base.v 41.9 KB
Newer Older
Robbert Krebbers's avatar
Robbert Krebbers committed
1
(* Copyright (c) 2012-2014, Robbert Krebbers. *)
2 3 4 5 6
(* This file is distributed under the terms of the BSD license. *)
(** This file collects type class interfaces, notations, and general theorems
that are used throughout the whole development. Most importantly it contains
abstract interfaces for ordered structures, collections, and various other data
structures. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
7 8
Global Generalizable All Variables.
Global Set Automatic Coercions Import.
9
Require Export Morphisms RelationClasses List Bool Utf8 Program Setoid.
Robbert Krebbers's avatar
Robbert Krebbers committed
10

11 12 13
(** * General *)
(** The following coercion allows us to use Booleans as propositions. *)
Coercion Is_true : bool >-> Sortclass.
14 15 16 17 18 19 20 21
Notation "(&&)" := andb (only parsing).
Notation "(||)" := orb (only parsing).

(** Zipping lists. *)
Definition zip_with {A B C} (f : A  B  C) : list A  list B  list C :=
  fix go l1 l2 :=
  match l1, l2 with x1 :: l1, x2 :: l2 => f x1 x2 :: go l1 l2 | _ , _ => [] end.
Notation zip := (zip_with pair).
22

23 24
(** Ensure that [simpl] unfolds [id], [compose], and [flip] when fully
applied. *)
25
Arguments id _ _ /.
26
Arguments compose _ _ _ _ _ _ /.
27
Arguments flip _ _ _ _ _ _ /.
28 29
Arguments const _ _ _ _ /.
Typeclasses Transparent id compose flip const.
30

31 32 33 34
(** Change [True] and [False] into notations in order to enable overloading.
We will use this in the file [assertions] to give [True] and [False] a
different interpretation in [assert_scope] used for assertions of our axiomatic
semantics. *)
35 36
Notation "'True'" := True : type_scope.
Notation "'False'" := False : type_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
37

38 39 40
Notation curry := prod_curry.
Notation uncurry := prod_uncurry.

41 42
(** Throughout this development we use [C_scope] for all general purpose
notations that do not belong to a more specific scope. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
43 44 45
Delimit Scope C_scope with C.
Global Open Scope C_scope.

46
(** Introduce some Haskell style like notations. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
47 48 49 50 51 52 53 54
Notation "(=)" := eq (only parsing) : C_scope.
Notation "( x =)" := (eq x) (only parsing) : C_scope.
Notation "(= x )" := (λ y, eq y x) (only parsing) : C_scope.
Notation "(≠)" := (λ x y, x  y) (only parsing) : C_scope.
Notation "( x ≠)" := (λ y, x  y) (only parsing) : C_scope.
Notation "(≠ x )" := (λ y, y  x) (only parsing) : C_scope.

Hint Extern 0 (?x = ?x) => reflexivity.
55
Hint Extern 100 (_  _) => discriminate.
Robbert Krebbers's avatar
Robbert Krebbers committed
56

57 58 59 60
Notation "(→)" := (λ A B, A  B) (only parsing) : C_scope.
Notation "( A →)" := (λ B, A  B) (only parsing) : C_scope.
Notation "(→ B )" := (λ A, A  B) (only parsing) : C_scope.

61
Notation "t $ r" := (t r)
62
  (at level 65, right associativity, only parsing) : C_scope.
63 64 65
Notation "($)" := (λ f x, f x) (only parsing) : C_scope.
Notation "($ x )" := (λ f, f x) (only parsing) : C_scope.

Robbert Krebbers's avatar
Robbert Krebbers committed
66 67 68 69
Infix "∘" := compose : C_scope.
Notation "(∘)" := compose (only parsing) : C_scope.
Notation "( f ∘)" := (compose f) (only parsing) : C_scope.
Notation "(∘ f )" := (λ g, compose g f) (only parsing) : C_scope.
70

71 72 73 74 75 76 77 78 79 80 81 82
Notation "(∧)" := and (only parsing) : C_scope.
Notation "( A ∧)" := (and A) (only parsing) : C_scope.
Notation "(∧ B )" := (λ A, A  B) (only parsing) : C_scope.

Notation "(∨)" := or (only parsing) : C_scope.
Notation "( A ∨)" := (or A) (only parsing) : C_scope.
Notation "(∨ B )" := (λ A, A  B) (only parsing) : C_scope.

Notation "(↔)" := iff (only parsing) : C_scope.
Notation "( A ↔)" := (iff A) (only parsing) : C_scope.
Notation "(↔ B )" := (λ A, A  B) (only parsing) : C_scope.

83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
Hint Extern 0 (_  _) => reflexivity.
Hint Extern 0 (_  _) => symmetry; assumption.

Notation "( x ,)" := (pair x) (only parsing) : C_scope.
Notation "(, y )" := (λ x, (x,y)) (only parsing) : C_scope.

Notation "p .1" := (fst p) (at level 10, format "p .1").
Notation "p .2" := (snd p) (at level 10, format "p .2").

Definition prod_map {A A' B B'} (f : A  A') (g : B  B')
  (p : A * B) : A' * B' := (f (p.1), g (p.2)).
Arguments prod_map {_ _ _ _} _ _ !_ /.
Definition prod_zip {A A' A'' B B' B''} (f : A  A'  A'') (g : B  B'  B'')
    (p : A * B) (q : A' * B') : A'' * B'' := (f (p.1) (q.1), g (p.2) (q.2)).
Arguments prod_zip {_ _ _ _ _ _} _ _ !_ !_ /.

99 100
(** Set convenient implicit arguments for [existT] and introduce notations. *)
Arguments existT {_ _} _ _.
101
Arguments proj1_sig {_ _} _.
Robbert Krebbers's avatar
Robbert Krebbers committed
102
Notation "x ↾ p" := (exist _ x p) (at level 20) : C_scope.
103
Notation "` x" := (proj1_sig x) (at level 10, format "` x") : C_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
104

105 106 107 108
(** * Type classes *)
(** ** Provable propositions *)
(** This type class collects provable propositions. It is useful to constraint
type classes by arbitrary propositions. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
109 110
Class PropHolds (P : Prop) := prop_holds: P.

111 112
Hint Extern 0 (PropHolds _) => assumption : typeclass_instances.
Instance: Proper (iff ==> iff) PropHolds.
113
Proof. repeat intro; trivial. Qed.
114 115 116

Ltac solve_propholds :=
  match goal with
117 118
  | |- PropHolds (?P) => apply _
  | |- ?P => change (PropHolds P); apply _
119 120 121 122 123 124 125
  end.

(** ** Decidable propositions *)
(** This type class by (Spitters/van der Weegen, 2011) collects decidable
propositions. For example to declare a parameter expressing decidable equality
on a type [A] we write [`{∀ x y : A, Decision (x = y)}] and use it by writing
[decide (x = y)]. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
126 127 128
Class Decision (P : Prop) := decide : {P} + {¬P}.
Arguments decide _ {_}.

129 130 131 132 133 134 135 136 137
(** ** Inhabited types *)
(** This type class collects types that are inhabited. *)
Class Inhabited (A : Type) : Prop := populate { _ : A }.
Arguments populate {_} _.

Instance unit_inhabited: Inhabited unit := populate ().
Instance list_inhabited {A} : Inhabited (list A) := populate [].
Instance prod_inhabited {A B} (iA : Inhabited A)
    (iB : Inhabited B) : Inhabited (A * B) :=
138
  match iA, iB with populate x, populate y => populate (x,y) end.
139
Instance sum_inhabited_l {A B} (iA : Inhabited A) : Inhabited (A + B) :=
140
  match iA with populate x => populate (inl x) end.
141
Instance sum_inhabited_r {A B} (iB : Inhabited A) : Inhabited (A + B) :=
142
  match iB with populate y => populate (inl y) end.
143 144
Instance option_inhabited {A} : Inhabited (option A) := populate None.

145 146 147 148 149 150
(** ** Proof irrelevant types *)
(** This type class collects types that are proof irrelevant. That means, all
elements of the type are equal. We use this notion only used for propositions,
but by universe polymorphism we can generalize it. *)
Class ProofIrrel (A : Type) : Prop := proof_irrel (x y : A) : x = y.

151 152 153
(** ** Setoid equality *)
(** We define an operational type class for setoid equality. This is based on
(Spitters/van der Weegen, 2011). *)
Robbert Krebbers's avatar
Robbert Krebbers committed
154 155 156
Class Equiv A := equiv: relation A.
Infix "≡" := equiv (at level 70, no associativity) : C_scope.
Notation "(≡)" := equiv (only parsing) : C_scope.
157 158 159 160 161 162
Notation "( X ≡)" := (equiv X) (only parsing) : C_scope.
Notation "(≡ X )" := (λ Y, Y  X) (only parsing) : C_scope.
Notation "(≢)" := (λ X Y, ¬X  Y) (only parsing) : C_scope.
Notation "X ≢ Y":= (¬X  Y) (at level 70, no associativity) : C_scope.
Notation "( X ≢)" := (λ Y, X  Y) (only parsing) : C_scope.
Notation "(≢ X )" := (λ Y, Y  X) (only parsing) : C_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
163

164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
(** The type class [LeibnizEquiv] collects setoid equalities that coincide
with Leibniz equality. We provide the tactic [fold_leibniz] to transform such
setoid equalities into Leibniz equalities, and [unfold_leibniz] for the
reverse. *)
Class LeibnizEquiv A `{Equiv A} := leibniz_equiv x y : x  y  x = y.

Ltac fold_leibniz := repeat
  match goal with
  | H : context [ @equiv ?A _ _ _ ] |- _ =>
    setoid_rewrite (leibniz_equiv (A:=A)) in H
  | |- context [ @equiv ?A _ _ _ ] =>
    setoid_rewrite (leibniz_equiv (A:=A))
  end.
Ltac unfold_leibniz := repeat
  match goal with
  | H : context [ @eq ?A _ _ ] |- _ =>
    setoid_rewrite <-(leibniz_equiv (A:=A)) in H
  | |- context [ @eq ?A _ _ ] =>
    setoid_rewrite <-(leibniz_equiv (A:=A))
  end.

185 186 187 188 189 190 191 192
(** A [Params f n] instance forces the setoid rewriting mechanism not to
rewrite in the first [n] arguments of the function [f]. We will declare such
instances for all operational type classes in this development. *)
Instance: Params (@equiv) 2.

(** The following instance forces [setoid_replace] to use setoid equality
(for types that have an [Equiv] instance) rather than the standard Leibniz
equality. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
193
Instance equiv_default_relation `{Equiv A} : DefaultRelation () | 3.
194 195
Hint Extern 0 (_  _) => reflexivity.
Hint Extern 0 (_  _) => symmetry; assumption.
Robbert Krebbers's avatar
Robbert Krebbers committed
196

197
(** ** Operations on collections *)
198
(** We define operational type classes for the traditional operations and
199
relations on collections: the empty collection [∅], the union [(∪)],
200 201
intersection [(∩)], and difference [(∖)], the singleton [{[_]}], the subset
[(⊆)] and element of [(∈)] relation, and disjointess [(⊥)]. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
202 203 204 205
Class Empty A := empty: A.
Notation "∅" := empty : C_scope.

Class Union A := union: A  A  A.
206
Instance: Params (@union) 2.
Robbert Krebbers's avatar
Robbert Krebbers committed
207 208 209 210
Infix "∪" := union (at level 50, left associativity) : C_scope.
Notation "(∪)" := union (only parsing) : C_scope.
Notation "( x ∪)" := (union x) (only parsing) : C_scope.
Notation "(∪ x )" := (λ y, union y x) (only parsing) : C_scope.
211 212 213 214 215 216
Infix "∪*" := (zip_with ()) (at level 50, left associativity) : C_scope.
Notation "(∪*)" := (zip_with ()) (only parsing) : C_scope.
Infix "∪**" := (zip_with (zip_with ()))
  (at level 50, left associativity) : C_scope.
Infix "∪*∪**" := (zip_with (prod_zip () (*)))
  (at level 50, left associativity) : C_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
217

218
Definition union_list `{Empty A} `{Union A} : list A  A := fold_right () .
219 220 221
Arguments union_list _ _ _ !_ /.
Notation "⋃ l" := (union_list l) (at level 20, format "⋃  l") : C_scope.

Robbert Krebbers's avatar
Robbert Krebbers committed
222
Class Intersection A := intersection: A  A  A.
223
Instance: Params (@intersection) 2.
Robbert Krebbers's avatar
Robbert Krebbers committed
224 225 226 227 228 229
Infix "∩" := intersection (at level 40) : C_scope.
Notation "(∩)" := intersection (only parsing) : C_scope.
Notation "( x ∩)" := (intersection x) (only parsing) : C_scope.
Notation "(∩ x )" := (λ y, intersection y x) (only parsing) : C_scope.

Class Difference A := difference: A  A  A.
230
Instance: Params (@difference) 2.
Robbert Krebbers's avatar
Robbert Krebbers committed
231 232 233 234
Infix "∖" := difference (at level 40) : C_scope.
Notation "(∖)" := difference (only parsing) : C_scope.
Notation "( x ∖)" := (difference x) (only parsing) : C_scope.
Notation "(∖ x )" := (λ y, difference y x) (only parsing) : C_scope.
235 236 237 238 239 240
Infix "∖*" := (zip_with ()) (at level 40, left associativity) : C_scope.
Notation "(∖*)" := (zip_with ()) (only parsing) : C_scope.
Infix "∖**" := (zip_with (zip_with ()))
  (at level 40, left associativity) : C_scope.
Infix "∖*∖**" := (zip_with (prod_zip () (*)))
  (at level 50, left associativity) : C_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
241

242 243
Class Singleton A B := singleton: A  B.
Instance: Params (@singleton) 3.
244
Notation "{[ x ]}" := (singleton x) (at level 1) : C_scope.
245
Notation "{[ x ; y ; .. ; z ]}" :=
246 247 248 249 250 251
  (union .. (union (singleton x) (singleton y)) .. (singleton z))
  (at level 1) : C_scope.
Notation "{[ x , y ]}" := (singleton (x,y))
  (at level 1, y at next level) : C_scope.
Notation "{[ x , y , z ]}" := (singleton (x,y,z))
  (at level 1, y at next level, z at next level) : C_scope.
252

253
Class SubsetEq A := subseteq: relation A.
254
Instance: Params (@subseteq) 2.
Robbert Krebbers's avatar
Robbert Krebbers committed
255 256 257
Infix "⊆" := subseteq (at level 70) : C_scope.
Notation "(⊆)" := subseteq (only parsing) : C_scope.
Notation "( X ⊆ )" := (subseteq X) (only parsing) : C_scope.
258
Notation "( ⊆ X )" := (λ Y, Y  X) (only parsing) : C_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
259 260 261 262
Notation "X ⊈ Y" := (¬X  Y) (at level 70) : C_scope.
Notation "(⊈)" := (λ X Y, X  Y) (only parsing) : C_scope.
Notation "( X ⊈ )" := (λ Y, X  Y) (only parsing) : C_scope.
Notation "( ⊈ X )" := (λ Y, Y  X) (only parsing) : C_scope.
263 264 265 266 267 268 269
Infix "⊆*" := (Forall2 ()) (at level 70) : C_scope.
Notation "(⊆*)" := (Forall2 ()) (only parsing) : C_scope.
Infix "⊆**" := (Forall2 (*)) (at level 70) : C_scope.
Infix "⊆1*" := (Forall2 (λ p q, p.1  q.1)) (at level 70) : C_scope.
Infix "⊆2*" := (Forall2 (λ p q, p.2  q.2)) (at level 70) : C_scope.
Infix "⊆1**" := (Forall2 (λ p q, p.1 * q.1)) (at level 70) : C_scope.
Infix "⊆2**" := (Forall2 (λ p q, p.2 * q.2)) (at level 70) : C_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
270

271
Hint Extern 0 (_  _) => reflexivity.
272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
Hint Extern 0 (_ * _) => reflexivity.
Hint Extern 0 (_ ** _) => reflexivity.

Class SubsetEqE E A := subseteqE: E  relation A.
Instance: Params (@subseteqE) 4.
Notation "X ⊆{ Γ } Y" := (subseteqE Γ X Y)
  (at level 70, format "X  ⊆{ Γ }  Y") : C_scope.
Notation "(⊆{ Γ } )" := (subseteqE Γ) (only parsing, Γ at level 1) : C_scope.
Notation "X ⊈{ Γ } Y" := (¬X {Γ} Y)
  (at level 70, format "X  ⊈{ Γ }  Y") : C_scope.
Notation "(⊈{ Γ } )" := (λ X Y, X {Γ} Y)
  (only parsing, Γ at level 1) : C_scope.
Notation "Xs ⊆{ Γ }* Ys" := (Forall2 ({Γ}) Xs Ys)
  (at level 70, format "Xs  ⊆{ Γ }*  Ys") : C_scope.
Notation "(⊆{ Γ }* )" := (Forall2 ({Γ}))
  (only parsing, Γ at level 1) : C_scope.
Notation "X ⊆{ Γ1 , Γ2 , .. , Γ3 } Y" :=
  (subseteqE (pair .. (Γ1, Γ2) .. Γ3) X Y)
  (at level 70, format "'[' X  ⊆{ Γ1 , Γ2 , .. , Γ3 }  '/' Y ']'") : C_scope.
Notation "(⊆{ Γ1 , Γ2 , .. , Γ3 } )" := (subseteqE (pair .. (Γ1, Γ2) .. Γ3))
  (only parsing, Γ1 at level 1) : C_scope.
Notation "X ⊈{ Γ1 , Γ2 , .. , Γ3 } Y" := (¬X {pair .. (Γ1, Γ2) .. Γ3} Y)
  (at level 70, format "X  ⊈{ Γ1 , Γ2 , .. , Γ3 }  Y") : C_scope.
Notation "(⊈{ Γ1 , Γ2 , .. , Γ3 } )" := (λ X Y, X {pair .. (Γ1, Γ2) .. Γ3} Y)
  (only parsing) : C_scope.
Notation "Xs ⊆{ Γ1 , Γ2 , .. , Γ3 }* Ys" :=
  (Forall2 ({pair .. (Γ1, Γ2) .. Γ3}) Xs Ys)
  (at level 70, format "Xs  ⊆{ Γ1 , Γ2 , .. , Γ3 }*  Ys") : C_scope.
Notation "(⊆{ Γ1 , Γ2 , .. , Γ3 }* )" := (Forall2 ({pair .. (Γ1, Γ2) .. Γ3}))
  (only parsing, Γ1 at level 1) : C_scope.
Hint Extern 0 (_ {_} _) => reflexivity.
303

304 305
Definition strict {A} (R : relation A) : relation A := λ X Y, R X Y  ¬R Y X.
Instance: Params (@strict) 2.
306 307 308 309
Infix "⊂" := (strict ()) (at level 70) : C_scope.
Notation "(⊂)" := (strict ()) (only parsing) : C_scope.
Notation "( X ⊂ )" := (strict () X) (only parsing) : C_scope.
Notation "( ⊂ X )" := (λ Y, Y  X) (only parsing) : C_scope.
310 311 312 313
Notation "X ⊄  Y" := (¬X  Y) (at level 70) : C_scope.
Notation "(⊄)" := (λ X Y, X  Y) (only parsing) : C_scope.
Notation "( X ⊄ )" := (λ Y, X  Y) (only parsing) : C_scope.
Notation "( ⊄ X )" := (λ Y, Y  X) (only parsing) : C_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
314

315 316 317 318 319
(** The class [Lexico A] is used for the lexicographic order on [A]. This order
is used to create finite maps, finite sets, etc, and is typically different from
the order [(⊆)]. *)
Class Lexico A := lexico: relation A.

Robbert Krebbers's avatar
Robbert Krebbers committed
320
Class ElemOf A B := elem_of: A  B  Prop.
321
Instance: Params (@elem_of) 3.
Robbert Krebbers's avatar
Robbert Krebbers committed
322 323 324 325 326 327 328 329 330
Infix "∈" := elem_of (at level 70) : C_scope.
Notation "(∈)" := elem_of (only parsing) : C_scope.
Notation "( x ∈)" := (elem_of x) (only parsing) : C_scope.
Notation "(∈ X )" := (λ x, elem_of x X) (only parsing) : C_scope.
Notation "x ∉ X" := (¬x  X) (at level 80) : C_scope.
Notation "(∉)" := (λ x X, x  X) (only parsing) : C_scope.
Notation "( x ∉)" := (λ X, x  X) (only parsing) : C_scope.
Notation "(∉ X )" := (λ x, x  X) (only parsing) : C_scope.

Robbert Krebbers's avatar
Robbert Krebbers committed
331 332 333 334
Class Disjoint A := disjoint : A  A  Prop.
Instance: Params (@disjoint) 2.
Infix "⊥" := disjoint (at level 70) : C_scope.
Notation "(⊥)" := disjoint (only parsing) : C_scope.
335
Notation "( X ⊥.)" := (disjoint X) (only parsing) : C_scope.
336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361
Notation "(.⊥ X )" := (λ Y, Y   X) (only parsing) : C_scope.
Infix "⊥*" := (Forall2 ()) (at level 70) : C_scope.
Notation "(⊥*)" := (Forall2 ()) (only parsing) : C_scope.
Infix "⊥**" := (Forall2 (*)) (at level 70) : C_scope.
Infix "⊥1*" := (Forall2 (λ p q, p.1  q.1)) (at level 70) : C_scope.
Infix "⊥2*" := (Forall2 (λ p q, p.2  q.2)) (at level 70) : C_scope.
Infix "⊥1**" := (Forall2 (λ p q, p.1 * q.1)) (at level 70) : C_scope.
Infix "⊥2**" := (Forall2 (λ p q, p.2 * q.2)) (at level 70) : C_scope.
Hint Extern 0 (_  _) => symmetry; eassumption.
Hint Extern 0 (_ * _) => symmetry; eassumption.

Class DisjointE E A := disjointE : E  A  A  Prop.
Instance: Params (@disjointE) 4.
Notation "X ⊥{ Γ } Y" := (disjointE Γ X Y)
  (at level 70, format "X  ⊥{ Γ }  Y") : C_scope.
Notation "(⊥{ Γ } )" := (disjointE Γ) (only parsing, Γ at level 1) : C_scope.
Notation "Xs ⊥{ Γ }* Ys" := (Forall2 ({Γ}) Xs Ys)
  (at level 70, format "Xs  ⊥{ Γ }*  Ys") : C_scope.
Notation "(⊥{ Γ }* )" := (Forall2 ({Γ}))
  (only parsing, Γ at level 1) : C_scope.
Notation "X ⊥{ Γ1 , Γ2 , .. , Γ3 } Y" := (disjoint (pair .. (Γ1, Γ2) .. Γ3) X Y)
  (at level 70, format "X  ⊥{ Γ1 , Γ2 , .. , Γ3 }  Y") : C_scope.
Notation "Xs ⊥{ Γ1 , Γ2 , .. , Γ3 }* Ys" :=
  (Forall2 (disjoint (pair .. (Γ1, Γ2) .. Γ3)) Xs Ys)
  (at level 70, format "Xs  ⊥{ Γ1 ,  Γ2 , .. , Γ3 }*  Ys") : C_scope.
Hint Extern 0 (_ {_} _) => symmetry; eassumption.
362 363 364

Class DisjointList A := disjoint_list : list A  Prop.
Instance: Params (@disjoint_list) 2.
365
Notation "⊥ Xs" := (disjoint_list Xs) (at level 20, format "⊥  Xs") : C_scope.
366

367 368 369 370 371 372
Section disjoint_list.
  Context `{Disjoint A, Union A, Empty A}.
  Inductive disjoint_list_default : DisjointList A :=
    | disjoint_nil_2 :  (@nil A)
    | disjoint_cons_2 (X : A) (Xs : list A) : X   Xs   Xs   (X :: Xs).
  Global Existing Instance disjoint_list_default.
373

374
  Lemma disjoint_list_nil  :  @nil A  True.
375 376 377
  Proof. split; constructor. Qed.
  Lemma disjoint_list_cons X Xs :  (X :: Xs)  X   Xs   Xs.
  Proof. split. inversion_clear 1; auto. intros [??]. constructor; auto. Qed.
378
End disjoint_list.
379 380

Class Filter A B := filter:  (P : A  Prop) `{ x, Decision (P x)}, B  B.
381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397

(** ** Monadic operations *)
(** We define operational type classes for the monadic operations bind, join 
and fmap. These type classes are defined in a non-standard way by taking the
function as a parameter of the class. For example, we define
<<
  Class FMapD := fmap: ∀ {A B}, (A → B) → M A → M B.
>>
instead of
<<
  Class FMap {A B} (f : A → B) := fmap: M A → M B.
>>
This approach allows us to define [fmap] on lists such that [simpl] unfolds it
in the appropriate way, and so that it can be used for mutual recursion
(the mapped function [f] is not part of the fixpoint) as well. This is a hack,
and should be replaced by something more appropriate in future versions. *)

398
(** We use these type classes merely for convenient overloading of notations and
399 400 401 402 403 404 405 406 407
do not formalize any theory on monads (we do not even define a class with the
monad laws). *)
Class MRet (M : Type  Type) := mret:  {A}, A  M A.
Instance: Params (@mret) 3.
Arguments mret {_ _ _} _.

Class MBindD (M : Type  Type) {A B} (f : A  M B) := mbind: M A  M B.
Notation MBind M := ( {A B} (f : A  M B), MBindD M f)%type.
Instance: Params (@mbind) 5.
408
Arguments mbind {_ _ _} _ {_} !_ /.
409 410 411

Class MJoin (M : Type  Type) := mjoin:  {A}, M (M A)  M A.
Instance: Params (@mjoin) 3.
412
Arguments mjoin {_ _ _} !_ /.
413 414 415 416

Class FMapD (M : Type  Type) {A B} (f : A  B) := fmap: M A  M B.
Notation FMap M := ( {A B} (f : A  B), FMapD M f)%type.
Instance: Params (@fmap) 6.
417
Arguments fmap {_ _ _} _ {_} !_ /.
418

419 420 421 422 423
Class OMapD (M : Type  Type) {A B} (f : A  option B) := omap: M A  M B.
Notation OMap M := ( {A B} (f : A  option B), OMapD M f)%type.
Instance: Params (@omap) 6.
Arguments omap {_ _ _} _ {_} !_ /.

424 425 426 427 428 429
Notation "m ≫= f" := (mbind f m) (at level 60, right associativity) : C_scope.
Notation "( m ≫=)" := (λ f, mbind f m) (only parsing) : C_scope.
Notation "(≫= f )" := (mbind f) (only parsing) : C_scope.
Notation "(≫=)" := (λ m f, mbind f m) (only parsing) : C_scope.

Notation "x ← y ; z" := (y = (λ x : _, z))
430
  (at level 65, next at level 35, only parsing, right associativity) : C_scope.
431
Infix "<$>" := fmap (at level 60, right associativity) : C_scope.
432 433 434 435 436 437
Notation "'( x1 , x2 ) ← y ; z" :=
  (y = (λ x : _, let ' (x1, x2) := x in z))
  (at level 65, next at level 35, only parsing, right associativity) : C_scope.
Notation "'( x1 , x2 , x3 ) ← y ; z" :=
  (y = (λ x : _, let ' (x1,x2,x3) := x in z))
  (at level 65, next at level 35, only parsing, right associativity) : C_scope.
438 439

Class MGuard (M : Type  Type) :=
440 441 442 443 444 445
  mguard:  P {dec : Decision P} {A}, (P  M A)  M A.
Arguments mguard _ _ _ !_ _ _ /.
Notation "'guard' P ; o" := (mguard P (λ _, o))
  (at level 65, next at level 35, only parsing, right associativity) : C_scope.
Notation "'guard' P 'as' H ; o" := (mguard P (λ H, o))
  (at level 65, next at level 35, only parsing, right associativity) : C_scope.
446

447
(** ** Operations on maps *)
448 449
(** In this section we define operational type classes for the operations
on maps. In the file [fin_maps] we will axiomatize finite maps.
450
The function look up [m !! k] should yield the element at key [k] in [m]. *)
451
Class Lookup (K A M : Type) := lookup: K  M  option A.
452 453 454
Instance: Params (@lookup) 4.
Notation "m !! i" := (lookup i m) (at level 20) : C_scope.
Notation "(!!)" := lookup (only parsing) : C_scope.
455
Notation "( m !!)" := (λ i, m !! i) (only parsing) : C_scope.
456
Notation "(!! i )" := (lookup i) (only parsing) : C_scope.
457
Arguments lookup _ _ _ _ !_ !_ / : simpl nomatch.
458 459 460

(** The function insert [<[k:=a]>m] should update the element at key [k] with
value [a] in [m]. *)
461
Class Insert (K A M : Type) := insert: K  A  M  M.
462 463 464
Instance: Params (@insert) 4.
Notation "<[ k := a ]>" := (insert k a)
  (at level 5, right associativity, format "<[ k := a ]>") : C_scope.
465
Arguments insert _ _ _ _ !_ _ !_ / : simpl nomatch.
466

467 468 469
(** The function delete [delete k m] should delete the value at key [k] in
[m]. If the key [k] is not a member of [m], the original map should be
returned. *)
470
Class Delete (K M : Type) := delete: K  M  M.
471 472
Instance: Params (@delete) 3.
Arguments delete _ _ _ !_ !_ / : simpl nomatch.
473 474

(** The function [alter f k m] should update the value at key [k] using the
475
function [f], which is called with the original value. *)
476
Class AlterD (K A M : Type) (f : A  A) := alter: K  M  M.
477 478 479
Notation Alter K A M := ( (f : A  A), AlterD K A M f)%type.
Instance: Params (@alter) 5.
Arguments alter {_ _ _} _ {_} !_ !_ / : simpl nomatch.
480 481

(** The function [alter f k m] should update the value at key [k] using the
482 483 484
function [f], which is called with the original value at key [k] or [None]
if [k] is not a member of [m]. The value at [k] should be deleted if [f] 
yields [None]. *)
485 486
Class PartialAlter (K A M : Type) :=
  partial_alter: (option A  option A)  K  M  M.
487
Instance: Params (@partial_alter) 4.
488
Arguments partial_alter _ _ _ _ _ !_ !_ / : simpl nomatch.
489 490 491

(** The function [dom C m] should yield the domain of [m]. That is a finite
collection of type [C] that contains the keys that are a member of [m]. *)
492 493 494
Class Dom (M C : Type) := dom: M  C.
Instance: Params (@dom) 3.
Arguments dom {_} _ {_} !_ / : simpl nomatch, clear implicits.
495 496

(** The function [merge f m1 m2] should merge the maps [m1] and [m2] by
497 498 499 500 501
constructing a new map whose value at key [k] is [f (m1 !! k) (m2 !! k)].*)
Class Merge (M : Type  Type) :=
  merge:  {A B C}, (option A  option B  option C)  M A  M B  M C.
Instance: Params (@merge) 4.
Arguments merge _ _ _ _ _ _ !_ !_ / : simpl nomatch.
502 503

(** We lift the insert and delete operation to lists of elements. *)
504
Definition insert_list `{Insert K A M} (l : list (K * A)) (m : M) : M :=
505
  fold_right (λ p, <[p.1:=p.2]>) m l.
506
Instance: Params (@insert_list) 4.
507
Definition delete_list `{Delete K M} (l : list K) (m : M) : M :=
508
  fold_right delete m l.
509 510 511 512 513 514 515
Instance: Params (@delete_list) 3.

(** The function [union_with f m1 m2] is supposed to yield the union of [m1]
and [m2] using the function [f] to combine values of members that are in
both [m1] and [m2]. *)
Class UnionWith (A M : Type) :=
  union_with: (A  A  option A)  M  M  M.
516
Instance: Params (@union_with) 3.
517
Arguments union_with {_ _ _} _ !_ !_ / : simpl nomatch.
518

519 520 521
(** Similarly for intersection and difference. *)
Class IntersectionWith (A M : Type) :=
  intersection_with: (A  A  option A)  M  M  M.
522
Instance: Params (@intersection_with) 3.
523 524
Arguments intersection_with {_ _ _} _ !_ !_ / : simpl nomatch.

525 526
Class DifferenceWith (A M : Type) :=
  difference_with: (A  A  option A)  M  M  M.
527
Instance: Params (@difference_with) 3.
528
Arguments difference_with {_ _ _} _ !_ !_ / : simpl nomatch.
Robbert Krebbers's avatar
Robbert Krebbers committed
529

530 531 532 533
Definition intersection_with_list `{IntersectionWith A M}
  (f : A  A  option A) : M  list M  M := fold_right (intersection_with f).
Arguments intersection_with_list _ _ _ _ _ !_ /.

534 535 536 537 538 539 540 541 542 543 544 545 546
Class LookupE (E K A M : Type) := lookupE: E  K  M  option A.
Instance: Params (@lookupE) 6.
Notation "m !!{ Γ } i" := (lookupE Γ i m)
  (at level 20, format "m  !!{ Γ }  i") : C_scope.
Notation "(!!{ Γ } )" := (lookupE Γ) (only parsing, Γ at level 1) : C_scope.
Arguments lookupE _ _ _ _ _ _ !_ !_ / : simpl nomatch.

Class InsertE (E K A M : Type) := insertE: E  K  A  M  M.
Instance: Params (@insert) 6.
Notation "<[ k := a ]{ Γ }>" := (insertE Γ k a)
  (at level 5, right associativity, format "<[ k := a ]{ Γ }>") : C_scope.
Arguments insertE _ _ _ _ _ _ !_ _ !_ / : simpl nomatch.

547 548 549 550
(** ** Common properties *)
(** These operational type classes allow us to refer to common mathematical
properties in a generic way. For example, for injectivity of [(k ++)] it
allows us to write [injective (k ++)] instead of [app_inv_head k]. *)
551 552 553 554 555
Class Injective {A B} (R : relation A) (S : relation B) (f : A  B) : Prop :=
  injective:  x y, S (f x) (f y)  R x y.
Class Injective2 {A B C} (R1 : relation A) (R2 : relation B)
    (S : relation C) (f : A  B  C) : Prop :=
  injective2:  x1 x2  y1 y2, S (f x1 x2) (f y1 y2)  R1 x1 y1  R2 x2 y2.
556 557 558 559
Class Cancel {A B} (S : relation B) (f : A  B) (g : B  A) : Prop :=
  cancel:  x, S (f (g x)) x.
Class Surjective {A B} (R : relation B) (f : A  B) :=
  surjective :  y,  x, R (f x) y.
560
Class Idempotent {A} (R : relation A) (f : A  A  A) : Prop :=
561
  idempotent:  x, R (f x x) x.
562
Class Commutative {A B} (R : relation A) (f : B  B  A) : Prop :=
563
  commutative:  x y, R (f x y) (f y x).
564
Class LeftId {A} (R : relation A) (i : A) (f : A  A  A) : Prop :=
565
  left_id:  x, R (f i x) x.
566
Class RightId {A} (R : relation A) (i : A) (f : A  A  A) : Prop :=
567
  right_id:  x, R (f x i) x.
568
Class Associative {A} (R : relation A) (f : A  A  A) : Prop :=
569
  associative:  x y z, R (f x (f y z)) (f (f x y) z).
570
Class LeftAbsorb {A} (R : relation A) (i : A) (f : A  A  A) : Prop :=
571
  left_absorb:  x, R (f i x) i.
572
Class RightAbsorb {A} (R : relation A) (i : A) (f : A  A  A) : Prop :=
573
  right_absorb:  x, R (f x i) i.
574 575 576 577
Class LeftDistr {A} (R : relation A) (f g : A  A  A) : Prop :=
  left_distr:  x y z, R (f x (g y z)) (g (f x y) (f x z)).
Class RightDistr {A} (R : relation A) (f g : A  A  A) : Prop :=
  right_distr:  y z x, R (f (g y z) x) (g (f y x) (f z x)).
578 579
Class AntiSymmetric {A} (R S : relation A) : Prop :=
  anti_symmetric:  x y, S x y  S y x  R x y.
580 581
Class Total {A} (R : relation A) := total x y : R x y  R y x.
Class Trichotomy {A} (R : relation A) :=
582
  trichotomy :  x y, R x y  x = y  R y x.
583
Class TrichotomyT {A} (R : relation A) :=
584
  trichotomyT :  x y, {R x y} + {x = y} + {R y x}.
Robbert Krebbers's avatar
Robbert Krebbers committed
585

586
Arguments irreflexivity {_} _ {_} _ _.
Robbert Krebbers's avatar
Robbert Krebbers committed
587
Arguments injective {_ _ _ _} _ {_} _ _ _.
588
Arguments injective2 {_ _ _ _ _ _} _ {_} _ _ _ _ _.
589 590
Arguments cancel {_ _ _} _ _ {_} _.
Arguments surjective {_ _ _} _ {_} _.
Robbert Krebbers's avatar
Robbert Krebbers committed
591 592 593 594 595
Arguments idempotent {_ _} _ {_} _.
Arguments commutative {_ _ _} _ {_} _ _.
Arguments left_id {_ _} _ _ {_} _.
Arguments right_id {_ _} _ _ {_} _.
Arguments associative {_ _} _ {_} _ _ _.
596 597
Arguments left_absorb {_ _} _ _ {_} _.
Arguments right_absorb {_ _} _ _ {_} _.
598 599
Arguments left_distr {_ _} _ _ {_} _ _ _.
Arguments right_distr {_ _} _ _ {_} _ _ _.
600
Arguments anti_symmetric {_ _} _ {_} _ _ _ _.
601 602 603
Arguments total {_} _ {_} _ _.
Arguments trichotomy {_} _ {_} _ _.
Arguments trichotomyT {_} _ {_} _ _.
604

605 606 607
Instance id_injective {A} : Injective (=) (=) (@id A).
Proof. intros ??; auto. Qed.

608 609 610 611
(** The following lemmas are specific versions of the projections of the above
type classes for Leibniz equality. These lemmas allow us to enforce Coq not to
use the setoid rewriting mechanism. *)
Lemma idempotent_L {A} (f : A  A  A) `{!Idempotent (=) f} x : f x x = x.
612
Proof. auto. Qed.
613
Lemma commutative_L {A B} (f : B  B  A) `{!Commutative (=) f} x y :
614
  f x y = f y x.
615
Proof. auto. Qed.
616
Lemma left_id_L {A} (i : A) (f : A  A  A) `{!LeftId (=) i f} x : f i x = x.
617
Proof. auto. Qed.
618
Lemma right_id_L {A} (i : A) (f : A  A  A) `{!RightId (=) i f} x : f x i = x.
619
Proof. auto. Qed.
620
Lemma associative_L {A} (f : A  A  A) `{!Associative (=) f} x y z :
621
  f x (f y z) = f (f x y) z.
622
Proof. auto. Qed.
623
Lemma left_absorb_L {A} (i : A) (f : A  A  A) `{!LeftAbsorb (=) i f} x :
624 625
  f i x = i.
Proof. auto. Qed.
626
Lemma right_absorb_L {A} (i : A) (f : A  A  A) `{!RightAbsorb (=) i f} x :
627 628
  f x i = i.
Proof. auto. Qed.
629
Lemma left_distr_L {A} (f g : A  A  A) `{!LeftDistr (=) f g} x y z :
630 631
  f x (g y z) = g (f x y) (f x z).
Proof. auto. Qed.
632
Lemma right_distr_L {A} (f g : A  A  A) `{!RightDistr (=) f g} y z x :
633 634
  f (g y z) x = g (f y x) (f z x).
Proof. auto. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
635

636
(** ** Axiomatization of ordered structures *)
637 638 639 640 641 642 643 644 645 646 647
(** The classes [PreOrder], [PartialOrder], and [TotalOrder] do not use the
relation [⊆] because we often have multiple orders on the same structure. *)
Class PartialOrder {A} (R : relation A) : Prop := {
  po_preorder :> PreOrder R;
  po_anti_symmetric :> AntiSymmetric (=) R
}.
Class TotalOrder {A} (R : relation A) : Prop := {
  to_po :> PartialOrder R;
  to_trichotomy :> Trichotomy R
}.

648
(** We do not include equality in the following interfaces so as to avoid the
649
need for proofs that the relations and operations respect setoid equality.
650 651
Instead, we will define setoid equality in a generic way as
[λ X Y, X ⊆ Y ∧ Y ⊆ X]. *)
652 653 654 655 656
Class BoundedPreOrder A `{Empty A, SubsetEq A} : Prop := {
  bounded_preorder :>> PreOrder ();
  subseteq_empty X :   X
}.
Class BoundedJoinSemiLattice A `{Empty A, SubsetEq A, Union A} : Prop := {
657
  bjsl_preorder :>> BoundedPreOrder A;
658 659 660
  union_subseteq_l X Y : X  X  Y;
  union_subseteq_r X Y : Y  X  Y;
  union_least X Y Z : X  Z  Y  Z  X  Y  Z
Robbert Krebbers's avatar
Robbert Krebbers committed
661
}.
662
Class MeetSemiLattice A `{Empty A, SubsetEq A, Intersection A} : Prop := {
Robbert Krebbers's avatar
Robbert Krebbers committed
663
  msl_preorder :>> BoundedPreOrder A;
664 665 666
  intersection_subseteq_l X Y : X  Y  X;
  intersection_subseteq_r X Y : X  Y  Y;
  intersection_greatest X Y Z : Z  X  Z  Y  Z  X  Y
Robbert Krebbers's avatar
Robbert Krebbers committed
667
}.
668 669 670 671

(** A join distributive lattice with distributivity stated in the order
theoretic way. We will prove that distributivity of join, and distributivity
as an equality can be derived. *)
672 673
Class LowerBoundedLattice A
    `{Empty A, SubsetEq A, Union A, Intersection A} : Prop := {
674
  lbl_bjsl :>> BoundedJoinSemiLattice A;
675
  lbl_msl :>> MeetSemiLattice A;
676
  lbl_distr X Y Z : (X  Y)  (X  Z)  X  (Y  Z)
677
}.
678

679
(** ** Axiomatization of collections *)
680 681
(** The class [SimpleCollection A C] axiomatizes a collection of type [C] with
elements of type [A]. *)
682
Instance: Params (@map) 3.
683 684
Class SimpleCollection A C `{ElemOf A C,
    Empty C, Singleton A C, Union C} : Prop := {
685
  not_elem_of_empty (x : A) : x  ;
686
  elem_of_singleton (x y : A) : x  {[ y ]}  x = y;
687 688
  elem_of_union X Y (x : A) : x  X  Y  x  X  x  Y
}.
689 690
Class Collection A C `{ElemOf A C, Empty C, Singleton A C,
    Union C, Intersection C, Difference C} : Prop := {
691
  collection_simple :>> SimpleCollection A C;
Robbert Krebbers's avatar
Robbert Krebbers committed
692
  elem_of_intersection X Y (x : A) : x  X  Y  x  X  x  Y;
693 694
  elem_of_difference X Y (x : A) : x  X  Y  x  X  x  Y
}.
695 696 697
Class CollectionOps A C `{ElemOf A C, Empty C, Singleton A C,
    Union C, Intersection C, Difference C,
    IntersectionWith A C, Filter A C} : Prop := {
698
  collection_ops :>> Collection A C;
699
  elem_of_intersection_with (f : A  A  option A) X Y (x : A) :
700 701 702
    x  intersection_with f X Y   x1 x2, x1  X  x2  Y  f x1 x2 = Some x;
  elem_of_filter X P `{ x, Decision (P x)} x :
    x  filter P X  P x  x  X
Robbert Krebbers's avatar
Robbert Krebbers committed
703 704
}.

705 706 707
(** We axiomative a finite collection as a collection whose elements can be
enumerated as a list. These elements, given by the [elements] function, may be
in any order and should not contain duplicates. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
708
Class Elements A C := elements: C  list A.
709
Instance: Params (@elements) 3.
710 711 712 713 714 715 716 717 718 719 720 721 722

(** We redefine the standard library's [In] and [NoDup] using type classes. *)
Inductive elem_of_list {A} : ElemOf A (list A) :=
  | elem_of_list_here (x : A) l : x  x :: l
  | elem_of_list_further (x y : A) l : x  l  x  y :: l.
Existing Instance elem_of_list.

Inductive NoDup {A} : list A  Prop :=
  | NoDup_nil_2 : NoDup []
  | NoDup_cons_2 x l : x  l  NoDup l  NoDup (x :: l).

(** Decidability of equality of the carrier set is admissible, but we add it
anyway so as to avoid cycles in type class search. *)
723 724 725
Class FinCollection A C `{ElemOf A C, Empty C, Singleton A C,
    Union C, Intersection C, Difference C,
    Elements A C,  x y : A, Decision (x = y)} : Prop := {
Robbert Krebbers's avatar
Robbert Krebbers committed
726
  fin_collection :>> Collection A C;
727
  elements_spec X x : x  X  x  elements X;
Robbert Krebbers's avatar
Robbert Krebbers committed
728
  elements_nodup X : NoDup (elements X)
729 730
}.
Class Size C := size: C  nat.
731
Arguments size {_ _} !_ / : simpl nomatch.
732
Instance: Params (@size) 2.
Robbert Krebbers's avatar
Robbert Krebbers committed
733

734 735 736 737 738 739 740 741
(** The class [Collection M] axiomatizes a type constructor [M] that can be
used to construct a collection [M A] with elements of type [A]. The advantage
of this class, compared to [Collection], is that it also axiomatizes the
the monadic operations. The disadvantage, is that not many inhabits are
possible (we will only provide an inhabitant using unordered lists without
duplicates removed). More interesting implementations typically need
decidability of equality, or a total order on the elements, which do not fit
in a type constructor of type [Type → Type]. *)
742 743 744
Class CollectionMonad M `{ A, ElemOf A (M A),
     A, Empty (M A),  A, Singleton A (M A),  A, Union (M A),
    !MBind M, !MRet M, !FMap M, !MJoin M} : Prop := {
745 746 747
  collection_monad_simple A :> SimpleCollection A (M A);
  elem_of_bind {A B} (f : A  M B) (X : M A) (x : B) :
    x  X = f   y, x  f y  y  X;
748
  elem_of_ret {A} (x y : A) : x  mret y  x = y;
749 750
  elem_of_fmap {A B} (f : A  B) (X : M A) (x : B) :
    x  f <$> X   y, x = f y  y  X;
751
  elem_of_join {A} (X : M (M A)) (x : A) : x  mjoin X   Y, x  Y  Y  X
752 753
}.

754 755 756
(** The function [fresh X] yields an element that is not contained in [X]. We
will later prove that [fresh] is [Proper] with respect to the induced setoid
equality on collections. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
757
Class Fresh A C := fresh: C  A.
758
Instance: Params (@fresh) 3.
759 760
Class FreshSpec A C `{ElemOf A C,
    Empty C, Singleton A C, Union C, Fresh A C} : Prop := {
761
  fresh_collection_simple :>> SimpleCollection A C;
762
  fresh_proper_alt X Y : ( x, x  X  x  Y)  fresh X = fresh Y;
Robbert Krebbers's avatar
Robbert Krebbers committed
763 764 765
  is_fresh (X : C) : fresh X  X
}.

766
(** * Miscellaneous *)
767
Class Half A := half: A  A.
768 769
Notation "½" := half : C_scope.
Notation "½*" := (fmap (M:=list) half) : C_scope.
770

771 772
Lemma proj1_sig_inj {A} (P : A  Prop) x (Px : P x) y (Py : P y) :
  xPx = yPy  x = y.
773
Proof. injection 1; trivial. Qed.
774
Lemma not_symmetry `{R : relation A, !Symmetric R} x y : ¬R x y  ¬R y x.
775
Proof. intuition. Qed.
776
Lemma symmetry_iff `(R : relation A) `{!Symmetric R} x y : R x y  R y x.
777 778
Proof. intuition. Qed.

779 780 781
(** ** Pointwise relations *)
(** These instances are in Coq trunk since revision 15455, but are not in Coq
8.4 yet. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
782 783 784 785 786 787 788 789 790 791
Instance pointwise_reflexive {A} `{R : relation B} :
  Reflexive R  Reflexive (pointwise_relation A R) | 9.
Proof. firstorder. Qed.
Instance pointwise_symmetric {A} `{R : relation B} :
  Symmetric R  Symmetric (pointwise_relation A R) | 9.
Proof. firstorder. Qed.
Instance pointwise_transitive {A} `{R : relation B} :
  Transitive R  Transitive (pointwise_relation A R) | 9.
Proof. firstorder. Qed.

792
(** ** Products *)
793 794 795 796 797 798 799
Instance prod_map_injective {A A' B B'} (f : A  A') (g : B  B') :
  Injective (=) (=) f  Injective (=) (=) g 
  Injective (=) (=) (prod_map f g).
Proof.
  intros ?? [??] [??] ?; simpl in *; f_equal;
    [apply (injective f)|apply (injective g)]; congruence.
Qed.
800

801
Definition prod_relation {A B} (R1 : relation A) (R2 : relation B) :
802
  relation (A * B) := λ x y, R1 (x.1) (y.1)  R2 (x.2) (y.2).
Robbert Krebbers's avatar
Robbert Krebbers committed
803
Section prod_relation.
804
  Context `{R1 : relation A, R2 : relation B}.
805 806
  Global Instance:
    Reflexive R1  Reflexive R2  Reflexive (prod_relation R1 R2).
Robbert Krebbers's avatar
Robbert Krebbers committed
807
  Proof. firstorder eauto. Qed.
808 809
  Global Instance:
    Symmetric R1  Symmetric R2  Symmetric (prod_relation R1 R2).
Robbert Krebbers's avatar
Robbert Krebbers committed
810
  Proof. firstorder eauto. Qed.
811 812
  Global Instance:
    Transitive R1  Transitive R2  Transitive (prod_relation R1 R2).
Robbert Krebbers's avatar
Robbert Krebbers committed
813
  Proof. firstorder eauto. Qed.
814 815
  Global Instance:
    Equivalence R1  Equivalence R2  Equivalence (prod_relation R1 R2).
Robbert Krebbers's avatar
Robbert Krebbers committed
816 817 818 819 820 821 822 823 824
  Proof. split; apply _. Qed.
  Global Instance: Proper (R1 ==> R2 ==> prod_relation R1 R2) pair.
  Proof. firstorder eauto. Qed.
  Global Instance: Proper (prod_relation R1 R2 ==> R1) fst.
  Proof. firstorder eauto. Qed.
  Global Instance: Proper (prod_relation R1 R2 ==> R2) snd.
  Proof. firstorder eauto. Qed.
End prod_relation.

825
(** ** Other *)
826 827 828 829 830 831 832
Definition proj_eq {A B} (f : B  A) : relation B := λ x y, f x = f y.
Global Instance proj_eq_equivalence `(f : B  A) : Equivalence (proj_eq f).
Proof. unfold proj_eq. repeat split; red; intuition congruence. Qed.
Notation "x ~{ f } y" := (proj_eq f x y)
  (at level 70, format "x  ~{ f }  y") : C_scope.
Hint Extern 0 (_ ~{_} _) => reflexivity.
Hint Extern 0 (_ ~{_} _) => symmetry; assumption.
Robbert Krebbers's avatar
Robbert Krebbers committed
833 834

Instance:  A B (x : B), Commutative (=) (λ _ _ : A, x).
835
Proof. red. trivial. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
836
Instance:  A (x : A), Associative (=) (λ _ _ : A, x).
837
Proof. red. trivial. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
838
Instance:  A, Associative (=) (λ x _ : A, x).
839
Proof. red. trivial. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
840
Instance:  A, Associative (=) (λ _ x : A, x).
841
Proof. red. trivial. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
842
Instance:  A, Idempotent (=) (λ x _ : A, x).
843
Proof. red. trivial. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
844
Instance:  A, Idempotent (=) (λ _ x : A, x).
845
Proof. red. trivial. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
846

847 848
Instance left_id_propholds {A} (R : relation A) i f :
  LeftId R i f   x, PropHolds (R (f i x) x).
849
Proof. red. trivial. Qed.
850 851
Instance right_id_propholds {A} (R : relation A)