fin_maps.v 98.7 KB
Newer Older
1
(* Copyright (c) 2012-2019, Coq-std++ developers. *)
2 3 4
(* This file is distributed under the terms of the BSD license. *)
(** Finite maps associate data to keys. This file defines an interface for
finite maps and collects some theory on it. Most importantly, it proves useful
5
induction principles for finite maps and implements the tactic
6
[simplify_map_eq] to simplify goals involving finite maps. *)
7
From Coq Require Import Permutation.
8
From stdpp Require Export relations orders vector fin_sets.
9 10
(* FIXME: This file needs a 'Proof Using' hint, but the default we use
   everywhere makes for lots of extra ssumptions. *)
11

12 13
(** * Axiomatization of finite maps *)
(** We require Leibniz equality to be extensional on finite maps. This of
14 15 16 17 18
course limits the space of finite map implementations, but since we are mainly
interested in finite maps with numbers as indexes, we do not consider this to
be a serious limitation. The main application of finite maps is to implement
the memory, where extensionality of Leibniz equality is very important for a
convenient use in the assertions of our axiomatic semantics. *)
19

Robbert Krebbers's avatar
Robbert Krebbers committed
20 21
(** Finiteness is axiomatized by requiring that each map can be translated
to an association list. The translation to association lists is used to
22
prove well founded recursion on finite maps. *)
23

24 25 26
(** Finite map implementations are required to implement the [merge] function
which enables us to give a generic implementation of [union_with],
[intersection_with], and [difference_with]. *)
27

28
Class FinMapToList K A M := map_to_list: M  list (K * A).
29 30
Hint Mode FinMapToList ! - - : typeclass_instances.
Hint Mode FinMapToList - - ! : typeclass_instances.
Robbert Krebbers's avatar
Robbert Krebbers committed
31

32 33
Class FinMap K M `{FMap M,  A, Lookup K A (M A),  A, Empty (M A),  A,
    PartialAlter K A (M A), OMap M, Merge M,  A, FinMapToList K A (M A),
34
    EqDecision K} := {
35 36
  map_eq {A} (m1 m2 : M A) : ( i, m1 !! i = m2 !! i)  m1 = m2;
  lookup_empty {A} i : ( : M A) !! i = None;
37 38 39 40
  lookup_partial_alter {A} f (m : M A) i :
    partial_alter f i m !! i = f (m !! i);
  lookup_partial_alter_ne {A} f (m : M A) i j :
    i  j  partial_alter f i m !! j = m !! j;
41
  lookup_fmap {A B} (f : A  B) (m : M A) i : (f <$> m) !! i = f <$> m !! i;
42
  NoDup_map_to_list {A} (m : M A) : NoDup (map_to_list m);
43 44
  elem_of_map_to_list {A} (m : M A) i x :
    (i,x)  map_to_list m  m !! i = Some x;
45 46 47 48
  lookup_omap {A B} (f : A  option B) (m : M A) i :
    omap f m !! i = m !! i = f; 
  lookup_merge {A B C} (f : option A  option B  option C)
      `{!DiagNone f} (m1 : M A) (m2 : M B) i :
49
    merge f m1 m2 !! i = f (m1 !! i) (m2 !! i)
Robbert Krebbers's avatar
Robbert Krebbers committed
50 51
}.

52 53 54
(** * Derived operations *)
(** All of the following functions are defined in a generic way for arbitrary
finite map implementations. These generic implementations do not cause a
55 56
significant performance loss, which justifies including them in the finite map
interface as primitive operations. *)
57 58 59 60 61 62 63 64 65
Instance map_insert `{PartialAlter K A M} : Insert K A M :=
  λ i x, partial_alter (λ _, Some x) i.
Instance map_alter `{PartialAlter K A M} : Alter K A M :=
  λ f, partial_alter (fmap f).
Instance map_delete `{PartialAlter K A M} : Delete K M :=
  partial_alter (λ _, None).
Instance map_singleton `{PartialAlter K A M, Empty M} :
  SingletonM K A M := λ i x, <[i:=x]> .

66
Definition list_to_map `{Insert K A M, Empty M} : list (K * A)  M :=
67
  fold_right (λ p, <[p.1:=p.2]>) .
68

69 70
Instance map_size `{FinMapToList K A M} : Size M := λ m, length (map_to_list m).

71
Definition map_to_set `{FinMapToList K A M,
72
    Singleton B C, Empty C, Union C} (f : K  A  B) (m : M) : C :=
73 74
  list_to_set (curry f <$> map_to_list m).
Definition set_to_map `{Elements B C, Insert K A M, Empty M}
75
    (f : B  K * A) (X : C) : M :=
76
  list_to_map (f <$> elements X).
Robbert Krebbers's avatar
Robbert Krebbers committed
77

78 79 80 81 82 83
Instance map_union_with `{Merge M} {A} : UnionWith A (M A) :=
  λ f, merge (union_with f).
Instance map_intersection_with `{Merge M} {A} : IntersectionWith A (M A) :=
  λ f, merge (intersection_with f).
Instance map_difference_with `{Merge M} {A} : DifferenceWith A (M A) :=
  λ f, merge (difference_with f).
Robbert Krebbers's avatar
Robbert Krebbers committed
84

85 86 87
(** Higher precedence to make sure it's not used for other types with a [Lookup]
instance, such as lists. *)
Instance map_equiv `{ A, Lookup K A (M A), Equiv A} : Equiv (M A) | 20 :=
88
  λ m1 m2,  i, m1 !! i  m2 !! i.
Robbert Krebbers's avatar
Robbert Krebbers committed
89

90
Definition map_Forall `{Lookup K A M} (P : K  A  Prop) : M  Prop :=
Robbert Krebbers's avatar
Robbert Krebbers committed
91
  λ m,  i x, m !! i = Some x  P i x.
Ralf Jung's avatar
Ralf Jung committed
92

93
Definition map_relation `{ A, Lookup K A (M A)} {A B} (R : A  B  Prop)
Robbert Krebbers's avatar
Robbert Krebbers committed
94 95
    (P : A  Prop) (Q : B  Prop) (m1 : M A) (m2 : M B) : Prop :=  i,
  option_relation R P Q (m1 !! i) (m2 !! i).
96
Definition map_included `{ A, Lookup K A (M A)} {A}
Robbert Krebbers's avatar
Robbert Krebbers committed
97
  (R : relation A) : relation (M A) := map_relation R (λ _, False) (λ _, True).
98
Definition map_disjoint `{ A, Lookup K A (M A)} {A} : relation (M A) :=
Robbert Krebbers's avatar
Robbert Krebbers committed
99
  map_relation (λ _ _, False) (λ _, True) (λ _, True).
100
Infix "##ₘ" := map_disjoint (at level 70) : stdpp_scope.
Tej Chajed's avatar
Tej Chajed committed
101
Hint Extern 0 (_ ## _) => symmetry; eassumption : core.
102 103
Notation "( m ##ₘ.)" := (map_disjoint m) (only parsing) : stdpp_scope.
Notation "(.##ₘ m )" := (λ m2, m2 ## m) (only parsing) : stdpp_scope.
104
Instance map_subseteq `{ A, Lookup K A (M A)} {A} : SubsetEq (M A) :=
Robbert Krebbers's avatar
Robbert Krebbers committed
105
  map_included (=).
Robbert Krebbers's avatar
Robbert Krebbers committed
106 107 108 109 110

(** The union of two finite maps only has a meaningful definition for maps
that are disjoint. However, as working with partial functions is inconvenient
in Coq, we define the union as a total function. In case both finite maps
have a value at the same index, we take the value of the first map. *)
111
Instance map_union `{Merge M} {A} : Union (M A) := union_with (λ x _, Some x).
112 113 114
Instance map_intersection `{Merge M} {A} : Intersection (M A) :=
  intersection_with (λ x _, Some x).

115 116
(** The difference operation removes all values from the first map whose
index contains a value in the second map as well. *)
117
Instance map_difference `{Merge M} {A} : Difference (M A) :=
118
  difference_with (λ _ _, None).
Robbert Krebbers's avatar
Robbert Krebbers committed
119

120 121
(** A stronger variant of map that allows the mapped function to use the index
of the elements. Implemented by conversion to lists, so not very efficient. *)
122 123
Definition map_imap `{ A, Insert K A (M A),  A, Empty (M A),
     A, FinMapToList K A (M A)} {A B} (f : K  A  option B) (m : M A) : M B :=
124
  list_to_map (omap (λ ix, (fst ix ,.) <$> curry f ix) (map_to_list m)).
125

126 127 128 129 130 131 132
(* The zip operation on maps combines two maps key-wise. The keys of resulting
map correspond to the keys that are in both maps. *)
Definition map_zip_with `{Merge M} {A B C} (f : A  B  C) : M A  M B  M C :=
  merge (λ mx my,
    match mx, my with Some x, Some y => Some (f x y) | _, _ => None end).
Notation map_zip := (map_zip_with pair).

133 134 135 136 137
(* Folds a function [f] over a map. The order in which the function is called
is unspecified. *)
Definition map_fold `{FinMapToList K A M} {B}
  (f : K  A  B  B) (b : B) : M  B := foldr (curry f) b  map_to_list.

138
Instance map_filter `{FinMapToList K A M, Insert K A M, Empty M} : Filter (K * A) M :=
139 140
  λ P _, map_fold (λ k v m, if decide (P (k,v)) then <[k := v]>m else m) .

141 142 143 144 145 146
Fixpoint map_seq `{Insert nat A M, Empty M} (start : nat) (xs : list A) : M :=
  match xs with
  | [] => 
  | x :: xs => <[start:=x]> (map_seq (S start) xs)
  end.

Dan Frumin's avatar
Dan Frumin committed
147 148 149 150
Instance finmap_lookup_total `{!Lookup K A (M A), !Inhabited A} : LookupTotal K A (M A) | 20 :=
  λ i m, default inhabitant (m !! i).
Typeclasses Opaque finmap_lookup_total.

151 152 153 154
(** * Theorems *)
Section theorems.
Context `{FinMap K M}.

Robbert Krebbers's avatar
Robbert Krebbers committed
155 156
(** ** Setoids *)
Section setoid.
157
  Context `{Equiv A}.
158

159 160 161 162
  Lemma map_equiv_lookup_l (m1 m2 : M A) i x :
    m1  m2  m1 !! i = Some x   y, m2 !! i = Some y  x  y.
  Proof. generalize (equiv_Some_inv_l (m1 !! i) (m2 !! i) x); naive_solver. Qed.

163
  Global Instance map_equivalence : Equivalence (@{A})  Equivalence (@{M A}).
Robbert Krebbers's avatar
Robbert Krebbers committed
164 165
  Proof.
    split.
166 167
    - by intros m i.
    - by intros m1 m2 ? i.
168
    - by intros m1 m2 m3 ?? i; trans (m2 !! i).
Robbert Krebbers's avatar
Robbert Krebbers committed
169
  Qed.
170
  Global Instance lookup_proper (i : K) : Proper ((@{M A}) ==> ()) (lookup i).
Robbert Krebbers's avatar
Robbert Krebbers committed
171
  Proof. by intros m1 m2 Hm. Qed.
Dan Frumin's avatar
Dan Frumin committed
172 173 174 175 176 177 178
  Global Instance lookup_total_proper (i : K) `{!Inhabited A} :
    Proper (@{A}) inhabitant 
    Proper ((@{M A}) ==> ()) (lookup_total i).
  Proof.
    intros ? m1 m2 Hm. unfold lookup_total, finmap_lookup_total.
    apply from_option_proper; auto. by intros ??.
  Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
179
  Global Instance partial_alter_proper :
180
    Proper ((() ==> ()) ==> (=) ==> () ==> (@{M A})) partial_alter.
Robbert Krebbers's avatar
Robbert Krebbers committed
181 182 183 184 185 186
  Proof.
    by intros f1 f2 Hf i ? <- m1 m2 Hm j; destruct (decide (i = j)) as [->|];
      rewrite ?lookup_partial_alter, ?lookup_partial_alter_ne by done;
      try apply Hf; apply lookup_proper.
  Qed.
  Global Instance insert_proper (i : K) :
187
    Proper (() ==> () ==> (@{M A})) (insert i).
Robbert Krebbers's avatar
Robbert Krebbers committed
188
  Proof. by intros ???; apply partial_alter_proper; [constructor|]. Qed.
189
  Global Instance singleton_proper k : Proper (() ==> (@{M A})) (singletonM k).
190 191 192 193
  Proof.
    intros ???; apply insert_proper; [done|].
    intros ?. rewrite lookup_empty; constructor.
  Qed.
194
  Global Instance delete_proper (i : K) : Proper (() ==> (@{M A})) (delete i).
Robbert Krebbers's avatar
Robbert Krebbers committed
195 196
  Proof. by apply partial_alter_proper; [constructor|]. Qed.
  Global Instance alter_proper :
197
    Proper ((() ==> ()) ==> (=) ==> () ==> (@{M A})) alter.
Robbert Krebbers's avatar
Robbert Krebbers committed
198 199 200 201
  Proof.
    intros ?? Hf; apply partial_alter_proper.
    by destruct 1; constructor; apply Hf.
  Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
202 203
  Lemma merge_ext `{Equiv B, Equiv C} (f g : option A  option B  option C)
      `{!DiagNone f, !DiagNone g} :
Robbert Krebbers's avatar
Robbert Krebbers committed
204
    (() ==> () ==> ())%signature f g 
205
    (() ==> () ==> (@{M _}))%signature (merge f) (merge g).
Robbert Krebbers's avatar
Robbert Krebbers committed
206 207 208 209
  Proof.
    by intros Hf ?? Hm1 ?? Hm2 i; rewrite !lookup_merge by done; apply Hf.
  Qed.
  Global Instance union_with_proper :
210
    Proper ((() ==> () ==> ()) ==> () ==> () ==>(@{M A})) union_with.
Robbert Krebbers's avatar
Robbert Krebbers committed
211 212 213
  Proof.
    intros ?? Hf ?? Hm1 ?? Hm2 i; apply (merge_ext _ _); auto.
    by do 2 destruct 1; first [apply Hf | constructor].
214
  Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
215
  Global Instance map_leibniz `{!LeibnizEquiv A} : LeibnizEquiv (M A).
216
  Proof. intros m1 m2 Hm; apply map_eq; intros i. apply leibniz_equiv, Hm. Qed.
217 218
  Lemma map_equiv_empty (m : M A) : m    m = .
  Proof.
219 220 221
    split; [intros Hm; apply map_eq; intros i|intros ->].
    - generalize (Hm i). by rewrite lookup_empty, equiv_None.
    - intros ?. rewrite lookup_empty; constructor.
222
  Qed.
223
  Global Instance map_fmap_proper `{Equiv B} (f : A  B) :
224
    Proper (() ==> ()) f  Proper (() ==> (@{M _})) (fmap f).
225 226 227
  Proof.
    intros ? m m' ? k; rewrite !lookup_fmap. by apply option_fmap_proper.
  Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
228 229 230 231 232 233 234
  Global Instance map_zip_with_proper `{Equiv B, Equiv C} (f : A  B  C) :
    Proper (() ==> () ==> ()) f 
    Proper (() ==> () ==> ()) (map_zip_with (M:=M) f).
  Proof.
    intros Hf m1 m1' Hm1 m2 m2' Hm2. apply merge_ext; try done.
    destruct 1; destruct 1; repeat f_equiv; constructor || done.
  Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
235 236 237
End setoid.

(** ** General properties *)
238 239 240 241 242
Lemma map_eq_iff {A} (m1 m2 : M A) : m1 = m2   i, m1 !! i = m2 !! i.
Proof. split. by intros ->. apply map_eq. Qed.
Lemma map_subseteq_spec {A} (m1 m2 : M A) :
  m1  m2   i x, m1 !! i = Some x  m2 !! i = Some x.
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
243
  unfold subseteq, map_subseteq, map_relation. split; intros Hm i;
244 245
    specialize (Hm i); destruct (m1 !! i), (m2 !! i); naive_solver.
Qed.
246
Global Instance map_included_preorder {A} (R : relation A) :
247
  PreOrder R  PreOrder (map_included R : relation (M A)).
248
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
249
  split; [intros m i; by destruct (m !! i); simpl|].
250
  intros m1 m2 m3 Hm12 Hm23 i; specialize (Hm12 i); specialize (Hm23 i).
251
  destruct (m1 !! i), (m2 !! i), (m3 !! i); simplify_eq/=;
252
    done || etrans; eauto.
253
Qed.
254
Global Instance map_subseteq_po : PartialOrder (@{M A}).
255
Proof.
256 257 258
  split; [apply _|].
  intros m1 m2; rewrite !map_subseteq_spec.
  intros; apply map_eq; intros i; apply option_eq; naive_solver.
259
Qed.
Dan Frumin's avatar
Dan Frumin committed
260 261 262 263 264 265 266 267 268
Lemma lookup_total_alt `{!Inhabited A} (m : M A) i :
  m !!! i = default inhabitant (m !! i).
Proof. reflexivity. Qed.
Lemma lookup_total_correct `{!Inhabited A} (m : M A) i x :
  m !! i = Some x  m !!! i = x.
Proof. rewrite lookup_total_alt. by intros ->. Qed.
Lemma lookup_lookup_total `{!Inhabited A} (m : M A) i :
  is_Some (m !! i)  m !! i = Some (m !!! i).
Proof. intros [x Hx]. by rewrite (lookup_total_correct m i x). Qed.
269 270
Lemma lookup_weaken {A} (m1 m2 : M A) i x :
  m1 !! i = Some x  m1  m2  m2 !! i = Some x.
271
Proof. rewrite !map_subseteq_spec. auto. Qed.
272 273 274 275 276 277
Lemma lookup_weaken_is_Some {A} (m1 m2 : M A) i :
  is_Some (m1 !! i)  m1  m2  is_Some (m2 !! i).
Proof. inversion 1. eauto using lookup_weaken. Qed.
Lemma lookup_weaken_None {A} (m1 m2 : M A) i :
  m2 !! i = None  m1  m2  m1 !! i = None.
Proof.
278 279
  rewrite map_subseteq_spec, !eq_None_not_Some.
  intros Hm2 Hm [??]; destruct Hm2; eauto.
280 281
Qed.
Lemma lookup_weaken_inv {A} (m1 m2 : M A) i x y :
282 283
  m1 !! i = Some x  m1  m2  m2 !! i = Some y  x = y.
Proof. intros Hm1 ? Hm2. eapply lookup_weaken in Hm1; eauto. congruence. Qed.
284 285 286 287 288 289
Lemma lookup_ne {A} (m : M A) i j : m !! i  m !! j  i  j.
Proof. congruence. Qed.
Lemma map_empty {A} (m : M A) : ( i, m !! i = None)  m = .
Proof. intros Hm. apply map_eq. intros. by rewrite Hm, lookup_empty. Qed.
Lemma lookup_empty_is_Some {A} i : ¬is_Some (( : M A) !! i).
Proof. rewrite lookup_empty. by inversion 1. Qed.
290
Lemma lookup_empty_Some {A} i (x : A) : ¬( : M A) !! i = Some x.
291 292
Proof. by rewrite lookup_empty. Qed.
Lemma map_subset_empty {A} (m : M A) : m  .
293 294 295
Proof.
  intros [_ []]. rewrite map_subseteq_spec. intros ??. by rewrite lookup_empty.
Qed.
296 297
Lemma map_fmap_empty {A B} (f : A  B) : f <$> ( : M A) = .
Proof. by apply map_eq; intros i; rewrite lookup_fmap, !lookup_empty. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
298 299 300 301 302
Lemma map_fmap_empty_inv {A B} (f : A  B) m : f <$> m =   m = .
Proof.
  intros Hm. apply map_eq; intros i. generalize (f_equal (lookup i) Hm).
  by rewrite lookup_fmap, !lookup_empty, fmap_None.
Qed.
303

304 305 306 307 308
Lemma map_subset_alt {A} (m1 m2 : M A) :
  m1  m2  m1  m2   i, m1 !! i = None  is_Some (m2 !! i).
Proof.
  rewrite strict_spec_alt. split.
  - intros [? Heq]; split; [done|].
Robbert Krebbers's avatar
Robbert Krebbers committed
309
    destruct (decide (Exists (λ ix, m1 !! ix.1 = None) (map_to_list m2)))
310 311 312 313 314 315 316 317 318 319
      as [[[i x] [?%elem_of_map_to_list ?]]%Exists_exists
         |Hm%(not_Exists_Forall _)]; [eauto|].
    destruct Heq; apply (anti_symm _), map_subseteq_spec; [done|intros i x Hi].
    assert (is_Some (m1 !! i)) as [x' ?].
    { by apply not_eq_None_Some,
        (proj1 (Forall_forall _ _) Hm (i,x)), elem_of_map_to_list. }
    by rewrite <-(lookup_weaken_inv m1 m2 i x' x).
  - intros [? (i&?&x&?)]; split; [done|]. congruence.
Qed.

320
(** ** Properties of the [partial_alter] operation *)
321 322 323
Lemma partial_alter_ext {A} (f g : option A  option A) (m : M A) i :
  ( x, m !! i = x  f x = g x)  partial_alter f i m = partial_alter g i m.
Proof.
324 325
  intros. apply map_eq; intros j. by destruct (decide (i = j)) as [->|?];
    rewrite ?lookup_partial_alter, ?lookup_partial_alter_ne; auto.
326 327
Qed.
Lemma partial_alter_compose {A} f g (m : M A) i:
328 329
  partial_alter (f  g) i m = partial_alter f i (partial_alter g i m).
Proof.
330 331
  intros. apply map_eq. intros ii. by destruct (decide (i = ii)) as [->|?];
    rewrite ?lookup_partial_alter, ?lookup_partial_alter_ne.
332
Qed.
333
Lemma partial_alter_commute {A} f g (m : M A) i j :
334
  i  j  partial_alter f i (partial_alter g j m) =
335 336
    partial_alter g j (partial_alter f i m).
Proof.
337 338 339 340
  intros. apply map_eq; intros jj. destruct (decide (jj = j)) as [->|?].
  { by rewrite lookup_partial_alter_ne,
      !lookup_partial_alter, lookup_partial_alter_ne. }
  destruct (decide (jj = i)) as [->|?].
341
  - by rewrite lookup_partial_alter,
342
     !lookup_partial_alter_ne, lookup_partial_alter by congruence.
343
  - by rewrite !lookup_partial_alter_ne by congruence.
344 345 346 347
Qed.
Lemma partial_alter_self_alt {A} (m : M A) i x :
  x = m !! i  partial_alter (λ _, x) i m = m.
Proof.
348 349
  intros. apply map_eq. intros ii. by destruct (decide (i = ii)) as [->|];
    rewrite ?lookup_partial_alter, ?lookup_partial_alter_ne.
350
Qed.
351
Lemma partial_alter_self {A} (m : M A) i : partial_alter (λ _, m !! i) i m = m.
352
Proof. by apply partial_alter_self_alt. Qed.
353
Lemma partial_alter_subseteq {A} f (m : M A) i :
354
  m !! i = None  m  partial_alter f i m.
355 356 357 358
Proof.
  rewrite map_subseteq_spec. intros Hi j x Hj.
  rewrite lookup_partial_alter_ne; congruence.
Qed.
359
Lemma partial_alter_subset {A} f (m : M A) i :
360
  m !! i = None  is_Some (f (m !! i))  m  partial_alter f i m.
361
Proof.
362 363
  intros Hi Hfi. apply map_subset_alt; split; [by apply partial_alter_subseteq|].
  exists i. by rewrite lookup_partial_alter.
364 365 366
Qed.

(** ** Properties of the [alter] operation *)
367
Lemma lookup_alter {A} (f : A  A) (m : M A) i : alter f i m !! i = f <$> m !! i.
368
Proof. unfold alter. apply lookup_partial_alter. Qed.
369 370
Lemma lookup_alter_ne {A} (f : A  A) (m : M A) i j :
  i  j  alter f i m !! j = m !! j.
371
Proof. unfold alter. apply lookup_partial_alter_ne. Qed.
372 373 374
Lemma alter_ext {A} (f g : A  A) (m : M A) i :
  ( x, m !! i = Some x  f x = g x)  alter f i m = alter g i m.
Proof. intro. apply partial_alter_ext. intros [x|] ?; f_equal/=; auto. Qed.
375 376 377 378 379 380 381 382 383
Lemma alter_compose {A} (f g : A  A) (m : M A) i:
  alter (f  g) i m = alter f i (alter g i m).
Proof.
  unfold alter, map_alter. rewrite <-partial_alter_compose.
  apply partial_alter_ext. by intros [?|].
Qed.
Lemma alter_commute {A} (f g : A  A) (m : M A) i j :
  i  j  alter f i (alter g j m) = alter g j (alter f i m).
Proof. apply partial_alter_commute. Qed.
384
Lemma lookup_alter_Some {A} (f : A  A) (m : M A) i j y :
385 386 387
  alter f i m !! j = Some y 
    (i = j   x, m !! j = Some x  y = f x)  (i  j  m !! j = Some y).
Proof.
388
  destruct (decide (i = j)) as [->|?].
389
  - rewrite lookup_alter. naive_solver (simplify_option_eq; eauto).
390
  - rewrite lookup_alter_ne by done. naive_solver.
391
Qed.
392
Lemma lookup_alter_None {A} (f : A  A) (m : M A) i j :
393 394
  alter f i m !! j = None  m !! j = None.
Proof.
395 396
  by destruct (decide (i = j)) as [->|?];
    rewrite ?lookup_alter, ?fmap_None, ?lookup_alter_ne.
397
Qed.
398
Lemma lookup_alter_is_Some {A} (f : A  A) (m : M A) i j :
399 400
  is_Some (alter f i m !! j)  is_Some (m !! j).
Proof. by rewrite <-!not_eq_None_Some, lookup_alter_None. Qed.
401
Lemma alter_id {A} (f : A  A) (m : M A) i :
Robbert Krebbers's avatar
Robbert Krebbers committed
402
  ( x, m !! i = Some x  f x = x)  alter f i m = m.
403
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
404
  intros Hi; apply map_eq; intros j; destruct (decide (i = j)) as [->|?].
405
  { rewrite lookup_alter; destruct (m !! j); f_equal/=; auto. }
Robbert Krebbers's avatar
Robbert Krebbers committed
406
  by rewrite lookup_alter_ne by done.
407
Qed.
408 409 410 411 412 413 414 415 416 417 418 419
Lemma alter_mono {A} f (m1 m2 : M A) i : m1  m2  alter f i m1  alter f i m2.
Proof.
  rewrite !map_subseteq_spec. intros ? j x.
  rewrite !lookup_alter_Some. naive_solver.
Qed.
Lemma alter_strict_mono {A} f (m1 m2 : M A) i :
  m1  m2  alter f i m1  alter f i m2.
Proof.
  rewrite !map_subset_alt.
  intros [? (j&?&?)]; split; auto using alter_mono.
  exists j. by rewrite lookup_alter_None, lookup_alter_is_Some.
Qed.
420 421 422 423 424 425 426 427 428 429

(** ** Properties of the [delete] operation *)
Lemma lookup_delete {A} (m : M A) i : delete i m !! i = None.
Proof. apply lookup_partial_alter. Qed.
Lemma lookup_delete_ne {A} (m : M A) i j : i  j  delete i m !! j = m !! j.
Proof. apply lookup_partial_alter_ne. Qed.
Lemma lookup_delete_Some {A} (m : M A) i j y :
  delete i m !! j = Some y  i  j  m !! j = Some y.
Proof.
  split.
430
  - destruct (decide (i = j)) as [->|?];
431
      rewrite ?lookup_delete, ?lookup_delete_ne; intuition congruence.
432
  - intros [??]. by rewrite lookup_delete_ne.
433
Qed.
434 435 436
Lemma lookup_delete_is_Some {A} (m : M A) i j :
  is_Some (delete i m !! j)  i  j  is_Some (m !! j).
Proof. unfold is_Some; setoid_rewrite lookup_delete_Some; naive_solver. Qed.
437 438 439
Lemma lookup_delete_None {A} (m : M A) i j :
  delete i m !! j = None  i = j  m !! j = None.
Proof.
440 441
  destruct (decide (i = j)) as [->|?];
    rewrite ?lookup_delete, ?lookup_delete_ne; tauto.
442 443 444 445 446 447 448 449 450
Qed.
Lemma delete_empty {A} i : delete i ( : M A) = .
Proof. rewrite <-(partial_alter_self ) at 2. by rewrite lookup_empty. Qed.
Lemma delete_commute {A} (m : M A) i j :
  delete i (delete j m) = delete j (delete i m).
Proof. destruct (decide (i = j)). by subst. by apply partial_alter_commute. Qed.
Lemma delete_insert_ne {A} (m : M A) i j x :
  i  j  delete i (<[j:=x]>m) = <[j:=x]>(delete i m).
Proof. intro. by apply partial_alter_commute. Qed.
451
Lemma delete_notin {A} (m : M A) i : m !! i = None  delete i m = m.
452
Proof.
453 454
  intros. apply map_eq. intros j. by destruct (decide (i = j)) as [->|?];
    rewrite ?lookup_delete, ?lookup_delete_ne.
455
Qed.
456 457 458
Lemma delete_idemp {A} (m : M A) i :
  delete i (delete i m) = delete i m.
Proof. by setoid_rewrite <-partial_alter_compose. Qed.
459 460 461 462 463 464 465 466 467
Lemma delete_partial_alter {A} (m : M A) i f :
  m !! i = None  delete i (partial_alter f i m) = m.
Proof.
  intros. unfold delete, map_delete. rewrite <-partial_alter_compose.
  unfold compose. by apply partial_alter_self_alt.
Qed.
Lemma delete_insert {A} (m : M A) i x :
  m !! i = None  delete i (<[i:=x]>m) = m.
Proof. apply delete_partial_alter. Qed.
468 469 470
Lemma delete_insert_delete {A} (m : M A) i x :
  delete i (<[i:=x]>m) = delete i m.
Proof. by setoid_rewrite <-partial_alter_compose. Qed.
471 472
Lemma insert_delete {A} (m : M A) i x : <[i:=x]>(delete i m) = <[i:=x]> m.
Proof. symmetry; apply (partial_alter_compose (λ _, Some x)). Qed.
473
Lemma delete_subseteq {A} (m : M A) i : delete i m  m.
474 475 476
Proof.
  rewrite !map_subseteq_spec. intros j x. rewrite lookup_delete_Some. tauto.
Qed.
477
Lemma delete_subset {A} (m : M A) i : is_Some (m !! i)  delete i m  m.
478
Proof.
479 480
  intros [x ?]; apply map_subset_alt; split; [apply delete_subseteq|].
  exists i. rewrite lookup_delete; eauto.
481
Qed.
482
Lemma delete_mono {A} (m1 m2 : M A) i : m1  m2  delete i m1  delete i m2.
483
Proof.
484 485
  rewrite !map_subseteq_spec. intros ? j x.
  rewrite !lookup_delete_Some. intuition eauto.
486 487 488 489 490
Qed.

(** ** Properties of the [insert] operation *)
Lemma lookup_insert {A} (m : M A) i x : <[i:=x]>m !! i = Some x.
Proof. unfold insert. apply lookup_partial_alter. Qed.
491
Lemma lookup_insert_rev {A}  (m : M A) i x y : <[i:=x]>m !! i = Some y  x = y.
492
Proof. rewrite lookup_insert. congruence. Qed.
493
Lemma lookup_insert_ne {A} (m : M A) i j x : i  j  <[i:=x]>m !! j = m !! j.
494
Proof. unfold insert. apply lookup_partial_alter_ne. Qed.
495 496
Lemma insert_insert {A} (m : M A) i x y : <[i:=x]>(<[i:=y]>m) = <[i:=x]>m.
Proof. unfold insert, map_insert. by rewrite <-partial_alter_compose. Qed.
497 498 499 500 501 502 503
Lemma insert_commute {A} (m : M A) i j x y :
  i  j  <[i:=x]>(<[j:=y]>m) = <[j:=y]>(<[i:=x]>m).
Proof. apply partial_alter_commute. Qed.
Lemma lookup_insert_Some {A} (m : M A) i j x y :
  <[i:=x]>m !! j = Some y  (i = j  x = y)  (i  j  m !! j = Some y).
Proof.
  split.
504
  - destruct (decide (i = j)) as [->|?];
505
      rewrite ?lookup_insert, ?lookup_insert_ne; intuition congruence.
506
  - intros [[-> ->]|[??]]; [apply lookup_insert|]. by rewrite lookup_insert_ne.
507
Qed.
508 509 510
Lemma lookup_insert_is_Some {A} (m : M A) i j x :
  is_Some (<[i:=x]>m !! j)  i = j  i  j  is_Some (m !! j).
Proof. unfold is_Some; setoid_rewrite lookup_insert_Some; naive_solver. Qed.
511 512 513
Lemma lookup_insert_is_Some' {A} (m : M A) i j x :
  is_Some (<[i:=x]>m !! j)  i = j  is_Some (m !! j).
Proof. rewrite lookup_insert_is_Some. destruct (decide (i=j)); naive_solver. Qed.
514 515 516
Lemma lookup_insert_None {A} (m : M A) i j x :
  <[i:=x]>m !! j = None  m !! j = None  i  j.
Proof.
517 518 519
  split; [|by intros [??]; rewrite lookup_insert_ne].
  destruct (decide (i = j)) as [->|];
    rewrite ?lookup_insert, ?lookup_insert_ne; intuition congruence.
520
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
521
Lemma insert_id {A} (m : M A) i x : m !! i = Some x  <[i:=x]>m = m.
522 523 524 525 526 527 528 529
Proof.
  intros; apply map_eq; intros j; destruct (decide (i = j)) as [->|];
    by rewrite ?lookup_insert, ?lookup_insert_ne by done.
Qed.
Lemma insert_included {A} R `{!Reflexive R} (m : M A) i x :
  ( y, m !! i = Some y  R y x)  map_included R m (<[i:=x]>m).
Proof.
  intros ? j; destruct (decide (i = j)) as [->|].
530 531
  - rewrite lookup_insert. destruct (m !! j); simpl; eauto.
  - rewrite lookup_insert_ne by done. by destruct (m !! j); simpl.
532
Qed.
533
Lemma insert_empty {A} i (x : A) : <[i:=x]>( : M A) = {[i := x]}.
534 535 536
Proof. done. Qed.
Lemma insert_non_empty {A} (m : M A) i x : <[i:=x]>m  .
Proof.
537
  intros Hi%(f_equal (.!! i)). by rewrite lookup_insert, lookup_empty in Hi.
538 539
Qed.

540
Lemma insert_subseteq {A} (m : M A) i x : m !! i = None  m  <[i:=x]>m.
541
Proof. apply partial_alter_subseteq. Qed.
542
Lemma insert_subset {A} (m : M A) i x : m !! i = None  m  <[i:=x]>m.
543
Proof. intro. apply partial_alter_subset; eauto. Qed.
544 545 546 547 548
Lemma insert_mono {A} (m1 m2 : M A) i x : m1  m2  <[i:=x]> m1  <[i:=x]>m2.
Proof.
  rewrite !map_subseteq_spec.
  intros Hm j y. rewrite !lookup_insert_Some. naive_solver.
Qed.
549
Lemma insert_subseteq_r {A} (m1 m2 : M A) i x :
550
  m1 !! i = None  m1  m2  m1  <[i:=x]>m2.
551
Proof.
552
  intros. trans (<[i:=x]> m1); eauto using insert_subseteq, insert_mono.
553
Qed.
554

555
Lemma insert_delete_subseteq {A} (m1 m2 : M A) i x :
556
  m1 !! i = None  <[i:=x]> m1  m2  m1  delete i m2.
557
Proof.
558 559 560 561
  rewrite !map_subseteq_spec. intros Hi Hix j y Hj.
  destruct (decide (i = j)) as [->|]; [congruence|].
  rewrite lookup_delete_ne by done.
  apply Hix; by rewrite lookup_insert_ne by done.
562 563
Qed.
Lemma delete_insert_subseteq {A} (m1 m2 : M A) i x :
564
  m1 !! i = Some x  delete i m1  m2  m1  <[i:=x]> m2.
565
Proof.
566 567
  rewrite !map_subseteq_spec.
  intros Hix Hi j y Hj. destruct (decide (i = j)) as [->|?].
568 569
  - rewrite lookup_insert. congruence.
  - rewrite lookup_insert_ne by done. apply Hi. by rewrite lookup_delete_ne.
570 571
Qed.
Lemma insert_delete_subset {A} (m1 m2 : M A) i x :
572
  m1 !! i = None  <[i:=x]> m1  m2  m1  delete i m2.
573
Proof.
574 575 576
  intros ? [Hm12 Hm21]; split; [eauto using insert_delete_subseteq|].
  contradict Hm21. apply delete_insert_subseteq; auto.
  eapply lookup_weaken, Hm12. by rewrite lookup_insert.
577 578
Qed.
Lemma insert_subset_inv {A} (m1 m2 : M A) i x :
579
  m1 !! i = None  <[i:=x]> m1  m2 
580 581
   m2', m2 = <[i:=x]>m2'  m1  m2'  m2' !! i = None.
Proof.
582
  intros Hi Hm1m2. exists (delete i m2). split_and?.
583 584
  - rewrite insert_delete, insert_id. done.
    eapply lookup_weaken, strict_include; eauto. by rewrite lookup_insert.
585 586
  - eauto using insert_delete_subset.
  - by rewrite lookup_delete.
587 588 589 590
Qed.

(** ** Properties of the singleton maps *)
Lemma lookup_singleton_Some {A} i j (x y : A) :
591
  ({[i := x]} : M A) !! j = Some y  i = j  x = y.
592
Proof.
593
  rewrite <-insert_empty,lookup_insert_Some, lookup_empty; intuition congruence.
594
Qed.
595 596
Lemma lookup_singleton_None {A} i j (x : A) :
  ({[i := x]} : M A) !! j = None  i  j.
597
Proof. rewrite <-insert_empty,lookup_insert_None, lookup_empty; tauto. Qed.
598
Lemma lookup_singleton {A} i (x : A) : ({[i := x]} : M A) !! i = Some x.
599
Proof. by rewrite lookup_singleton_Some. Qed.
600 601
Lemma lookup_singleton_ne {A} i j (x : A) :
  i  j  ({[i := x]} : M A) !! j = None.
602
Proof. by rewrite lookup_singleton_None. Qed.
603
Lemma map_non_empty_singleton {A} i (x : A) : {[i := x]}  ( : M A).
604
Proof.
605
  intros Hix. apply (f_equal (.!! i)) in Hix.
606 607
  by rewrite lookup_empty, lookup_singleton in Hix.
Qed.
608
Lemma insert_singleton {A} i (x y : A) : <[i:=y]>({[i := x]} : M A) = {[i := y]}.
609
Proof.
610
  unfold singletonM, map_singleton, insert, map_insert.
611 612
  by rewrite <-partial_alter_compose.
Qed.
613 614
Lemma alter_singleton {A} (f : A  A) i x :
  alter f i ({[i := x]} : M A) = {[i := f x]}.
615
Proof.
616
  intros. apply map_eq. intros i'. destruct (decide (i = i')) as [->|?].
617 618
  - by rewrite lookup_alter, !lookup_singleton.
  - by rewrite lookup_alter_ne, !lookup_singleton_ne.
619 620
Qed.
Lemma alter_singleton_ne {A} (f : A  A) i j x :
621
  i  j  alter f i ({[j := x]} : M A) = {[j := x]}.
622
Proof.
623 624
  intros. apply map_eq; intros i'. by destruct (decide (i = i')) as [->|?];
    rewrite ?lookup_alter, ?lookup_singleton_ne, ?lookup_alter_ne by done.
625
Qed.
626
Lemma singleton_non_empty {A} i (x : A) : {[i:=x]}  ( : M A).
627
Proof. apply insert_non_empty. Qed.
628
Lemma delete_singleton {A} i (x : A) : delete i {[i := x]} = ( : M A).
629
Proof. setoid_rewrite <-partial_alter_compose. apply delete_empty. Qed.
630
Lemma delete_singleton_ne {A} i j (x : A) :
631
  i  j  delete i ({[j := x]} : M A) = {[j := x]}.
632
Proof. intro. apply delete_notin. by apply lookup_singleton_ne. Qed.
633

634 635 636 637 638
(** ** Properties of the map operations *)
Lemma fmap_empty {A B} (f : A  B) : f <$>  = .
Proof. apply map_empty; intros i. by rewrite lookup_fmap, lookup_empty. Qed.
Lemma omap_empty {A B} (f : A  option B) : omap f  = .
Proof. apply map_empty; intros i. by rewrite lookup_omap, lookup_empty. Qed.
639 640 641
Lemma fmap_insert {A B} (f: A  B) m i x: f <$> <[i:=x]>m = <[i:=f x]>(f <$> m).
Proof.
  apply map_eq; intros i'; destruct (decide (i' = i)) as [->|].
642 643
  - by rewrite lookup_fmap, !lookup_insert.
  - by rewrite lookup_fmap, !lookup_insert_ne, lookup_fmap by done.
644
Qed.
645 646 647 648 649 650
Lemma fmap_delete {A B} (f: A  B) m i: f <$> delete i m = delete i (f <$> m).
Proof.
  apply map_eq; intros i'; destruct (decide (i' = i)) as [->|].
  - by rewrite lookup_fmap, !lookup_delete.
  - by rewrite lookup_fmap, !lookup_delete_ne, lookup_fmap by done.
Qed.
651 652 653 654
Lemma omap_insert {A B} (f : A  option B) m i x y :
  f x = Some y  omap f (<[i:=x]>m) = <[i:=y]>(omap f m).
Proof.
  intros; apply map_eq; intros i'; destruct (decide (i' = i)) as [->|].
655 656
  - by rewrite lookup_omap, !lookup_insert.
  - by rewrite lookup_omap, !lookup_insert_ne, lookup_omap by done.
657
Qed.
658
Lemma map_fmap_singleton {A B} (f : A  B) i x : f <$> {[i := x]} = {[i := f x]}.
659 660 661
Proof.
  by unfold singletonM, map_singleton; rewrite fmap_insert, map_fmap_empty.
Qed.
662
Lemma omap_singleton {A B} (f : A  option B) i x y :
663
  f x = Some y  omap f {[ i := x ]} = {[ i := y ]}.
664
Proof.
665 666
  intros. unfold singletonM, map_singleton.
  by erewrite omap_insert, omap_empty by eauto.
667
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
668 669 670
Lemma map_fmap_id {A} (m : M A) : id <$> m = m.
Proof. apply map_eq; intros i; by rewrite lookup_fmap, option_fmap_id. Qed.
Lemma map_fmap_compose {A B C} (f : A  B) (g : B  C) (m : M A) :
671
  g  f <$> m = g <$> (f <$> m).
Robbert Krebbers's avatar
Robbert Krebbers committed
672
Proof. apply map_eq; intros i; by rewrite !lookup_fmap,option_fmap_compose. Qed.
673
Lemma map_fmap_equiv_ext {A} `{Equiv B} (f1 f2 : A  B) (m : M A) :
674 675 676 677 678
  ( i x, m !! i = Some x  f1 x  f2 x)  f1 <$> m  f2 <$> m.
Proof.
  intros Hi i; rewrite !lookup_fmap.
  destruct (m !! i) eqn:?; constructor; eauto.
Qed.
679
Lemma map_fmap_ext {A B} (f1 f2 : A  B) (m : M A) :
Robbert Krebbers's avatar
Robbert Krebbers committed
680 681 682 683 684
  ( i x, m !! i = Some x  f1 x = f2 x)  f1 <$> m = f2 <$> m.
Proof.
  intros Hi; apply map_eq; intros i; rewrite !lookup_fmap.
  by destruct (m !! i) eqn:?; simpl; erewrite ?Hi by eauto.
Qed.
685
Lemma omap_ext {A B} (f1 f2 : A  option B) (m : M A) :
Robbert Krebbers's avatar
Robbert Krebbers committed
686 687 688 689 690
  ( i x, m !! i = Some x  f1 x = f2 x)  omap f1 m = omap f2 m.
Proof.
  intros Hi; apply map_eq; intros i; rewrite !lookup_omap.
  by destruct (m !! i) eqn:?; simpl; erewrite ?Hi by eauto.
Qed.
691

692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711
Lemma map_fmap_mono {A B} (f : A  B) (m1 m2 : M A) :
  m1  m2  f <$> m1  f <$> m2.
Proof.
  rewrite !map_subseteq_spec; intros Hm i x.
  rewrite !lookup_fmap, !fmap_Some. naive_solver.
Qed.
Lemma map_fmap_strict_mono {A B} (f : A  B) (m1 m2 : M A) :
  m1  m2  f <$> m1  f <$> m2.
Proof.
  rewrite !map_subset_alt.
  intros [? (j&?&?)]; split; auto using map_fmap_mono.
  exists j. by rewrite !lookup_fmap, fmap_None, fmap_is_Some.
Qed.
Lemma map_omap_mono {A B} (f : A  option B) (m1 m2 : M A) :
  m1  m2  omap f m1  omap f m2.
Proof.
  rewrite !map_subseteq_spec; intros Hm i x.
  rewrite !lookup_omap, !bind_Some. naive_solver.
Qed.

712
(** ** Properties of conversion to lists *)
713 714 715
Lemma elem_of_map_to_list' {A} (m : M A) ix :
  ix  map_to_list m  m !! ix.1 = Some (ix.2).
Proof. destruct ix as [i x]. apply elem_of_map_to_list. Qed.
716
Lemma map_to_list_unique {A} (m : M A) i x y :
717
  (i,x)  map_to_list m  (i,y)  map_to_list m  x = y.
718
Proof. rewrite !elem_of_map_to_list. congruence. Qed.
719
Lemma NoDup_fst_map_to_list {A} (m : M A) : NoDup ((map_to_list m).*1).
720
Proof. eauto using NoDup_fmap_fst, map_to_list_unique, NoDup_map_to_list. Qed.
721 722
Lemma elem_of_list_to_map_1' {A} (l : list (K * A)) i x :
  ( y, (i,y)  l  x = y)  (i,x)  l  (list_to_map l : M A) !! i = Some x.
723 724 725
Proof.
  induction l as [|[j y] l IH]; csimpl; [by rewrite elem_of_nil|].
  setoid_rewrite elem_of_cons.
726
  intros Hdup [?|?]; simplify_eq; [by rewrite lookup_insert|].
727
  destruct (decide (i = j)) as [->|].
728
  - rewrite lookup_insert; f_equal; eauto using eq_sym.
729
  - rewrite lookup_insert_ne by done; eauto.