list.v 187 KB
Newer Older
1
(* Copyright (c) 2012-2019, Coq-std++ developers. *)
2 3 4
(* This file is distributed under the terms of the BSD license. *)
(** This file collects general purpose definitions and theorems on lists that
are not in the Coq standard library. *)
5
From Coq Require Export Permutation.
6
From stdpp Require Export numbers base option.
7
Set Default Proof Using "Type*".
Robbert Krebbers's avatar
Robbert Krebbers committed
8

9 10 11
Arguments length {_} _ : assert.
Arguments cons {_} _ _ : assert.
Arguments app {_} _ _ : assert.
12

13 14 15
Instance: Params (@length) 1 := {}.
Instance: Params (@cons) 1 := {}.
Instance: Params (@app) 1 := {}.
Robbert Krebbers's avatar
Robbert Krebbers committed
16

17 18 19
Notation tail := tl.
Notation take := firstn.
Notation drop := skipn.
20

21
Arguments head {_} _ : assert.
22 23 24
Arguments tail {_} _ : assert.
Arguments take {_} !_ !_ / : assert.
Arguments drop {_} !_ !_ / : assert.
25

26
Instance: Params (@head) 1 := {}.
27 28 29
Instance: Params (@tail) 1 := {}.
Instance: Params (@take) 1 := {}.
Instance: Params (@drop) 1 := {}.
30

31 32
Arguments Permutation {_} _ _ : assert.
Arguments Forall_cons {_} _ _ _ _ _ : assert.
33
Remove Hints Permutation_cons : typeclass_instances.
34

35
Notation "(::)" := cons (only parsing) : list_scope.
36 37
Notation "( x ::.)" := (cons x) (only parsing) : list_scope.
Notation "(.:: l )" := (λ x, cons x l) (only parsing) : list_scope.
38
Notation "(++)" := app (only parsing) : list_scope.
39 40
Notation "( l ++.)" := (app l) (only parsing) : list_scope.
Notation "(.++ k )" := (λ l, app l k) (only parsing) : list_scope.
41 42 43

Infix "≡ₚ" := Permutation (at level 70, no associativity) : stdpp_scope.
Notation "(≡ₚ)" := Permutation (only parsing) : stdpp_scope.
44 45
Notation "( x ≡ₚ.)" := (Permutation x) (only parsing) : stdpp_scope.
Notation "(.≡ₚ x )" := (λ y, y  x) (only parsing) : stdpp_scope.
46 47
Notation "(≢ₚ)" := (λ x y, ¬x  y) (only parsing) : stdpp_scope.
Notation "x ≢ₚ y":= (¬x  y) (at level 70, no associativity) : stdpp_scope.
48 49
Notation "( x ≢ₚ.)" := (λ y, x ≢ₚ y) (only parsing) : stdpp_scope.
Notation "(.≢ₚ x )" := (λ y, y ≢ₚ x) (only parsing) : stdpp_scope.
50

Robbert Krebbers's avatar
Robbert Krebbers committed
51 52 53 54
Infix "≡ₚ@{ A }" :=
  (@Permutation A) (at level 70, no associativity, only parsing) : stdpp_scope.
Notation "(≡ₚ@{ A } )" := (@Permutation A) (only parsing) : stdpp_scope.

Robbert Krebbers's avatar
Robbert Krebbers committed
55 56 57
Instance maybe_cons {A} : Maybe2 (@cons A) := λ l,
  match l with x :: l => Some (x,l) | _ => None end.

58
(** * Definitions *)
59 60 61 62 63 64
(** Setoid equality lifted to lists *)
Inductive list_equiv `{Equiv A} : Equiv (list A) :=
  | nil_equiv : []  []
  | cons_equiv x y l k : x  y  l  k  x :: l  y :: k.
Existing Instance list_equiv.

65 66
(** The operation [l !! i] gives the [i]th element of the list [l], or [None]
in case [i] is out of bounds. *)
67 68
Instance list_lookup {A} : Lookup nat A (list A) :=
  fix go i l {struct l} : option A := let _ : Lookup _ _ _ := @go in
69
  match l with
70
  | [] => None | x :: l => match i with 0 => Some x | S i => l !! i end
71
  end.
72

Dan Frumin's avatar
Dan Frumin committed
73 74 75 76 77 78 79 80 81
(** The operation [l !!! i] is a total version of the lookup operation
[l !! i]. *)
Instance list_lookup_total `{!Inhabited A} : LookupTotal nat A (list A) :=
  fix go i l {struct l} : A := let _ : LookupTotal _ _ _ := @go in
  match l with
  | [] => inhabitant
  | x :: l => match i with 0 => x | S i => l !!! i end
  end.

82 83
(** The operation [alter f i l] applies the function [f] to the [i]th element
of [l]. In case [i] is out of bounds, the list is returned unchanged. *)
84
Instance list_alter {A} : Alter nat A (list A) := λ f,
85
  fix go i l {struct l} :=
86 87
  match l with
  | [] => []
88
  | x :: l => match i with 0 => f x :: l | S i => x :: go i l end
89
  end.
90

91 92
(** The operation [<[i:=x]> l] overwrites the element at position [i] with the
value [x]. In case [i] is out of bounds, the list is returned unchanged. *)
93 94
Instance list_insert {A} : Insert nat A (list A) :=
  fix go i y l {struct l} := let _ : Insert _ _ _ := @go in
95 96 97 98
  match l with
  | [] => []
  | x :: l => match i with 0 => y :: l | S i => x :: <[i:=y]>l end
  end.
99 100 101 102 103
Fixpoint list_inserts {A} (i : nat) (k l : list A) : list A :=
  match k with
  | [] => l
  | y :: k => <[i:=y]>(list_inserts (S i) k l)
  end.
104
Instance: Params (@list_inserts) 1 := {}.
105

106 107 108
(** The operation [delete i l] removes the [i]th element of [l] and moves
all consecutive elements one position ahead. In case [i] is out of bounds,
the list is returned unchanged. *)
109 110
Instance list_delete {A} : Delete nat (list A) :=
  fix go (i : nat) (l : list A) {struct l} : list A :=
111 112
  match l with
  | [] => []
113
  | x :: l => match i with 0 => l | S i => x :: @delete _ _ go i l end
114
  end.
115 116 117

(** The function [option_list o] converts an element [Some x] into the
singleton list [[x]], and [None] into the empty list [[]]. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
118
Definition option_list {A} : option A  list A := option_rect _ (λ x, [x]) [].
119
Instance: Params (@option_list) 1 := {}.
120
Instance maybe_list_singleton {A} : Maybe (λ x : A, [x]) := λ l,
121
  match l with [x] => Some x | _ => None end.
Robbert Krebbers's avatar
Robbert Krebbers committed
122 123 124 125

(** The function [filter P l] returns the list of elements of [l] that
satisfies [P]. The order remains unchanged. *)
Instance list_filter {A} : Filter A (list A) :=
126
  fix go P _ l := let _ : Filter _ _ := @go in
Robbert Krebbers's avatar
Robbert Krebbers committed
127 128
  match l with
  | [] => []
129
  | x :: l => if decide (P x) then x :: filter P l else filter P l
130 131 132 133
  end.

(** The function [list_find P l] returns the first index [i] whose element
satisfies the predicate [P]. *)
134
Definition list_find {A} P `{ x, Decision (P x)} : list A  option (nat * A) :=
135 136
  fix go l :=
  match l with
137 138
  | [] => None
  | x :: l => if decide (P x) then Some (0,x) else prod_map S id <$> go l
139
  end.
140
Instance: Params (@list_find) 3 := {}.
Robbert Krebbers's avatar
Robbert Krebbers committed
141 142 143 144

(** The function [replicate n x] generates a list with length [n] of elements
with value [x]. *)
Fixpoint replicate {A} (n : nat) (x : A) : list A :=
145
  match n with 0 => [] | S n => x :: replicate n x end.
146
Instance: Params (@replicate) 2 := {}.
Robbert Krebbers's avatar
Robbert Krebbers committed
147 148 149

(** The function [reverse l] returns the elements of [l] in reverse order. *)
Definition reverse {A} (l : list A) : list A := rev_append l [].
150
Instance: Params (@reverse) 1 := {}.
Robbert Krebbers's avatar
Robbert Krebbers committed
151

152 153 154 155
(** The function [last l] returns the last element of the list [l], or [None]
if the list [l] is empty. *)
Fixpoint last {A} (l : list A) : option A :=
  match l with [] => None | [x] => Some x | _ :: l => last l end.
156
Instance: Params (@last) 1 := {}.
157

Robbert Krebbers's avatar
Robbert Krebbers committed
158 159 160 161 162 163
(** The function [resize n y l] takes the first [n] elements of [l] in case
[length l ≤ n], and otherwise appends elements with value [x] to [l] to obtain
a list of length [n]. *)
Fixpoint resize {A} (n : nat) (y : A) (l : list A) : list A :=
  match l with
  | [] => replicate n y
164
  | x :: l => match n with 0 => [] | S n => x :: resize n y l end
Robbert Krebbers's avatar
Robbert Krebbers committed
165
  end.
166
Arguments resize {_} !_ _ !_ : assert.
167
Instance: Params (@resize) 2 := {}.
Robbert Krebbers's avatar
Robbert Krebbers committed
168

169 170 171
(** The function [reshape k l] transforms [l] into a list of lists whose sizes
are specified by [k]. In case [l] is too short, the resulting list will be
padded with empty lists. In case [l] is too long, it will be truncated. *)
172 173
Fixpoint reshape {A} (szs : list nat) (l : list A) : list (list A) :=
  match szs with
174
  | [] => [] | sz :: szs => take sz l :: reshape szs (drop sz l)
175
  end.
176
Instance: Params (@reshape) 2 := {}.
177

178
Definition sublist_lookup {A} (i n : nat) (l : list A) : option (list A) :=
179 180 181 182
  guard (i + n  length l); Some (take n (drop i l)).
Definition sublist_alter {A} (f : list A  list A)
    (i n : nat) (l : list A) : list A :=
  take i l ++ f (take n (drop i l)) ++ drop (i + n) l.
183

184 185 186 187
(** Functions to fold over a list. We redefine [foldl] with the arguments in
the same order as in Haskell. *)
Notation foldr := fold_right.
Definition foldl {A B} (f : A  B  A) : A  list B  A :=
188
  fix go a l := match l with [] => a | x :: l => go (f a x) l end.
189 190 191

(** The monadic operations. *)
Instance list_ret: MRet list := λ A x, x :: @nil A.
192 193
Instance list_fmap : FMap list := λ A B f,
  fix go (l : list A) := match l with [] => [] | x :: l => f x :: go l end.
194 195 196 197 198 199
Instance list_omap : OMap list := λ A B f,
  fix go (l : list A) :=
  match l with
  | [] => []
  | x :: l => match f x with Some y => y :: go l | None => go l end
  end.
200 201
Instance list_bind : MBind list := λ A B f,
  fix go (l : list A) := match l with [] => [] | x :: l => f x ++ go l end.
202 203
Instance list_join: MJoin list :=
  fix go A (ls : list (list A)) : list A :=
204
  match ls with [] => [] | l :: ls => l ++ @mjoin _ go _ ls end.
205
Definition mapM `{MBind M, MRet M} {A B} (f : A  M B) : list A  M (list B) :=
206
  fix go l :=
207
  match l with [] => mret [] | x :: l => y  f x; k  go l; mret (y :: k) end.
208 209 210

(** We define stronger variants of map and fold that allow the mapped
function to use the index of the elements. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
211 212 213 214 215
Fixpoint imap {A B} (f : nat  A  B) (l : list A) : list B :=
  match l with
  | [] => []
  | x :: l => f 0 x :: imap (f  S) l
  end.
216

217
Definition zipped_map {A B} (f : list A  list A  A  B) :
Robbert Krebbers's avatar
Robbert Krebbers committed
218 219 220 221 222
    list A  list A  list B := fix go l k :=
  match k with
  | [] => []
  | x :: k => f l k x :: go (x :: l) k
  end.
223

Robbert Krebbers's avatar
Robbert Krebbers committed
224
Fixpoint imap2 {A B C} (f : nat  A  B  C) (l : list A) (k : list B) : list C :=
Robbert Krebbers's avatar
Robbert Krebbers committed
225
  match l, k with
Robbert Krebbers's avatar
Robbert Krebbers committed
226 227
  | [], _ | _, [] => []
  | x :: l, y :: k => f 0 x y :: imap2 (f  S) l k
Robbert Krebbers's avatar
Robbert Krebbers committed
228 229
  end.

230 231 232 233 234
Inductive zipped_Forall {A} (P : list A  list A  A  Prop) :
    list A  list A  Prop :=
  | zipped_Forall_nil l : zipped_Forall P l []
  | zipped_Forall_cons l k x :
     P l k x  zipped_Forall P (x :: l) k  zipped_Forall P l (x :: k).
235 236
Arguments zipped_Forall_nil {_ _} _ : assert.
Arguments zipped_Forall_cons {_ _} _ _ _ _ _ : assert.
237

238 239 240 241 242 243 244
(** The function [mask f βs l] applies the function [f] to elements in [l] at
positions that are [true] in [βs]. *)
Fixpoint mask {A} (f : A  A) (βs : list bool) (l : list A) : list A :=
  match βs, l with
  | β :: βs, x :: l => (if β then f x else x) :: mask f βs l
  | _, _ => l
  end.
245 246 247 248

(** The function [permutations l] yields all permutations of [l]. *)
Fixpoint interleave {A} (x : A) (l : list A) : list (list A) :=
  match l with
249
  | [] => [[x]]| y :: l => (x :: y :: l) :: ((y ::.) <$> interleave x l)
250 251
  end.
Fixpoint permutations {A} (l : list A) : list (list A) :=
252
  match l with [] => [[]] | x :: l => permutations l = interleave x end.
253

Robbert Krebbers's avatar
Robbert Krebbers committed
254 255 256 257
(** The predicate [suffix] holds if the first list is a suffix of the second.
The predicate [prefix] holds if the first list is a prefix of the second. *)
Definition suffix {A} : relation (list A) := λ l1 l2,  k, l2 = k ++ l1.
Definition prefix {A} : relation (list A) := λ l1 l2,  k, l2 = l1 ++ k.
258 259
Infix "`suffix_of`" := suffix (at level 70) : stdpp_scope.
Infix "`prefix_of`" := prefix (at level 70) : stdpp_scope.
Tej Chajed's avatar
Tej Chajed committed
260 261
Hint Extern 0 (_ `prefix_of` _) => reflexivity : core.
Hint Extern 0 (_ `suffix_of` _) => reflexivity : core.
Robbert Krebbers's avatar
Robbert Krebbers committed
262

263
Section prefix_suffix_ops.
264 265
  Context `{EqDecision A}.

Robbert Krebbers's avatar
Robbert Krebbers committed
266
  Definition max_prefix : list A  list A  list A * list A * list A :=
267 268 269 270 271
    fix go l1 l2 :=
    match l1, l2 with
    | [], l2 => ([], l2, [])
    | l1, [] => (l1, [], [])
    | x1 :: l1, x2 :: l2 =>
272
      if decide_rel (=) x1 x2
273
      then prod_map id (x1 ::.) (go l1 l2) else (x1 :: l1, x2 :: l2, [])
274
    end.
Robbert Krebbers's avatar
Robbert Krebbers committed
275 276
  Definition max_suffix (l1 l2 : list A) : list A * list A * list A :=
    match max_prefix (reverse l1) (reverse l2) with
277 278
    | (k1, k2, k3) => (reverse k1, reverse k2, reverse k3)
    end.
Robbert Krebbers's avatar
Robbert Krebbers committed
279 280
  Definition strip_prefix (l1 l2 : list A) := (max_prefix l1 l2).1.2.
  Definition strip_suffix (l1 l2 : list A) := (max_suffix l1 l2).1.2.
281
End prefix_suffix_ops.
Robbert Krebbers's avatar
Robbert Krebbers committed
282

283
(** A list [l1] is a sublist of [l2] if [l2] is obtained by removing elements
284 285 286
from [l1] without changing the order. *)
Inductive sublist {A} : relation (list A) :=
  | sublist_nil : sublist [] []
287
  | sublist_skip x l1 l2 : sublist l1 l2  sublist (x :: l1) (x :: l2)
288
  | sublist_cons x l1 l2 : sublist l1 l2  sublist l1 (x :: l2).
289
Infix "`sublist_of`" := sublist (at level 70) : stdpp_scope.
Tej Chajed's avatar
Tej Chajed committed
290
Hint Extern 0 (_ `sublist_of` _) => reflexivity : core.
291

Robbert Krebbers's avatar
Robbert Krebbers committed
292
(** A list [l2] submseteq a list [l1] if [l2] is obtained by removing elements
293
from [l1] while possiblity changing the order. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
294 295 296 297 298 299
Inductive submseteq {A} : relation (list A) :=
  | submseteq_nil : submseteq [] []
  | submseteq_skip x l1 l2 : submseteq l1 l2  submseteq (x :: l1) (x :: l2)
  | submseteq_swap x y l : submseteq (y :: x :: l) (x :: y :: l)
  | submseteq_cons x l1 l2 : submseteq l1 l2  submseteq l1 (x :: l2)
  | submseteq_trans l1 l2 l3 : submseteq l1 l2  submseteq l2 l3  submseteq l1 l3.
300
Infix "⊆+" := submseteq (at level 70) : stdpp_scope.
Tej Chajed's avatar
Tej Chajed committed
301
Hint Extern 0 (_ + _) => reflexivity : core.
302

303 304 305 306 307
(** Removes [x] from the list [l]. The function returns a [Some] when the
+removal succeeds and [None] when [x] is not in [l]. *)
Fixpoint list_remove `{EqDecision A} (x : A) (l : list A) : option (list A) :=
  match l with
  | [] => None
308
  | y :: l => if decide (x = y) then Some l else (y ::.) <$> list_remove x l
309 310 311 312 313 314 315 316
  end.

(** Removes all elements in the list [k] from the list [l]. The function returns
a [Some] when the removal succeeds and [None] some element of [k] is not in [l]. *)
Fixpoint list_remove_list `{EqDecision A} (k : list A) (l : list A) : option (list A) :=
  match k with
  | [] => Some l | x :: k => list_remove x l = list_remove_list k
  end.
317

318 319 320 321 322
Inductive Forall3 {A B C} (P : A  B  C  Prop) :
     list A  list B  list C  Prop :=
  | Forall3_nil : Forall3 P [] [] []
  | Forall3_cons x y z l k k' :
     P x y z  Forall3 P l k k'  Forall3 P (x :: l) (y :: k) (z :: k').
323

324 325
(** Set operations on lists *)
Instance list_subseteq {A} : SubsetEq (list A) := λ l1 l2,  x, x  l1  x  l2.
326

327
Section list_set.
328
  Context `{dec : EqDecision A}.
Robbert Krebbers's avatar
Robbert Krebbers committed
329
  Global Instance elem_of_list_dec : RelDecision (@{list A}).
330 331
  Proof.
   refine (
332
    fix go x l :=
333 334
    match l return Decision (x  l) with
    | [] => right _
335
    | y :: l => cast_if_or (decide (x = y)) (go x l)
336 337 338 339 340 341 342 343 344 345 346 347 348
    end); clear go dec; subst; try (by constructor); abstract by inversion 1.
  Defined.
  Fixpoint remove_dups (l : list A) : list A :=
    match l with
    | [] => []
    | x :: l =>
      if decide_rel () x l then remove_dups l else x :: remove_dups l
    end.
  Fixpoint list_difference (l k : list A) : list A :=
    match l with
    | [] => []
    | x :: l =>
      if decide_rel () x k
349
      then list_difference l k else x :: list_difference l k
350
    end.
351
  Definition list_union (l k : list A) : list A := list_difference l k ++ k.
352 353 354 355 356
  Fixpoint list_intersection (l k : list A) : list A :=
    match l with
    | [] => []
    | x :: l =>
      if decide_rel () x k
357
      then x :: list_intersection l k else list_intersection l k
358 359 360 361 362 363
    end.
  Definition list_intersection_with (f : A  A  option A) :
    list A  list A  list A := fix go l k :=
    match l with
    | [] => []
    | x :: l => foldr (λ y,
364
        match f x y with None => id | Some z => (z ::.) end) (go l k) k
365 366
    end.
End list_set.
367

368 369 370 371
(** These next functions allow to efficiently encode lists of positives (bit
strings) into a single positive and go in the other direction as well. This is
for example used for the countable instance of lists and in namespaces.
 The main functions are [positives_flatten] and [positives_unflatten]. *)
372 373 374 375 376 377
Fixpoint positives_flatten_go (xs : list positive) (acc : positive) : positive :=
  match xs with
  | [] => acc
  | x :: xs => positives_flatten_go xs (acc~1~0 ++ Preverse (Pdup x))
  end.

378 379 380 381 382 383 384
(** Flatten a list of positives into a single positive by duplicating the bits
of each element, so that:

- [0 -> 00]
- [1 -> 11]

and then separating each element with [10]. *)
385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401
Definition positives_flatten (xs : list positive) : positive :=
  positives_flatten_go xs 1.

Fixpoint positives_unflatten_go
        (p : positive)
        (acc_xs : list positive)
        (acc_elm : positive)
  : option (list positive) :=
  match p with
  | 1 => Some acc_xs
  | p'~0~0 => positives_unflatten_go p' acc_xs (acc_elm~0)
  | p'~1~1 => positives_unflatten_go p' acc_xs (acc_elm~1)
  | p'~1~0 => positives_unflatten_go p' (acc_elm :: acc_xs) 1
  | _ => None
  end%positive.

(** Unflatten a positive into a list of positives, assuming the encoding
402
used by [positives_flatten]. *)
403 404 405
Definition positives_unflatten (p : positive) : option (list positive) :=
  positives_unflatten_go p [] 1.

Simon Spies's avatar
Simon Spies committed
406 407 408 409 410 411 412

(** [seqZ m n] generates the sequence [m], [m + 1], ..., [m + n - 1] 
over integers, provided [n >= 0]. If n < 0, then the range is empty. **)
Definition seqZ (m len: Z) : list Z :=
  (λ i: nat, Z.add i m) <$> (seq 0 (Z.to_nat len)).
Arguments seqZ : simpl never.

413
(** * Basic tactics on lists *)
Robbert Krebbers's avatar
Robbert Krebbers committed
414
(** The tactic [discriminate_list] discharges a goal if it submseteq
415 416
a list equality involving [(::)] and [(++)] of two lists that have a different
length as one of its hypotheses. *)
417
Tactic Notation "discriminate_list" hyp(H) :=
418
  apply (f_equal length) in H;
419
  repeat (csimpl in H || rewrite app_length in H); exfalso; lia.
420
Tactic Notation "discriminate_list" :=
421
  match goal with H : _ =@{list _} _ |- _ => discriminate_list H end.
422

423
(** The tactic [simplify_list_eq] simplifies hypotheses involving
424 425
equalities on lists using injectivity of [(::)] and [(++)]. Also, it simplifies
lookups in singleton lists. *)
426
Lemma app_inj_1 {A} (l1 k1 l2 k2 : list A) :
427 428
  length l1 = length k1  l1 ++ l2 = k1 ++ k2  l1 = k1  l2 = k2.
Proof. revert k1. induction l1; intros [|??]; naive_solver. Qed.
429
Lemma app_inj_2 {A} (l1 k1 l2 k2 : list A) :
430 431
  length l2 = length k2  l1 ++ l2 = k1 ++ k2  l1 = k1  l2 = k2.
Proof.
432
  intros ? Hl. apply app_inj_1; auto.
433 434
  apply (f_equal length) in Hl. rewrite !app_length in Hl. lia.
Qed.
435
Ltac simplify_list_eq :=
436
  repeat match goal with
437
  | _ => progress simplify_eq/=
438
  | H : _ ++ _ = _ ++ _ |- _ => first
439
    [ apply app_inv_head in H | apply app_inv_tail in H
440 441
    | apply app_inj_1 in H; [destruct H|done]
    | apply app_inj_2 in H; [destruct H|done] ]
Robbert Krebbers's avatar
Robbert Krebbers committed
442
  | H : [?x] !! ?i = Some ?y |- _ =>
443
    destruct i; [change (Some x = Some y) in H | discriminate]
444
  end.
445

446 447
(** * General theorems *)
Section general_properties.
Robbert Krebbers's avatar
Robbert Krebbers committed
448
Context {A : Type}.
449 450
Implicit Types x y z : A.
Implicit Types l k : list A.
Robbert Krebbers's avatar
Robbert Krebbers committed
451

452
Global Instance: Inj2 (=) (=) (=) (@cons A).
453
Proof. by injection 1. Qed.
454
Global Instance:  k, Inj (=) (=) (k ++.).
455
Proof. intros ???. apply app_inv_head. Qed.
456
Global Instance:  k, Inj (=) (=) (.++ k).
457
Proof. intros ???. apply app_inv_tail. Qed.
458
Global Instance: Assoc (=) (@app A).
459 460 461 462 463
Proof. intros ???. apply app_assoc. Qed.
Global Instance: LeftId (=) [] (@app A).
Proof. done. Qed.
Global Instance: RightId (=) [] (@app A).
Proof. intro. apply app_nil_r. Qed.
464

465
Lemma app_nil l1 l2 : l1 ++ l2 = []  l1 = []  l2 = [].
466
Proof. split. apply app_eq_nil. by intros [-> ->]. Qed.
467 468
Lemma app_singleton l1 l2 x :
  l1 ++ l2 = [x]  l1 = []  l2 = [x]  l1 = [x]  l2 = [].
469
Proof. split. apply app_eq_unit. by intros [[-> ->]|[-> ->]]. Qed.
470 471 472
Lemma cons_middle x l1 l2 : l1 ++ x :: l2 = l1 ++ [x] ++ l2.
Proof. done. Qed.
Lemma list_eq l1 l2 : ( i, l1 !! i = l2 !! i)  l1 = l2.
473
Proof.
474
  revert l2. induction l1 as [|x l1 IH]; intros [|y l2] H.
475 476 477
  - done.
  - discriminate (H 0).
  - discriminate (H 0).
478
  - f_equal; [by injection (H 0)|]. apply (IH _ $ λ i, H (S i)).
479
Qed.
480 481
Global Instance list_eq_dec {dec : EqDecision A} : EqDecision (list A) :=
  list_eq_dec dec.
482 483 484
Global Instance list_eq_nil_dec l : Decision (l = []).
Proof. by refine match l with [] => left _ | _ => right _ end. Defined.
Lemma list_singleton_reflect l :
485
  option_reflect (λ x, l = [x]) (length l  1) (maybe (λ x, [x]) l).
486 487 488 489
Proof. by destruct l as [|? []]; constructor. Defined.

Definition nil_length : length (@nil A) = 0 := eq_refl.
Definition cons_length x l : length (x :: l) = S (length l) := eq_refl.
490
Lemma nil_or_length_pos l : l = []  length l  0.
491
Proof. destruct l; simpl; auto with lia. Qed.
492
Lemma nil_length_inv l : length l = 0  l = [].
493
Proof. by destruct l. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
494 495
Lemma lookup_cons_ne_0 l x i : i  0  (x :: l) !! i = l !! pred i.
Proof. by destruct i. Qed.
496
Lemma lookup_nil i : @nil A !! i = None.
497
Proof. by destruct i. Qed.
498
Lemma lookup_tail l i : tail l !! i = l !! S i.
499
Proof. by destruct l. Qed.
500
Lemma lookup_lt_Some l i x : l !! i = Some x  i < length l.
501
Proof. revert i. induction l; intros [|?] ?; naive_solver auto with arith. Qed.
502 503 504
Lemma lookup_lt_is_Some_1 l i : is_Some (l !! i)  i < length l.
Proof. intros [??]; eauto using lookup_lt_Some. Qed.
Lemma lookup_lt_is_Some_2 l i : i < length l  is_Some (l !! i).
505
Proof. revert i. induction l; intros [|?] ?; naive_solver eauto with lia. Qed.
506 507 508 509 510 511 512 513
Lemma lookup_lt_is_Some l i : is_Some (l !! i)  i < length l.
Proof. split; auto using lookup_lt_is_Some_1, lookup_lt_is_Some_2. Qed.
Lemma lookup_ge_None l i : l !! i = None  length l  i.
Proof. rewrite eq_None_not_Some, lookup_lt_is_Some. lia. Qed.
Lemma lookup_ge_None_1 l i : l !! i = None  length l  i.
Proof. by rewrite lookup_ge_None. Qed.
Lemma lookup_ge_None_2 l i : length l  i  l !! i = None.
Proof. by rewrite lookup_ge_None. Qed.
514 515 516
Lemma list_eq_same_length l1 l2 n :
  length l2 = n  length l1 = n 
  ( i x y, i < n  l1 !! i = Some x  l2 !! i = Some y  x = y)  l1 = l2.
Robbert Krebbers's avatar
Robbert Krebbers committed
517
Proof.
518
  intros <- Hlen Hl; apply list_eq; intros i. destruct (l2 !! i) as [x|] eqn:Hx.
519
  - destruct (lookup_lt_is_Some_2 l1 i) as [y Hy].
520 521
    { rewrite Hlen; eauto using lookup_lt_Some. }
    rewrite Hy; f_equal; apply (Hl i); eauto using lookup_lt_Some.
522
  - by rewrite lookup_ge_None, Hlen, <-lookup_ge_None.
Robbert Krebbers's avatar
Robbert Krebbers committed
523
Qed.
524
Lemma lookup_app_l l1 l2 i : i < length l1  (l1 ++ l2) !! i = l1 !! i.
525
Proof. revert i. induction l1; intros [|?]; naive_solver auto with lia. Qed.
526 527
Lemma lookup_app_l_Some l1 l2 i x : l1 !! i = Some x  (l1 ++ l2) !! i = Some x.
Proof. intros. rewrite lookup_app_l; eauto using lookup_lt_Some. Qed.
528
Lemma lookup_app_r l1 l2 i :
529
  length l1  i  (l1 ++ l2) !! i = l2 !! (i - length l1).
530 531 532 533 534 535
Proof. revert i. induction l1; intros [|?]; simpl; auto with lia. Qed.
Lemma lookup_app_Some l1 l2 i x :
  (l1 ++ l2) !! i = Some x 
    l1 !! i = Some x  length l1  i  l2 !! (i - length l1) = Some x.
Proof.
  split.
536
  - revert i. induction l1 as [|y l1 IH]; intros [|i] ?;
537
      simplify_eq/=; auto with lia.
538
    destruct (IH i) as [?|[??]]; auto with lia.
539
  - intros [?|[??]]; auto using lookup_app_l_Some. by rewrite lookup_app_r.
540
Qed.
541 542 543
Lemma list_lookup_middle l1 l2 x n :
  n = length l1  (l1 ++ x :: l2) !! n = Some x.
Proof. intros ->. by induction l1. Qed.
544

545
Lemma nth_lookup l i d : nth i l d = default d (l !! i).
546 547 548 549
Proof. revert i. induction l as [|x l IH]; intros [|i]; simpl; auto. Qed.
Lemma nth_lookup_Some l i d x : l !! i = Some x  nth i l d = x.
Proof. rewrite nth_lookup. by intros ->. Qed.
Lemma nth_lookup_or_length l i d : {l !! i = Some (nth i l d)} + {length l  i}.
Ralf Jung's avatar
Ralf Jung committed
550
Proof.
551
  rewrite nth_lookup. destruct (l !! i) eqn:?; eauto using lookup_ge_None_1.
Ralf Jung's avatar
Ralf Jung committed
552 553
Qed.

Dan Frumin's avatar
Dan Frumin committed
554 555 556 557 558 559 560 561 562 563 564 565 566
Lemma list_lookup_total_alt `{!Inhabited A} l i :
  l !!! i = default inhabitant (l !! i).
Proof. revert i. induction l; intros []; naive_solver. Qed.
Lemma list_lookup_total_correct `{!Inhabited A} l i x :
  l !! i = Some x  l !!! i = x.
Proof. rewrite list_lookup_total_alt. by intros ->. Qed.
Lemma list_lookup_lookup_total `{!Inhabited A} l i :
  is_Some (l !! i)  l !! i = Some (l !!! i).
Proof. rewrite list_lookup_total_alt; by intros [x ->]. Qed.
Lemma list_lookup_lookup_total_lt `{!Inhabited A} l i :
  i < length l  l !! i = Some (l !!! i).
Proof. intros ?. by apply list_lookup_lookup_total, lookup_lt_is_Some_2. Qed.

567
Lemma list_insert_alter l i x : <[i:=x]>l = alter (λ _, x) i l.
568
Proof. by revert i; induction l; intros []; intros; f_equal/=. Qed.
569
Lemma alter_length f l i : length (alter f i l) = length l.
570
Proof. revert i. by induction l; intros [|?]; f_equal/=. Qed.
571
Lemma insert_length l i x : length (<[i:=x]>l) = length l.
572
Proof. revert i. by induction l; intros [|?]; f_equal/=. Qed.
573
Lemma list_lookup_alter f l i : alter f i l !! i = f <$> l !! i.
574
Proof. revert i. induction l. done. intros [|i]. done. apply (IHl i). Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
575
Lemma list_lookup_alter_ne f l i j : i  j  alter f i l !! j = l !! j.
576
Proof. revert i j. induction l; [done|]. intros [] []; naive_solver. Qed.
577
Lemma list_lookup_insert l i x : i < length l  <[i:=x]>l !! i = Some x.
578
Proof. revert i. induction l; intros [|?] ?; f_equal/=; auto with lia. Qed.
579
Lemma list_lookup_insert_ne l i j x : i  j  <[i:=x]>l !! j = l !! j.
580
Proof. revert i j. induction l; [done|]. intros [] []; naive_solver. Qed.
581 582 583 584 585 586
Lemma list_lookup_insert_Some l i x j y :
  <[i:=x]>l !! j = Some y 
    i = j  x = y  j < length l  i  j  l !! j = Some y.
Proof.
  destruct (decide (i = j)) as [->|];
    [split|rewrite list_lookup_insert_ne by done; tauto].
587
  - intros Hy. assert (j < length l).
588 589
    { rewrite <-(insert_length l j x); eauto using lookup_lt_Some. }
    rewrite list_lookup_insert in Hy by done; naive_solver.
590
  - intros [(?&?&?)|[??]]; rewrite ?list_lookup_insert; naive_solver.
591 592 593
Qed.
Lemma list_insert_commute l i j x y :
  i  j  <[i:=x]>(<[j:=y]>l) = <[j:=y]>(<[i:=x]>l).
594
Proof. revert i j. by induction l; intros [|?] [|?] ?; f_equal/=; auto. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
595 596
Lemma list_insert_id l i x : l !! i = Some x  <[i:=x]>l = l.
Proof. revert i. induction l; intros [|i] [=]; f_equal/=; auto. Qed.
597 598
Lemma list_insert_ge l i x : length l  i  <[i:=x]>l = l.
Proof. revert i. induction l; intros [|i] ?; f_equal/=; auto with lia. Qed.
Michael Sammler's avatar
Michael Sammler committed
599 600 601
Lemma list_insert_insert l i x y :
  <[i:=x]> (<[i:=y]> l) = <[i:=x]> l.
Proof. revert i. induction l; intros [|i]; f_equal/=; auto. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
602

603 604
Lemma list_lookup_other l i x :
  length l  1  l !! i = Some x   j y, j  i  l !! j = Some y.
Robbert Krebbers's avatar
Robbert Krebbers committed
605
Proof.
606
  intros. destruct i, l as [|x0 [|x1 l]]; simplify_eq/=.
607 608
  - by exists 1, x1.
  - by exists 0, x0.
Robbert Krebbers's avatar
Robbert Krebbers committed
609
Qed.
610 611
Lemma alter_app_l f l1 l2 i :
  i < length l1  alter f i (l1 ++ l2) = alter f i l1 ++ l2.
612
Proof. revert i. induction l1; intros [|?] ?; f_equal/=; auto with lia. Qed.
613
Lemma alter_app_r f l1 l2 i :
614
  alter f (length l1 + i) (l1 ++ l2) = l1 ++ alter f i l2.
615
Proof. revert i. induction l1; intros [|?]; f_equal/=; auto. Qed.
616 617
Lemma alter_app_r_alt f l1 l2 i :
  length l1  i  alter f i (l1 ++ l2) = l1 ++ alter f (i - length l1) l2.
618 619 620 621
Proof.
  intros. assert (i = length l1 + (i - length l1)) as Hi by lia.
  rewrite Hi at 1. by apply alter_app_r.
Qed.
622
Lemma list_alter_id f l i : ( x, f x = x)  alter f i l = l.
623
Proof. intros ?. revert i. induction l; intros [|?]; f_equal/=; auto. Qed.
624 625
Lemma list_alter_ext f g l k i :
  ( x, l !! i = Some x  f x = g x)  l = k  alter f i l = alter g i k.
626
Proof. intros H ->. revert i H. induction k; intros [|?] ?; f_equal/=; auto. Qed.
627 628
Lemma list_alter_compose f g l i :
  alter (f  g) i l = alter f i (alter g i l).
629
Proof. revert i. induction l; intros [|?]; f_equal/=; auto. Qed.
630 631
Lemma list_alter_commute f g l i j :
  i  j  alter f i (alter g j l) = alter g j (alter f i l).
632
Proof. revert i j. induction l; intros [|?][|?] ?; f_equal/=; auto with lia. Qed.
633 634
Lemma insert_app_l l1 l2 i x :
  i < length l1  <[i:=x]>(l1 ++ l2) = <[i:=x]>l1 ++ l2.
635
Proof. revert i. induction l1; intros [|?] ?; f_equal/=; auto with lia. Qed.
636
Lemma insert_app_r l1 l2 i x : <[length l1+i:=x]>(l1 ++ l2) = l1 ++ <[i:=x]>l2.
637
Proof. revert i. induction l1; intros [|?]; f_equal/=; auto. Qed.
638 639
Lemma insert_app_r_alt l1 l2 i x :
  length l1  i  <[i:=x]>(l1 ++ l2) = l1 ++ <[i - length l1:=x]>l2.
640 641 642 643
Proof.
  intros. assert (i = length l1 + (i - length l1)) as Hi by lia.
  rewrite Hi at 1. by apply insert_app_r.
Qed.
644
Lemma delete_middle l1 l2 x : delete (length l1) (l1 ++ x :: l2) = l1 ++ l2.
645
Proof. induction l1; f_equal/=; auto. Qed.
646

647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683
Lemma inserts_length l i k : length (list_inserts i k l) = length l.
Proof.
  revert i. induction k; intros ?; csimpl; rewrite ?insert_length; auto.
Qed.
Lemma list_lookup_inserts l i k j :
  i  j < i + length k  j < length l 
  list_inserts i k l !! j = k !! (j - i).
Proof.
  revert i j. induction k as [|y k IH]; csimpl; intros i j ??; [lia|].
  destruct (decide (i = j)) as [->|].
  { by rewrite list_lookup_insert, Nat.sub_diag
      by (rewrite inserts_length; lia). }
  rewrite list_lookup_insert_ne, IH by lia.
  by replace (j - i) with (S (j - S i)) by lia.
Qed.
Lemma list_lookup_inserts_lt l i k j :
  j < i  list_inserts i k l !! j = l !! j.
Proof.
  revert i j. induction k; intros i j ?; csimpl;
    rewrite ?list_lookup_insert_ne by lia; auto with lia.
Qed.
Lemma list_lookup_inserts_ge l i k j :
  i + length k  j  list_inserts i k l !! j = l !! j.
Proof.
  revert i j. induction k; csimpl; intros i j ?;
    rewrite ?list_lookup_insert_ne by lia; auto with lia.
Qed.
Lemma list_lookup_inserts_Some l i k j y :
  list_inserts i k l !! j = Some y 
    (j < i  i + length k  j)  l !! j = Some y 
    i  j < i + length k  j < length l  k !! (j - i) = Some y.
Proof.
  destruct (decide (j < i)).
  { rewrite list_lookup_inserts_lt by done; intuition lia. }
  destruct (decide (i + length k  j)).
  { rewrite list_lookup_inserts_ge by done; intuition lia. }
  split.
684
  - intros Hy. assert (j < length l).
685 686
    { rewrite <-(inserts_length l i k); eauto using lookup_lt_Some. }
    rewrite list_lookup_inserts in Hy by lia. intuition lia.
687
  - intuition. by rewrite list_lookup_inserts by lia.
688 689 690 691 692 693 694
Qed.
Lemma list_insert_inserts_lt l i j x k :
  i < j  <[i:=x]>(list_inserts j k l) = list_inserts j k (<[i:=x]>l).
Proof.
  revert i j. induction k; intros i j ?; simpl;
    rewrite 1?list_insert_commute by lia; auto with f_equal.
Qed.
695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730
Lemma list_inserts_app_l l1 l2 l3 i :
  list_inserts i (l1 ++ l2) l3 = list_inserts (length l1 + i) l2 (list_inserts i l1 l3).
Proof.
  revert l1 i; induction l1 as [|x l1 IH]; [done|].
  intro i. simpl. rewrite IH, Nat.add_succ_r. apply list_insert_inserts_lt. lia.
Qed.
Lemma list_inserts_app_r l1 l2 l3 i :
  list_inserts (length l2 + i) l1 (l2 ++ l3) = l2 ++ list_inserts i l1 l3.
Proof.
  revert l1 i; induction l1 as [|x l1 IH]; [done|].
  intros i. simpl. by rewrite plus_n_Sm, IH, insert_app_r.
Qed.
Lemma list_inserts_nil l1 i : list_inserts i l1 [] = [].
Proof.
  revert i; induction l1 as [|x l1 IH]; [done|].
  intro i. simpl. by rewrite IH.
Qed.
Lemma list_inserts_cons l1 l2 i x :
  list_inserts (S i) l1 (x :: l2) = x :: list_inserts i l1 l2.
Proof.
  revert i; induction l1 as [|y l1 IH]; [done|].
  intro i. simpl. by rewrite IH.
Qed.
Lemma list_inserts_0_r l1 l2 l3 :
  length l1 = length l2  list_inserts 0 l1 (l2 ++ l3) = l1 ++ l3.
Proof.
  revert l2. induction l1 as [|x l1 IH]; intros [|y l2] ?; simplify_eq/=; [done|].
  rewrite list_inserts_cons. simpl. by rewrite IH.
Qed.
Lemma list_inserts_0_l l1 l2 l3 :
  length l1 = length l3  list_inserts 0 (l1 ++ l2) l3 = l1.
Proof.
  revert l3. induction l1 as [|x l1 IH]; intros [|z l3] ?; simplify_eq/=.
  { by rewrite list_inserts_nil. }
  rewrite list_inserts_cons. simpl. by rewrite IH.
Qed.
731

732
(** ** Properties of the [elem_of] predicate *)
733
Lemma not_elem_of_nil x : x  [].
734
Proof. by inversion 1. Qed.
735
Lemma elem_of_nil x : x  []  False.
736
Proof. intuition. by destruct (not_elem_of_nil x). Qed.
737
Lemma elem_of_nil_inv l : ( x, x  l)  l = [].
738
Proof. destruct l. done. by edestruct 1; constructor. Qed.
739 740
Lemma elem_of_not_nil x l : x  l  l  [].
Proof. intros ? ->. by apply (elem_of_nil x). Qed.
741
Lemma elem_of_cons l x y : x  y :: l  x = y  x  l.
Robbert Krebbers's avatar
Robbert Krebbers committed
742
Proof. by split; [inversion 1; subst|intros [->|?]]; constructor. Qed.
743
Lemma not_elem_of_cons l x y : x  y :: l  x  y  x  l.
Robbert Krebbers's avatar
Robbert Krebbers committed
744
Proof. rewrite elem_of_cons. tauto. Qed.
745
Lemma elem_of_app l1 l2 x : x  l1 ++ l2  x  l1  x  l2.
746
Proof.
747
  induction l1.
748 749
  - split; [by right|]. intros [Hx|]; [|done]. by destruct (elem_of_nil x).
  - simpl. rewrite !elem_of_cons, IHl1. tauto.
750
Qed.
751
Lemma not_elem_of_app l1 l2 x : x  l1 ++ l2  x  l1  x  l2.
Robbert Krebbers's avatar
Robbert Krebbers committed
752
Proof. rewrite elem_of_app. tauto. Qed.
753
Lemma elem_of_list_singleton x y : x  [y]  x = y.
754
Proof. rewrite elem_of_cons, elem_of_nil. tauto. Qed.
755
Global Instance elem_of_list_permutation_proper x : Proper (() ==> iff) (x .).
756
Proof. induction 1; rewrite ?elem_of_nil, ?elem_of_cons; intuition. Qed.