fin_maps.v 71.5 KB
Newer Older
Robbert Krebbers's avatar
Robbert Krebbers committed
1
(* Copyright (c) 2012-2015, Robbert Krebbers. *)
2
3
4
(* This file is distributed under the terms of the BSD license. *)
(** Finite maps associate data to keys. This file defines an interface for
finite maps and collects some theory on it. Most importantly, it proves useful
5
induction principles for finite maps and implements the tactic
6
[simplify_map_eq] to simplify goals involving finite maps. *)
7
From Coq Require Import Permutation.
8
From stdpp Require Export relations orders vector.
9
10
(* FIXME: This file needs a 'Proof Using' hint, but the default we use
   everywhere makes for lots of extra ssumptions. *)
11

12
13
(** * Axiomatization of finite maps *)
(** We require Leibniz equality to be extensional on finite maps. This of
14
15
16
17
18
course limits the space of finite map implementations, but since we are mainly
interested in finite maps with numbers as indexes, we do not consider this to
be a serious limitation. The main application of finite maps is to implement
the memory, where extensionality of Leibniz equality is very important for a
convenient use in the assertions of our axiomatic semantics. *)
19

Robbert Krebbers's avatar
Robbert Krebbers committed
20
21
(** Finiteness is axiomatized by requiring that each map can be translated
to an association list. The translation to association lists is used to
22
prove well founded recursion on finite maps. *)
23

24
25
26
(** Finite map implementations are required to implement the [merge] function
which enables us to give a generic implementation of [union_with],
[intersection_with], and [difference_with]. *)
27

28
Class FinMapToList K A M := map_to_list: M  list (K * A).
Robbert Krebbers's avatar
Robbert Krebbers committed
29

30
31
Class FinMap K M `{FMap M,  A, Lookup K A (M A),  A, Empty (M A),  A,
    PartialAlter K A (M A), OMap M, Merge M,  A, FinMapToList K A (M A),
32
    EqDecision K} := {
33
34
  map_eq {A} (m1 m2 : M A) : ( i, m1 !! i = m2 !! i)  m1 = m2;
  lookup_empty {A} i : ( : M A) !! i = None;
35
36
37
38
  lookup_partial_alter {A} f (m : M A) i :
    partial_alter f i m !! i = f (m !! i);
  lookup_partial_alter_ne {A} f (m : M A) i j :
    i  j  partial_alter f i m !! j = m !! j;
39
  lookup_fmap {A B} (f : A  B) (m : M A) i : (f <$> m) !! i = f <$> m !! i;
40
  NoDup_map_to_list {A} (m : M A) : NoDup (map_to_list m);
41
42
  elem_of_map_to_list {A} (m : M A) i x :
    (i,x)  map_to_list m  m !! i = Some x;
43
  lookup_omap {A B} (f : A  option B) m i : omap f m !! i = m !! i = f;
44
  lookup_merge {A B C} (f: option A  option B  option C) `{!DiagNone f} m1 m2 i :
45
    merge f m1 m2 !! i = f (m1 !! i) (m2 !! i)
Robbert Krebbers's avatar
Robbert Krebbers committed
46
47
}.

48
49
50
(** * Derived operations *)
(** All of the following functions are defined in a generic way for arbitrary
finite map implementations. These generic implementations do not cause a
51
52
significant performance loss to make including them in the finite map interface
worthwhile. *)
53
54
55
56
57
58
59
60
61
62
Instance map_insert `{PartialAlter K A M} : Insert K A M :=
  λ i x, partial_alter (λ _, Some x) i.
Instance map_alter `{PartialAlter K A M} : Alter K A M :=
  λ f, partial_alter (fmap f).
Instance map_delete `{PartialAlter K A M} : Delete K M :=
  partial_alter (λ _, None).
Instance map_singleton `{PartialAlter K A M, Empty M} :
  SingletonM K A M := λ i x, <[i:=x]> .

Definition map_of_list `{Insert K A M, Empty M} : list (K * A)  M :=
63
  fold_right (λ p, <[p.1:=p.2]>) .
64
65
Definition map_of_collection `{Elements K C, Insert K A M, Empty M}
    (f : K  option A) (X : C) : M :=
66
  map_of_list (omap (λ i, (i,) <$> f i) (elements X)).
Robbert Krebbers's avatar
Robbert Krebbers committed
67

68
69
70
71
72
73
Instance map_union_with `{Merge M} {A} : UnionWith A (M A) :=
  λ f, merge (union_with f).
Instance map_intersection_with `{Merge M} {A} : IntersectionWith A (M A) :=
  λ f, merge (intersection_with f).
Instance map_difference_with `{Merge M} {A} : DifferenceWith A (M A) :=
  λ f, merge (difference_with f).
Robbert Krebbers's avatar
Robbert Krebbers committed
74

75
Instance map_equiv `{ A, Lookup K A (M A), Equiv A} : Equiv (M A) | 18 :=
76
  λ m1 m2,  i, m1 !! i  m2 !! i.
Robbert Krebbers's avatar
Robbert Krebbers committed
77

78
79
(** The relation [intersection_forall R] on finite maps describes that the
relation [R] holds for each pair in the intersection. *)
80
Definition map_Forall `{Lookup K A M} (P : K  A  Prop) : M  Prop :=
Robbert Krebbers's avatar
Robbert Krebbers committed
81
  λ m,  i x, m !! i = Some x  P i x.
82
Definition map_relation `{ A, Lookup K A (M A)} {A B} (R : A  B  Prop)
Robbert Krebbers's avatar
Robbert Krebbers committed
83
84
    (P : A  Prop) (Q : B  Prop) (m1 : M A) (m2 : M B) : Prop :=  i,
  option_relation R P Q (m1 !! i) (m2 !! i).
85
Definition map_included `{ A, Lookup K A (M A)} {A}
Robbert Krebbers's avatar
Robbert Krebbers committed
86
  (R : relation A) : relation (M A) := map_relation R (λ _, False) (λ _, True).
87
Definition map_disjoint `{ A, Lookup K A (M A)} {A} : relation (M A) :=
Robbert Krebbers's avatar
Robbert Krebbers committed
88
89
90
91
92
  map_relation (λ _ _, False) (λ _, True) (λ _, True).
Infix "⊥ₘ" := map_disjoint (at level 70) : C_scope.
Hint Extern 0 (_  _) => symmetry; eassumption.
Notation "( m ⊥ₘ.)" := (map_disjoint m) (only parsing) : C_scope.
Notation "(.⊥ₘ m )" := (λ m2, m2  m) (only parsing) : C_scope.
93
Instance map_subseteq `{ A, Lookup K A (M A)} {A} : SubsetEq (M A) :=
Robbert Krebbers's avatar
Robbert Krebbers committed
94
  map_included (=).
Robbert Krebbers's avatar
Robbert Krebbers committed
95
96
97
98
99

(** The union of two finite maps only has a meaningful definition for maps
that are disjoint. However, as working with partial functions is inconvenient
in Coq, we define the union as a total function. In case both finite maps
have a value at the same index, we take the value of the first map. *)
100
Instance map_union `{Merge M} {A} : Union (M A) := union_with (λ x _, Some x).
101
102
103
Instance map_intersection `{Merge M} {A} : Intersection (M A) :=
  intersection_with (λ x _, Some x).

104
105
(** The difference operation removes all values from the first map whose
index contains a value in the second map as well. *)
106
Instance map_difference `{Merge M} {A} : Difference (M A) :=
107
  difference_with (λ _ _, None).
Robbert Krebbers's avatar
Robbert Krebbers committed
108

109
110
(** A stronger variant of map that allows the mapped function to use the index
of the elements. Implemented by conversion to lists, so not very efficient. *)
111
112
Definition map_imap `{ A, Insert K A (M A),  A, Empty (M A),
     A, FinMapToList K A (M A)} {A B} (f : K  A  option B) (m : M A) : M B :=
113
114
  map_of_list (omap (λ ix, (fst ix,) <$> curry f ix) (map_to_list m)).

115
116
117
118
(** * Theorems *)
Section theorems.
Context `{FinMap K M}.

Robbert Krebbers's avatar
Robbert Krebbers committed
119
120
(** ** Setoids *)
Section setoid.
121
122
123
124
125
126
127
  Context `{Equiv A}.
  
  Lemma map_equiv_lookup_l (m1 m2 : M A) i x :
    m1  m2  m1 !! i = Some x   y, m2 !! i = Some y  x  y.
  Proof. generalize (equiv_Some_inv_l (m1 !! i) (m2 !! i) x); naive_solver. Qed.

  Context `{!Equivalence (() : relation A)}.
128
  Global Instance map_equivalence : Equivalence (() : relation (M A)).
Robbert Krebbers's avatar
Robbert Krebbers committed
129
130
  Proof.
    split.
131
132
    - by intros m i.
    - by intros m1 m2 ? i.
133
    - by intros m1 m2 m3 ?? i; trans (m2 !! i).
Robbert Krebbers's avatar
Robbert Krebbers committed
134
  Qed.
135
136
  Global Instance lookup_proper (i : K) :
    Proper (() ==> ()) (lookup (M:=M A) i).
Robbert Krebbers's avatar
Robbert Krebbers committed
137
138
  Proof. by intros m1 m2 Hm. Qed.
  Global Instance partial_alter_proper :
139
    Proper ((() ==> ()) ==> (=) ==> () ==> ()) (partial_alter (M:=M A)).
Robbert Krebbers's avatar
Robbert Krebbers committed
140
141
142
143
144
145
  Proof.
    by intros f1 f2 Hf i ? <- m1 m2 Hm j; destruct (decide (i = j)) as [->|];
      rewrite ?lookup_partial_alter, ?lookup_partial_alter_ne by done;
      try apply Hf; apply lookup_proper.
  Qed.
  Global Instance insert_proper (i : K) :
146
    Proper (() ==> () ==> ()) (insert (M:=M A) i).
Robbert Krebbers's avatar
Robbert Krebbers committed
147
  Proof. by intros ???; apply partial_alter_proper; [constructor|]. Qed.
148
149
  Global Instance singleton_proper k :
    Proper (() ==> ()) (singletonM k : A  M A).
150
  Proof. by intros ???; apply insert_proper. Qed.
151
152
  Global Instance delete_proper (i : K) :
    Proper (() ==> ()) (delete (M:=M A) i).
Robbert Krebbers's avatar
Robbert Krebbers committed
153
154
  Proof. by apply partial_alter_proper; [constructor|]. Qed.
  Global Instance alter_proper :
155
    Proper ((() ==> ()) ==> (=) ==> () ==> ()) (alter (A:=A) (M:=M A)).
Robbert Krebbers's avatar
Robbert Krebbers committed
156
157
158
159
  Proof.
    intros ?? Hf; apply partial_alter_proper.
    by destruct 1; constructor; apply Hf.
  Qed.
160
  Lemma merge_ext f g `{!DiagNone f, !DiagNone g} :
Robbert Krebbers's avatar
Robbert Krebbers committed
161
    (() ==> () ==> ())%signature f g 
162
    (() ==> () ==> ())%signature (merge (M:=M) f) (merge g).
Robbert Krebbers's avatar
Robbert Krebbers committed
163
164
165
166
  Proof.
    by intros Hf ?? Hm1 ?? Hm2 i; rewrite !lookup_merge by done; apply Hf.
  Qed.
  Global Instance union_with_proper :
167
    Proper ((() ==> () ==> ()) ==> () ==> () ==>()) (union_with (M:=M A)).
Robbert Krebbers's avatar
Robbert Krebbers committed
168
169
170
  Proof.
    intros ?? Hf ?? Hm1 ?? Hm2 i; apply (merge_ext _ _); auto.
    by do 2 destruct 1; first [apply Hf | constructor].
171
  Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
172
173
  Global Instance map_leibniz `{!LeibnizEquiv A} : LeibnizEquiv (M A).
  Proof.
174
175
    intros m1 m2 Hm; apply map_eq; intros i.
    by unfold_leibniz; apply lookup_proper.
Robbert Krebbers's avatar
Robbert Krebbers committed
176
  Qed.
177
178
179
180
181
  Lemma map_equiv_empty (m : M A) : m    m = .
  Proof.
    split; [intros Hm; apply map_eq; intros i|by intros ->].
    by rewrite lookup_empty, <-equiv_None, Hm, lookup_empty.
  Qed.
182
183
184
185
186
  Global Instance map_fmap_proper `{Equiv B} (f : A  B) :
    Proper (() ==> ()) f  Proper (() ==> ()) (fmap (M:=M) f).
  Proof.
    intros ? m m' ? k; rewrite !lookup_fmap. by apply option_fmap_proper.
  Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
187
188
189
End setoid.

(** ** General properties *)
190
191
192
193
194
Lemma map_eq_iff {A} (m1 m2 : M A) : m1 = m2   i, m1 !! i = m2 !! i.
Proof. split. by intros ->. apply map_eq. Qed.
Lemma map_subseteq_spec {A} (m1 m2 : M A) :
  m1  m2   i x, m1 !! i = Some x  m2 !! i = Some x.
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
195
  unfold subseteq, map_subseteq, map_relation. split; intros Hm i;
196
197
    specialize (Hm i); destruct (m1 !! i), (m2 !! i); naive_solver.
Qed.
198
199
Global Instance:  {A} (R : relation A), PreOrder R  PreOrder (map_included R).
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
200
  split; [intros m i; by destruct (m !! i); simpl|].
201
  intros m1 m2 m3 Hm12 Hm23 i; specialize (Hm12 i); specialize (Hm23 i).
202
  destruct (m1 !! i), (m2 !! i), (m3 !! i); simplify_eq/=;
203
    done || etrans; eauto.
204
Qed.
205
Global Instance: PartialOrder (() : relation (M A)).
206
Proof.
207
208
209
  split; [apply _|].
  intros m1 m2; rewrite !map_subseteq_spec.
  intros; apply map_eq; intros i; apply option_eq; naive_solver.
210
211
212
Qed.
Lemma lookup_weaken {A} (m1 m2 : M A) i x :
  m1 !! i = Some x  m1  m2  m2 !! i = Some x.
213
Proof. rewrite !map_subseteq_spec. auto. Qed.
214
215
216
217
218
219
Lemma lookup_weaken_is_Some {A} (m1 m2 : M A) i :
  is_Some (m1 !! i)  m1  m2  is_Some (m2 !! i).
Proof. inversion 1. eauto using lookup_weaken. Qed.
Lemma lookup_weaken_None {A} (m1 m2 : M A) i :
  m2 !! i = None  m1  m2  m1 !! i = None.
Proof.
220
221
  rewrite map_subseteq_spec, !eq_None_not_Some.
  intros Hm2 Hm [??]; destruct Hm2; eauto.
222
223
Qed.
Lemma lookup_weaken_inv {A} (m1 m2 : M A) i x y :
224
225
  m1 !! i = Some x  m1  m2  m2 !! i = Some y  x = y.
Proof. intros Hm1 ? Hm2. eapply lookup_weaken in Hm1; eauto. congruence. Qed.
226
227
228
229
230
231
232
233
234
Lemma lookup_ne {A} (m : M A) i j : m !! i  m !! j  i  j.
Proof. congruence. Qed.
Lemma map_empty {A} (m : M A) : ( i, m !! i = None)  m = .
Proof. intros Hm. apply map_eq. intros. by rewrite Hm, lookup_empty. Qed.
Lemma lookup_empty_is_Some {A} i : ¬is_Some (( : M A) !! i).
Proof. rewrite lookup_empty. by inversion 1. Qed.
Lemma lookup_empty_Some {A} i (x : A) : ¬ !! i = Some x.
Proof. by rewrite lookup_empty. Qed.
Lemma map_subset_empty {A} (m : M A) : m  .
235
236
237
Proof.
  intros [_ []]. rewrite map_subseteq_spec. intros ??. by rewrite lookup_empty.
Qed.
238
239
Lemma map_fmap_empty {A B} (f : A  B) : f <$> ( : M A) = .
Proof. by apply map_eq; intros i; rewrite lookup_fmap, !lookup_empty. Qed.
240
241

(** ** Properties of the [partial_alter] operation *)
242
243
244
Lemma partial_alter_ext {A} (f g : option A  option A) (m : M A) i :
  ( x, m !! i = x  f x = g x)  partial_alter f i m = partial_alter g i m.
Proof.
245
246
  intros. apply map_eq; intros j. by destruct (decide (i = j)) as [->|?];
    rewrite ?lookup_partial_alter, ?lookup_partial_alter_ne; auto.
247
248
Qed.
Lemma partial_alter_compose {A} f g (m : M A) i:
249
250
  partial_alter (f  g) i m = partial_alter f i (partial_alter g i m).
Proof.
251
252
  intros. apply map_eq. intros ii. by destruct (decide (i = ii)) as [->|?];
    rewrite ?lookup_partial_alter, ?lookup_partial_alter_ne.
253
Qed.
254
Lemma partial_alter_commute {A} f g (m : M A) i j :
255
  i  j  partial_alter f i (partial_alter g j m) =
256
257
    partial_alter g j (partial_alter f i m).
Proof.
258
259
260
261
  intros. apply map_eq; intros jj. destruct (decide (jj = j)) as [->|?].
  { by rewrite lookup_partial_alter_ne,
      !lookup_partial_alter, lookup_partial_alter_ne. }
  destruct (decide (jj = i)) as [->|?].
262
  - by rewrite lookup_partial_alter,
263
     !lookup_partial_alter_ne, lookup_partial_alter by congruence.
264
  - by rewrite !lookup_partial_alter_ne by congruence.
265
266
267
268
Qed.
Lemma partial_alter_self_alt {A} (m : M A) i x :
  x = m !! i  partial_alter (λ _, x) i m = m.
Proof.
269
270
  intros. apply map_eq. intros ii. by destruct (decide (i = ii)) as [->|];
    rewrite ?lookup_partial_alter, ?lookup_partial_alter_ne.
271
Qed.
272
Lemma partial_alter_self {A} (m : M A) i : partial_alter (λ _, m !! i) i m = m.
273
Proof. by apply partial_alter_self_alt. Qed.
274
Lemma partial_alter_subseteq {A} f (m : M A) i :
275
  m !! i = None  m  partial_alter f i m.
276
277
278
279
Proof.
  rewrite map_subseteq_spec. intros Hi j x Hj.
  rewrite lookup_partial_alter_ne; congruence.
Qed.
280
Lemma partial_alter_subset {A} f (m : M A) i :
281
  m !! i = None  is_Some (f (m !! i))  m  partial_alter f i m.
282
Proof.
283
284
285
286
  intros Hi Hfi. split; [by apply partial_alter_subseteq|].
  rewrite !map_subseteq_spec. inversion Hfi as [x Hx]. intros Hm.
  apply (Some_ne_None x). rewrite <-(Hm i x); [done|].
  by rewrite lookup_partial_alter.
287
288
289
Qed.

(** ** Properties of the [alter] operation *)
290
291
Lemma alter_ext {A} (f g : A  A) (m : M A) i :
  ( x, m !! i = Some x  f x = g x)  alter f i m = alter g i m.
292
Proof. intro. apply partial_alter_ext. intros [x|] ?; f_equal/=; auto. Qed.
293
Lemma lookup_alter {A} (f : A  A) m i : alter f i m !! i = f <$> m !! i.
294
Proof. unfold alter. apply lookup_partial_alter. Qed.
295
Lemma lookup_alter_ne {A} (f : A  A) m i j : i  j  alter f i m !! j = m !! j.
296
Proof. unfold alter. apply lookup_partial_alter_ne. Qed.
297
298
299
300
301
302
303
304
305
Lemma alter_compose {A} (f g : A  A) (m : M A) i:
  alter (f  g) i m = alter f i (alter g i m).
Proof.
  unfold alter, map_alter. rewrite <-partial_alter_compose.
  apply partial_alter_ext. by intros [?|].
Qed.
Lemma alter_commute {A} (f g : A  A) (m : M A) i j :
  i  j  alter f i (alter g j m) = alter g j (alter f i m).
Proof. apply partial_alter_commute. Qed.
306
307
308
309
Lemma lookup_alter_Some {A} (f : A  A) m i j y :
  alter f i m !! j = Some y 
    (i = j   x, m !! j = Some x  y = f x)  (i  j  m !! j = Some y).
Proof.
310
  destruct (decide (i = j)) as [->|?].
311
  - rewrite lookup_alter. naive_solver (simplify_option_eq; eauto).
312
  - rewrite lookup_alter_ne by done. naive_solver.
313
314
315
316
Qed.
Lemma lookup_alter_None {A} (f : A  A) m i j :
  alter f i m !! j = None  m !! j = None.
Proof.
317
318
  by destruct (decide (i = j)) as [->|?];
    rewrite ?lookup_alter, ?fmap_None, ?lookup_alter_ne.
319
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
320
321
Lemma alter_id {A} (f : A  A) m i :
  ( x, m !! i = Some x  f x = x)  alter f i m = m.
322
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
323
  intros Hi; apply map_eq; intros j; destruct (decide (i = j)) as [->|?].
324
  { rewrite lookup_alter; destruct (m !! j); f_equal/=; auto. }
Robbert Krebbers's avatar
Robbert Krebbers committed
325
  by rewrite lookup_alter_ne by done.
326
327
328
329
330
331
332
333
334
335
336
Qed.

(** ** Properties of the [delete] operation *)
Lemma lookup_delete {A} (m : M A) i : delete i m !! i = None.
Proof. apply lookup_partial_alter. Qed.
Lemma lookup_delete_ne {A} (m : M A) i j : i  j  delete i m !! j = m !! j.
Proof. apply lookup_partial_alter_ne. Qed.
Lemma lookup_delete_Some {A} (m : M A) i j y :
  delete i m !! j = Some y  i  j  m !! j = Some y.
Proof.
  split.
337
  - destruct (decide (i = j)) as [->|?];
338
      rewrite ?lookup_delete, ?lookup_delete_ne; intuition congruence.
339
  - intros [??]. by rewrite lookup_delete_ne.
340
Qed.
341
342
343
Lemma lookup_delete_is_Some {A} (m : M A) i j :
  is_Some (delete i m !! j)  i  j  is_Some (m !! j).
Proof. unfold is_Some; setoid_rewrite lookup_delete_Some; naive_solver. Qed.
344
345
346
Lemma lookup_delete_None {A} (m : M A) i j :
  delete i m !! j = None  i = j  m !! j = None.
Proof.
347
348
  destruct (decide (i = j)) as [->|?];
    rewrite ?lookup_delete, ?lookup_delete_ne; tauto.
349
350
351
Qed.
Lemma delete_empty {A} i : delete i ( : M A) = .
Proof. rewrite <-(partial_alter_self ) at 2. by rewrite lookup_empty. Qed.
352
Lemma delete_singleton {A} i (x : A) : delete i {[i := x]} = .
353
354
355
356
357
358
359
Proof. setoid_rewrite <-partial_alter_compose. apply delete_empty. Qed.
Lemma delete_commute {A} (m : M A) i j :
  delete i (delete j m) = delete j (delete i m).
Proof. destruct (decide (i = j)). by subst. by apply partial_alter_commute. Qed.
Lemma delete_insert_ne {A} (m : M A) i j x :
  i  j  delete i (<[j:=x]>m) = <[j:=x]>(delete i m).
Proof. intro. by apply partial_alter_commute. Qed.
360
Lemma delete_notin {A} (m : M A) i : m !! i = None  delete i m = m.
361
Proof.
362
363
  intros. apply map_eq. intros j. by destruct (decide (i = j)) as [->|?];
    rewrite ?lookup_delete, ?lookup_delete_ne.
364
365
366
367
368
369
370
371
372
373
Qed.
Lemma delete_partial_alter {A} (m : M A) i f :
  m !! i = None  delete i (partial_alter f i m) = m.
Proof.
  intros. unfold delete, map_delete. rewrite <-partial_alter_compose.
  unfold compose. by apply partial_alter_self_alt.
Qed.
Lemma delete_insert {A} (m : M A) i x :
  m !! i = None  delete i (<[i:=x]>m) = m.
Proof. apply delete_partial_alter. Qed.
374
375
Lemma insert_delete {A} (m : M A) i x : <[i:=x]>(delete i m) = <[i:=x]> m.
Proof. symmetry; apply (partial_alter_compose (λ _, Some x)). Qed.
376
Lemma delete_subseteq {A} (m : M A) i : delete i m  m.
377
378
379
Proof.
  rewrite !map_subseteq_spec. intros j x. rewrite lookup_delete_Some. tauto.
Qed.
380
Lemma delete_subseteq_compat {A} (m1 m2 : M A) i :
381
  m1  m2  delete i m1  delete i m2.
382
383
384
385
Proof.
  rewrite !map_subseteq_spec. intros ? j x.
  rewrite !lookup_delete_Some. intuition eauto.
Qed.
386
Lemma delete_subset_alt {A} (m : M A) i x : m !! i = Some x  delete i m  m.
387
Proof.
388
389
390
  split; [apply delete_subseteq|].
  rewrite !map_subseteq_spec. intros Hi. apply (None_ne_Some x).
  by rewrite <-(lookup_delete m i), (Hi i x).
391
Qed.
392
Lemma delete_subset {A} (m : M A) i : is_Some (m !! i)  delete i m  m.
393
394
395
396
397
Proof. inversion 1. eauto using delete_subset_alt. Qed.

(** ** Properties of the [insert] operation *)
Lemma lookup_insert {A} (m : M A) i x : <[i:=x]>m !! i = Some x.
Proof. unfold insert. apply lookup_partial_alter. Qed.
398
Lemma lookup_insert_rev {A}  (m : M A) i x y : <[i:=x]>m !! i = Some y  x = y.
399
Proof. rewrite lookup_insert. congruence. Qed.
400
Lemma lookup_insert_ne {A} (m : M A) i j x : i  j  <[i:=x]>m !! j = m !! j.
401
Proof. unfold insert. apply lookup_partial_alter_ne. Qed.
402
403
Lemma insert_insert {A} (m : M A) i x y : <[i:=x]>(<[i:=y]>m) = <[i:=x]>m.
Proof. unfold insert, map_insert. by rewrite <-partial_alter_compose. Qed.
404
405
406
407
408
409
410
Lemma insert_commute {A} (m : M A) i j x y :
  i  j  <[i:=x]>(<[j:=y]>m) = <[j:=y]>(<[i:=x]>m).
Proof. apply partial_alter_commute. Qed.
Lemma lookup_insert_Some {A} (m : M A) i j x y :
  <[i:=x]>m !! j = Some y  (i = j  x = y)  (i  j  m !! j = Some y).
Proof.
  split.
411
  - destruct (decide (i = j)) as [->|?];
412
      rewrite ?lookup_insert, ?lookup_insert_ne; intuition congruence.
413
  - intros [[-> ->]|[??]]; [apply lookup_insert|]. by rewrite lookup_insert_ne.
414
Qed.
415
416
417
Lemma lookup_insert_is_Some {A} (m : M A) i j x :
  is_Some (<[i:=x]>m !! j)  i = j  i  j  is_Some (m !! j).
Proof. unfold is_Some; setoid_rewrite lookup_insert_Some; naive_solver. Qed.
418
419
420
Lemma lookup_insert_None {A} (m : M A) i j x :
  <[i:=x]>m !! j = None  m !! j = None  i  j.
Proof.
421
422
423
  split; [|by intros [??]; rewrite lookup_insert_ne].
  destruct (decide (i = j)) as [->|];
    rewrite ?lookup_insert, ?lookup_insert_ne; intuition congruence.
424
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
425
Lemma insert_id {A} (m : M A) i x : m !! i = Some x  <[i:=x]>m = m.
426
427
428
429
430
431
432
433
Proof.
  intros; apply map_eq; intros j; destruct (decide (i = j)) as [->|];
    by rewrite ?lookup_insert, ?lookup_insert_ne by done.
Qed.
Lemma insert_included {A} R `{!Reflexive R} (m : M A) i x :
  ( y, m !! i = Some y  R y x)  map_included R m (<[i:=x]>m).
Proof.
  intros ? j; destruct (decide (i = j)) as [->|].
434
435
  - rewrite lookup_insert. destruct (m !! j); simpl; eauto.
  - rewrite lookup_insert_ne by done. by destruct (m !! j); simpl.
436
Qed.
437
Lemma insert_subseteq {A} (m : M A) i x : m !! i = None  m  <[i:=x]>m.
438
Proof. apply partial_alter_subseteq. Qed.
439
Lemma insert_subset {A} (m : M A) i x : m !! i = None  m  <[i:=x]>m.
440
441
Proof. intro. apply partial_alter_subset; eauto. Qed.
Lemma insert_subseteq_r {A} (m1 m2 : M A) i x :
442
  m1 !! i = None  m1  m2  m1  <[i:=x]>m2.
443
Proof.
444
445
446
  rewrite !map_subseteq_spec. intros ?? j ?.
  destruct (decide (j = i)) as [->|?]; [congruence|].
  rewrite lookup_insert_ne; auto.
447
448
Qed.
Lemma insert_delete_subseteq {A} (m1 m2 : M A) i x :
449
  m1 !! i = None  <[i:=x]> m1  m2  m1  delete i m2.
450
Proof.
451
452
453
454
  rewrite !map_subseteq_spec. intros Hi Hix j y Hj.
  destruct (decide (i = j)) as [->|]; [congruence|].
  rewrite lookup_delete_ne by done.
  apply Hix; by rewrite lookup_insert_ne by done.
455
456
Qed.
Lemma delete_insert_subseteq {A} (m1 m2 : M A) i x :
457
  m1 !! i = Some x  delete i m1  m2  m1  <[i:=x]> m2.
458
Proof.
459
460
  rewrite !map_subseteq_spec.
  intros Hix Hi j y Hj. destruct (decide (i = j)) as [->|?].
461
462
  - rewrite lookup_insert. congruence.
  - rewrite lookup_insert_ne by done. apply Hi. by rewrite lookup_delete_ne.
463
464
Qed.
Lemma insert_delete_subset {A} (m1 m2 : M A) i x :
465
  m1 !! i = None  <[i:=x]> m1  m2  m1  delete i m2.
466
Proof.
467
468
469
  intros ? [Hm12 Hm21]; split; [eauto using insert_delete_subseteq|].
  contradict Hm21. apply delete_insert_subseteq; auto.
  eapply lookup_weaken, Hm12. by rewrite lookup_insert.
470
471
Qed.
Lemma insert_subset_inv {A} (m1 m2 : M A) i x :
472
  m1 !! i = None  <[i:=x]> m1  m2 
473
474
   m2', m2 = <[i:=x]>m2'  m1  m2'  m2' !! i = None.
Proof.
475
  intros Hi Hm1m2. exists (delete i m2). split_and?.
476
477
  - rewrite insert_delete, insert_id. done.
    eapply lookup_weaken, strict_include; eauto. by rewrite lookup_insert.
478
479
  - eauto using insert_delete_subset.
  - by rewrite lookup_delete.
480
Qed.
481
Lemma insert_empty {A} i (x : A) : <[i:=x]> = {[i := x]}.
482
Proof. done. Qed.
483
484
485
486
Lemma insert_non_empty {A} (m : M A) i x : <[i:=x]>m  .
Proof.
  intros Hi%(f_equal (!! i)). by rewrite lookup_insert, lookup_empty in Hi.
Qed.
487
488
489

(** ** Properties of the singleton maps *)
Lemma lookup_singleton_Some {A} i j (x y : A) :
490
  {[i := x]} !! j = Some y  i = j  x = y.
491
Proof.
492
  rewrite <-insert_empty,lookup_insert_Some, lookup_empty; intuition congruence.
493
Qed.
494
Lemma lookup_singleton_None {A} i j (x : A) : {[i := x]} !! j = None  i  j.
495
Proof. rewrite <-insert_empty,lookup_insert_None, lookup_empty; tauto. Qed.
496
Lemma lookup_singleton {A} i (x : A) : {[i := x]} !! i = Some x.
497
Proof. by rewrite lookup_singleton_Some. Qed.
498
Lemma lookup_singleton_ne {A} i j (x : A) : i  j  {[i := x]} !! j = None.
499
Proof. by rewrite lookup_singleton_None. Qed.
500
Lemma map_non_empty_singleton {A} i (x : A) : {[i := x]}  .
501
502
503
504
Proof.
  intros Hix. apply (f_equal (!! i)) in Hix.
  by rewrite lookup_empty, lookup_singleton in Hix.
Qed.
505
Lemma insert_singleton {A} i (x y : A) : <[i:=y]>{[i := x]} = {[i := y]}.
506
Proof.
507
  unfold singletonM, map_singleton, insert, map_insert.
508
509
  by rewrite <-partial_alter_compose.
Qed.
510
Lemma alter_singleton {A} (f : A  A) i x : alter f i {[i := x]} = {[i := f x]}.
511
Proof.
512
  intros. apply map_eq. intros i'. destruct (decide (i = i')) as [->|?].
513
514
  - by rewrite lookup_alter, !lookup_singleton.
  - by rewrite lookup_alter_ne, !lookup_singleton_ne.
515
516
Qed.
Lemma alter_singleton_ne {A} (f : A  A) i j x :
517
  i  j  alter f i {[j := x]} = {[j := x]}.
518
Proof.
519
520
  intros. apply map_eq; intros i'. by destruct (decide (i = i')) as [->|?];
    rewrite ?lookup_alter, ?lookup_singleton_ne, ?lookup_alter_ne by done.
521
Qed.
522
523
Lemma singleton_non_empty {A} i (x : A) : {[i:=x]}  .
Proof. apply insert_non_empty. Qed.
524

525
526
527
528
529
(** ** Properties of the map operations *)
Lemma fmap_empty {A B} (f : A  B) : f <$>  = .
Proof. apply map_empty; intros i. by rewrite lookup_fmap, lookup_empty. Qed.
Lemma omap_empty {A B} (f : A  option B) : omap f  = .
Proof. apply map_empty; intros i. by rewrite lookup_omap, lookup_empty. Qed.
530
531
532
Lemma fmap_insert {A B} (f: A  B) m i x: f <$> <[i:=x]>m = <[i:=f x]>(f <$> m).
Proof.
  apply map_eq; intros i'; destruct (decide (i' = i)) as [->|].
533
534
  - by rewrite lookup_fmap, !lookup_insert.
  - by rewrite lookup_fmap, !lookup_insert_ne, lookup_fmap by done.
535
Qed.
536
537
538
539
540
541
Lemma fmap_delete {A B} (f: A  B) m i: f <$> delete i m = delete i (f <$> m).
Proof.
  apply map_eq; intros i'; destruct (decide (i' = i)) as [->|].
  - by rewrite lookup_fmap, !lookup_delete.
  - by rewrite lookup_fmap, !lookup_delete_ne, lookup_fmap by done.
Qed.
542
543
544
545
Lemma omap_insert {A B} (f : A  option B) m i x y :
  f x = Some y  omap f (<[i:=x]>m) = <[i:=y]>(omap f m).
Proof.
  intros; apply map_eq; intros i'; destruct (decide (i' = i)) as [->|].
546
547
  - by rewrite lookup_omap, !lookup_insert.
  - by rewrite lookup_omap, !lookup_insert_ne, lookup_omap by done.
548
Qed.
549
Lemma map_fmap_singleton {A B} (f : A  B) i x : f <$> {[i := x]} = {[i := f x]}.
550
551
552
Proof.
  by unfold singletonM, map_singleton; rewrite fmap_insert, map_fmap_empty.
Qed.
553
Lemma omap_singleton {A B} (f : A  option B) i x y :
554
  f x = Some y  omap f {[ i := x ]} = {[ i := y ]}.
555
Proof.
556
557
  intros. unfold singletonM, map_singleton.
  by erewrite omap_insert, omap_empty by eauto.
558
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
559
560
561
562
563
Lemma map_fmap_id {A} (m : M A) : id <$> m = m.
Proof. apply map_eq; intros i; by rewrite lookup_fmap, option_fmap_id. Qed.
Lemma map_fmap_compose {A B C} (f : A  B) (g : B  C) (m : M A) :
  g  f <$> m = g <$> f <$> m.
Proof. apply map_eq; intros i; by rewrite !lookup_fmap,option_fmap_compose. Qed.
564
Lemma map_fmap_equiv_ext `{Equiv A, Equiv B} (f1 f2 : A  B) m :
565
566
567
568
569
  ( i x, m !! i = Some x  f1 x  f2 x)  f1 <$> m  f2 <$> m.
Proof.
  intros Hi i; rewrite !lookup_fmap.
  destruct (m !! i) eqn:?; constructor; eauto.
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
570
571
572
573
574
575
Lemma map_fmap_ext {A B} (f1 f2 : A  B) m :
  ( i x, m !! i = Some x  f1 x = f2 x)  f1 <$> m = f2 <$> m.
Proof.
  intros Hi; apply map_eq; intros i; rewrite !lookup_fmap.
  by destruct (m !! i) eqn:?; simpl; erewrite ?Hi by eauto.
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
576
577
578
579
580
581
Lemma omap_ext {A B} (f1 f2 : A  option B) m :
  ( i x, m !! i = Some x  f1 x = f2 x)  omap f1 m = omap f2 m.
Proof.
  intros Hi; apply map_eq; intros i; rewrite !lookup_omap.
  by destruct (m !! i) eqn:?; simpl; erewrite ?Hi by eauto.
Qed.
582

583
584
(** ** Properties of conversion to lists *)
Lemma map_to_list_unique {A} (m : M A) i x y :
585
  (i,x)  map_to_list m  (i,y)  map_to_list m  x = y.
586
Proof. rewrite !elem_of_map_to_list. congruence. Qed.
587
Lemma NoDup_fst_map_to_list {A} (m : M A) : NoDup ((map_to_list m).*1).
588
Proof. eauto using NoDup_fmap_fst, map_to_list_unique, NoDup_map_to_list. Qed.
589
590
591
592
593
Lemma elem_of_map_of_list_1_help {A} (l : list (K * A)) i x :
  (i,x)  l  ( y, (i,y)  l  y = x)  map_of_list l !! i = Some x.
Proof.
  induction l as [|[j y] l IH]; csimpl; [by rewrite elem_of_nil|].
  setoid_rewrite elem_of_cons.
594
  intros [?|?] Hdup; simplify_eq; [by rewrite lookup_insert|].
595
  destruct (decide (i = j)) as [->|].
596
597
  - rewrite lookup_insert; f_equal; eauto.
  - rewrite lookup_insert_ne by done; eauto.
598
Qed.
599
Lemma elem_of_map_of_list_1 {A} (l : list (K * A)) i x :
600
  NoDup (l.*1)  (i,x)  l  map_of_list l !! i = Some x.
601
Proof.
602
603
  intros ? Hx; apply elem_of_map_of_list_1_help; eauto using NoDup_fmap_fst.
  intros y; revert Hx. rewrite !elem_of_list_lookup; intros [i' Hi'] [j' Hj'].
604
  cut (i' = j'); [naive_solver|]. apply NoDup_lookup with (l.*1) i;
605
    by rewrite ?list_lookup_fmap, ?Hi', ?Hj'.
606
607
Qed.
Lemma elem_of_map_of_list_2 {A} (l : list (K * A)) i x :
608
  map_of_list l !! i = Some x  (i,x)  l.
609
Proof.
610
611
612
  induction l as [|[j y] l IH]; simpl; [by rewrite lookup_empty|].
  rewrite elem_of_cons. destruct (decide (i = j)) as [->|];
    rewrite ?lookup_insert, ?lookup_insert_ne; intuition congruence.
613
614
Qed.
Lemma elem_of_map_of_list {A} (l : list (K * A)) i x :
615
  NoDup (l.*1)  (i,x)  l  map_of_list l !! i = Some x.
616
Proof. split; auto using elem_of_map_of_list_1, elem_of_map_of_list_2. Qed.
617
Lemma not_elem_of_map_of_list_1 {A} (l : list (K * A)) i :
618
  i  l.*1  map_of_list l !! i = None.
619
Proof.
620
621
  rewrite elem_of_list_fmap, eq_None_not_Some. intros Hi [x ?]; destruct Hi.
  exists (i,x); simpl; auto using elem_of_map_of_list_2.
622
623
Qed.
Lemma not_elem_of_map_of_list_2 {A} (l : list (K * A)) i :
624
  map_of_list l !! i = None  i  l.*1.
625
Proof.
626
  induction l as [|[j y] l IH]; csimpl; [rewrite elem_of_nil; tauto|].
627
  rewrite elem_of_cons. destruct (decide (i = j)); simplify_eq.
628
629
  - by rewrite lookup_insert.
  - by rewrite lookup_insert_ne; intuition.
630
631
Qed.
Lemma not_elem_of_map_of_list {A} (l : list (K * A)) i :
632
  i  l.*1  map_of_list l !! i = None.
633
Proof. red; auto using not_elem_of_map_of_list_1,not_elem_of_map_of_list_2. Qed.
634
Lemma map_of_list_proper {A} (l1 l2 : list (K * A)) :
635
  NoDup (l1.*1)  l1  l2  map_of_list l1 = map_of_list l2.
636
637
638
639
640
Proof.
  intros ? Hperm. apply map_eq. intros i. apply option_eq. intros x.
  by rewrite <-!elem_of_map_of_list; rewrite <-?Hperm.
Qed.
Lemma map_of_list_inj {A} (l1 l2 : list (K * A)) :
641
  NoDup (l1.*1)  NoDup (l2.*1)  map_of_list l1 = map_of_list l2  l1  l2.
642
Proof.
643
  intros ?? Hl1l2. apply NoDup_Permutation; auto using (NoDup_fmap_1 fst).
644
645
  intros [i x]. by rewrite !elem_of_map_of_list, Hl1l2.
Qed.
646
Lemma map_of_to_list {A} (m : M A) : map_of_list (map_to_list m) = m.
647
648
649
Proof.
  apply map_eq. intros i. apply option_eq. intros x.
  by rewrite <-elem_of_map_of_list, elem_of_map_to_list
650
    by auto using NoDup_fst_map_to_list.
651
652
Qed.
Lemma map_to_of_list {A} (l : list (K * A)) :
653
  NoDup (l.*1)  map_to_list (map_of_list l)  l.
654
Proof. auto using map_of_list_inj, NoDup_fst_map_to_list, map_of_to_list. Qed.
655
Lemma map_to_list_inj {A} (m1 m2 : M A) :
656
  map_to_list m1  map_to_list m2  m1 = m2.
657
Proof.
658
  intros. rewrite <-(map_of_to_list m1), <-(map_of_to_list m2).
659
  auto using map_of_list_proper, NoDup_fst_map_to_list.
660
Qed.
661
662
663
664
665
666
Lemma map_to_of_list_flip {A} (m1 : M A) l2 :
  map_to_list m1  l2  m1 = map_of_list l2.
Proof.
  intros. rewrite <-(map_of_to_list m1).
  auto using map_of_list_proper, NoDup_fst_map_to_list.
Qed.
667
668
669
670
671
672
673
674
675
676
677
678
679

Lemma map_of_list_nil {A} : map_of_list (@nil (K * A)) = .
Proof. done. Qed.
Lemma map_of_list_cons {A} (l : list (K * A)) i x :
  map_of_list ((i, x) :: l) = <[i:=x]>(map_of_list l).
Proof. done. Qed.
Lemma map_of_list_fmap {A B} (f : A  B) l :
  map_of_list (prod_map id f <$> l) = f <$> map_of_list l.
Proof.
  induction l as [|[i<