; intuition congruence.
492
Qed.
493
494
495
Lemma lookup_singleton_None {A} i j (x : A) : {[i  x]} !! j = None  i  j.
Proof. rewrite <-insert_empty,lookup_insert_None, lookup_empty; tauto. Qed.
Lemma lookup_singleton {A} i (x : A) : {[i  x]} !! i = Some x.
496
Proof. by rewrite lookup_singleton_Some. Qed.
497
Lemma lookup_singleton_ne {A} i j (x : A) : i  j  {[i  x]} !! j = None.
498
Proof. by rewrite lookup_singleton_None. Qed.
499
Lemma map_non_empty_singleton {A} i (x : A) : {[i  x]}  .
500
501
502
503
Proof.
  intros Hix. apply (f_equal (!! i)) in Hix.
  by rewrite lookup_empty, lookup_singleton in Hix.
Qed.
504
Lemma insert_singleton {A} i (x y : A) : <[i:=y]>{[i  x]} = {[i  y]}.
505
Proof.
506
  unfold singletonM, map_singleton, insert, map_insert.
507
508
  by rewrite <-partial_alter_compose.
Qed.
509
Lemma alter_singleton {A} (f : A  A) i x : alter f i {[i  x]} = {[i  f x]}.
510
Proof.
511
  intros. apply map_eq. intros i'. destruct (decide (i = i')) as [->|?].
512
513
514
515
  * by rewrite lookup_alter, !lookup_singleton.
  * by rewrite lookup_alter_ne, !lookup_singleton_ne.
Qed.
Lemma alter_singleton_ne {A} (f : A  A) i j x :
516
  i  j  alter f i {[j  x]} = {[j  x]}.
517
Proof.
518
519
  intros. apply map_eq; intros i'. by destruct (decide (i = i')) as [->|?];
    rewrite ?lookup_alter, ?lookup_singleton_ne, ?lookup_alter_ne by done.
520
Qed.
521
522
523
524
Lemma map_fmap_singleton {A B} (f : A  B) i x : f <$> {[i  x]} = {[i  f x]}.
Proof.
  by unfold singletonM, map_singleton; rewrite fmap_insert, map_fmap_empty.
Qed.
525

526
527
528
529
530
(** ** Properties of the map operations *)
Lemma fmap_empty {A B} (f : A  B) : f <$>  = .
Proof. apply map_empty; intros i. by rewrite lookup_fmap, lookup_empty. Qed.
Lemma omap_empty {A B} (f : A  option B) : omap f  = .
Proof. apply map_empty; intros i. by rewrite lookup_omap, lookup_empty. Qed.
531
Lemma omap_singleton {A B} (f : A  option B) i x y :
532
  f x = Some y  omap f {[ i  x ]} = {[ i  y ]}.
533
534
535
536
537
Proof.
  intros; apply map_eq; intros j; destruct (decide (i = j)) as [->|].
  * by rewrite lookup_omap, !lookup_singleton.
  * by rewrite lookup_omap, !lookup_singleton_ne.
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
538
539
540
541
542
Lemma map_fmap_id {A} (m : M A) : id <$> m = m.
Proof. apply map_eq; intros i; by rewrite lookup_fmap, option_fmap_id. Qed.
Lemma map_fmap_compose {A B C} (f : A  B) (g : B  C) (m : M A) :
  g  f <$> m = g <$> f <$> m.
Proof. apply map_eq; intros i; by rewrite !lookup_fmap,option_fmap_compose. Qed.
543
544
545
546
547
548
Lemma map_fmap_setoid_ext `{Equiv A, Equiv B} (f1 f2 : A  B) m :
  ( i x, m !! i = Some x  f1 x  f2 x)  f1 <$> m  f2 <$> m.
Proof.
  intros Hi i; rewrite !lookup_fmap.
  destruct (m !! i) eqn:?; constructor; eauto.
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
549
550
551
552
553
554
Lemma map_fmap_ext {A B} (f1 f2 : A  B) m :
  ( i x, m !! i = Some x  f1 x = f2 x)  f1 <$> m = f2 <$> m.
Proof.
  intros Hi; apply map_eq; intros i; rewrite !lookup_fmap.
  by destruct (m !! i) eqn:?; simpl; erewrite ?Hi by eauto.
Qed.
555

556
557
(** ** Properties of conversion to lists *)
Lemma map_to_list_unique {A} (m : M A) i x y :
558
  (i,x)  map_to_list m  (i,y)  map_to_list m  x = y.
559
Proof. rewrite !elem_of_map_to_list. congruence. Qed.
560
Lemma NoDup_fst_map_to_list {A} (m : M A) : NoDup ((map_to_list m).*1).
561
Proof. eauto using NoDup_fmap_fst, map_to_list_unique, NoDup_map_to_list. Qed.
562
563
564
565
566
567
568
569
570
571
Lemma elem_of_map_of_list_1_help {A} (l : list (K * A)) i x :
  (i,x)  l  ( y, (i,y)  l  y = x)  map_of_list l !! i = Some x.
Proof.
  induction l as [|[j y] l IH]; csimpl; [by rewrite elem_of_nil|].
  setoid_rewrite elem_of_cons.
  intros [?|?] Hdup; simplify_equality; [by rewrite lookup_insert|].
  destruct (decide (i = j)) as [->|].
  * rewrite lookup_insert; f_equal; eauto.
  * rewrite lookup_insert_ne by done; eauto.
Qed.
572
Lemma elem_of_map_of_list_1 {A} (l : list (K * A)) i x :
573
  NoDup (l.*1)  (i,x)  l  map_of_list l !! i = Some x.
574
Proof.
575
576
  intros ? Hx; apply elem_of_map_of_list_1_help; eauto using NoDup_fmap_fst.
  intros y; revert Hx. rewrite !elem_of_list_lookup; intros [i' Hi'] [j' Hj'].
577
  cut (i' = j'); [naive_solver|]. apply NoDup_lookup with (l.*1) i;
578
    by rewrite ?list_lookup_fmap, ?Hi', ?Hj'.
579
580
Qed.
Lemma elem_of_map_of_list_2 {A} (l : list (K * A)) i x :
581
  map_of_list l !! i = Some x  (i,x)  l.
582
Proof.
583
584
585
  induction l as [|[j y] l IH]; simpl; [by rewrite lookup_empty|].
  rewrite elem_of_cons. destruct (decide (i = j)) as [->|];
    rewrite ?lookup_insert, ?lookup_insert_ne; intuition congruence.
586
587
Qed.
Lemma elem_of_map_of_list {A} (l : list (K * A)) i x :
588
  NoDup (l.*1)  (i,x)  l  map_of_list l !! i = Some x.
589
Proof. split; auto using elem_of_map_of_list_1, elem_of_map_of_list_2. Qed.
590
Lemma not_elem_of_map_of_list_1 {A} (l : list (K * A)) i :
591
  i  l.*1  map_of_list l !! i = None.
592
Proof.
593
594
  rewrite elem_of_list_fmap, eq_None_not_Some. intros Hi [x ?]; destruct Hi.
  exists (i,x); simpl; auto using elem_of_map_of_list_2.
595
596
Qed.
Lemma not_elem_of_map_of_list_2 {A} (l : list (K * A)) i :
597
  map_of_list l !! i = None  i  l.*1.
598
Proof.
599
  induction l as [|[j y] l IH]; csimpl; [rewrite elem_of_nil; tauto|].
600
601
602
603
604
  rewrite elem_of_cons. destruct (decide (i = j)); simplify_equality.
  * by rewrite lookup_insert.
  * by rewrite lookup_insert_ne; intuition.
Qed.
Lemma not_elem_of_map_of_list {A} (l : list (K * A)) i :
605
  i  l.*1  map_of_list l !! i = None.
606
Proof. red; auto using not_elem_of_map_of_list_1,not_elem_of_map_of_list_2. Qed.
607
Lemma map_of_list_proper {A} (l1 l2 : list (K * A)) :
608
  NoDup (l1.*1)  l1  l2  map_of_list l1 = map_of_list l2.
609
610
611
612
613
Proof.
  intros ? Hperm. apply map_eq. intros i. apply option_eq. intros x.
  by rewrite <-!elem_of_map_of_list; rewrite <-?Hperm.
Qed.
Lemma map_of_list_inj {A} (l1 l2 : list (K * A)) :
614
  NoDup (l1.*1)  NoDup (l2.*1)  map_of_list l1 = map_of_list l2  l1  l2.
615
Proof.
616
  intros ?? Hl1l2. apply NoDup_Permutation; auto using (NoDup_fmap_1 fst).
617
618
  intros [i x]. by rewrite !elem_of_map_of_list, Hl1l2.
Qed.
619
Lemma map_of_to_list {A} (m : M A) : map_of_list (map_to_list m) = m.
620
621
622
Proof.
  apply map_eq. intros i. apply option_eq. intros x.
  by rewrite <-elem_of_map_of_list, elem_of_map_to_list
623
    by auto using NoDup_fst_map_to_list.
624
625
Qed.
Lemma map_to_of_list {A} (l : list (K * A)) :
626
  NoDup (l.*1)  map_to_list (map_of_list l)  l.
627
Proof. auto using map_of_list_inj, NoDup_fst_map_to_list, map_of_to_list. Qed.
628
Lemma map_to_list_inj {A} (m1 m2 : M A) :
629
  map_to_list m1  map_to_list m2  m1 = m2.
630
Proof.
631
  intros. rewrite <-(map_of_to_list m1), <-(map_of_to_list m2).
632
  auto using map_of_list_proper, NoDup_fst_map_to_list.
633
Qed.
634
635
636
637
638
639
Lemma map_to_of_list_flip {A} (m1 : M A) l2 :
  map_to_list m1  l2  m1 = map_of_list l2.
Proof.
  intros. rewrite <-(map_of_to_list m1).
  auto using map_of_list_proper, NoDup_fst_map_to_list.
Qed.
640
Lemma map_to_list_empty {A} : map_to_list  = @nil (K * A).
641
642
643
644
645
Proof.
  apply elem_of_nil_inv. intros [i x].
  rewrite elem_of_map_to_list. apply lookup_empty_Some.
Qed.
Lemma map_to_list_insert {A} (m : M A) i x :
646
  m !! i = None  map_to_list (<[i:=x]>m)  (i,x) :: map_to_list m.
647
Proof.
648
  intros. apply map_of_list_inj; csimpl.
649
650
  * apply NoDup_fst_map_to_list.
  * constructor; auto using NoDup_fst_map_to_list.
651
    rewrite elem_of_list_fmap. intros [[??] [? Hlookup]]; subst; simpl in *.
652
653
654
    rewrite elem_of_map_to_list in Hlookup. congruence.
  * by rewrite !map_of_to_list.
Qed.
655
Lemma map_of_list_nil {A} : map_of_list (@nil (K * A)) = .
656
657
658
659
Proof. done. Qed.
Lemma map_of_list_cons {A} (l : list (K * A)) i x :
  map_of_list ((i, x) :: l) = <[i:=x]>(map_of_list l).
Proof. done. Qed.
660
Lemma map_to_list_empty_inv_alt {A}  (m : M A) : map_to_list m  []  m = .
661
Proof. rewrite <-map_to_list_empty. apply map_to_list_inj. Qed.
662
Lemma map_to_list_empty_inv {A} (m : M A) : map_to_list m = []  m = .
663
664
Proof. intros Hm. apply map_to_list_empty_inv_alt. by rewrite Hm. Qed.
Lemma map_to_list_insert_inv {A} (m : M A) l i x :
665
  map_to_list m  (i,x) :: l  m = <[i:=x]>(map_of_list l).
666
667
Proof.
  intros Hperm. apply map_to_list_inj.
668
669
670
  assert (i  l.*1  NoDup (l.*1)) as [].
  { rewrite <-NoDup_cons. change (NoDup (((i,x)::l).*1)). rewrite <-Hperm.
    auto using NoDup_fst_map_to_list. }
671
672
673
  rewrite Hperm, map_to_list_insert, map_to_of_list;
    auto using not_elem_of_map_of_list_1.
Qed.
674
675
676
677
Lemma map_choose {A} (m : M A) : m     i x, m !! i = Some x.
Proof.
  intros Hemp. destruct (map_to_list m) as [|[i x] l] eqn:Hm.
  { destruct Hemp; eauto using map_to_list_empty_inv. }
678
  exists i, x. rewrite <-elem_of_map_to_list, Hm. by left.
679
Qed.
680

681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
(** Properties of the imap function *)
Lemma lookup_imap {A B} (f : K  A  option B) m i :
  map_imap f m !! i = m !! i = f i.
Proof.
  unfold map_imap; destruct (m !! i = f i) as [y|] eqn:Hi; simpl.
  * destruct (m !! i) as [x|] eqn:?; simplify_equality'.
    apply elem_of_map_of_list_1_help.
    { apply elem_of_list_omap; exists (i,x); split;
        [by apply elem_of_map_to_list|by simplify_option_equality]. }
    intros y'; rewrite elem_of_list_omap; intros ([i' x']&Hi'&?).
    by rewrite elem_of_map_to_list in Hi'; simplify_option_equality.
  * apply not_elem_of_map_of_list; rewrite elem_of_list_fmap.
    intros ([i' x]&->&Hi'); simplify_equality'.
    rewrite elem_of_list_omap in Hi'; destruct Hi' as ([j y]&Hj&?).
    rewrite elem_of_map_to_list in Hj; simplify_option_equality.
Qed.

698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
(** ** Properties of conversion from collections *)
Lemma lookup_map_of_collection {A} `{FinCollection K C}
    (f : K  option A) X i x :
  map_of_collection f X !! i = Some x  i  X  f i = Some x.
Proof.
  assert (NoDup (fst <$> omap (λ i, (i,) <$> f i) (elements X))).
  { induction (NoDup_elements X) as [|i' l]; csimpl; [constructor|].
    destruct (f i') as [x'|]; csimpl; auto; constructor; auto.
    rewrite elem_of_list_fmap. setoid_rewrite elem_of_list_omap.
    by intros (?&?&?&?&?); simplify_option_equality. }
  unfold map_of_collection; rewrite <-elem_of_map_of_list by done.
  rewrite elem_of_list_omap. setoid_rewrite elem_of_elements; split.
  * intros (?&?&?); simplify_option_equality; eauto.
  * intros [??]; exists i; simplify_option_equality; eauto.
Qed.

(** ** Induction principles *)
715
Lemma map_ind {A} (P : M A  Prop) :
716
  P   ( i x m, m !! i = None  P m  P (<[i:=x]>m))   m, P m.
717
Proof.
718
  intros ? Hins. cut ( l, NoDup (l.*1)   m, map_to_list m  l  P m).
719
  { intros help m.
720
    apply (help (map_to_list m)); auto using NoDup_fst_map_to_list. }
721
722
723
  induction l as [|[i x] l IH]; intros Hnodup m Hml.
  { apply map_to_list_empty_inv_alt in Hml. by subst. }
  inversion_clear Hnodup.
724
  apply map_to_list_insert_inv in Hml; subst m. apply Hins.
725
726
727
728
  * by apply not_elem_of_map_of_list_1.
  * apply IH; auto using map_to_of_list.
Qed.
Lemma map_to_list_length {A} (m1 m2 : M A) :
729
  m1  m2  length (map_to_list m1) < length (map_to_list m2).
730
731
732
733
Proof.
  revert m2. induction m1 as [|i x m ? IH] using map_ind.
  { intros m2 Hm2. rewrite map_to_list_empty. simpl.
    apply neq_0_lt. intros Hlen. symmetry in Hlen.
734
    apply nil_length_inv, map_to_list_empty_inv in Hlen.
735
736
737
738
739
    rewrite Hlen in Hm2. destruct (irreflexivity ()  Hm2). }
  intros m2 Hm2.
  destruct (insert_subset_inv m m2 i x) as (m2'&?&?&?); auto; subst.
  rewrite !map_to_list_insert; simpl; auto with arith.
Qed.