fin_maps.v 98.7 KB
Newer Older
1
(* Copyright (c) 2012-2019, Coq-std++ developers. *)
2
3
4
(* This file is distributed under the terms of the BSD license. *)
(** Finite maps associate data to keys. This file defines an interface for
finite maps and collects some theory on it. Most importantly, it proves useful
5
induction principles for finite maps and implements the tactic
6
[simplify_map_eq] to simplify goals involving finite maps. *)
7
From Coq Require Import Permutation.
8
From stdpp Require Export relations orders vector fin_sets.
9
10
(* FIXME: This file needs a 'Proof Using' hint, but the default we use
   everywhere makes for lots of extra ssumptions. *)
11

12
13
(** * Axiomatization of finite maps *)
(** We require Leibniz equality to be extensional on finite maps. This of
14
15
16
17
18
course limits the space of finite map implementations, but since we are mainly
interested in finite maps with numbers as indexes, we do not consider this to
be a serious limitation. The main application of finite maps is to implement
the memory, where extensionality of Leibniz equality is very important for a
convenient use in the assertions of our axiomatic semantics. *)
19

Robbert Krebbers's avatar
Robbert Krebbers committed
20
21
(** Finiteness is axiomatized by requiring that each map can be translated
to an association list. The translation to association lists is used to
22
prove well founded recursion on finite maps. *)
23

24
25
26
(** Finite map implementations are required to implement the [merge] function
which enables us to give a generic implementation of [union_with],
[intersection_with], and [difference_with]. *)
27

28
Class FinMapToList K A M := map_to_list: M  list (K * A).
29
30
Hint Mode FinMapToList ! - - : typeclass_instances.
Hint Mode FinMapToList - - ! : typeclass_instances.
Robbert Krebbers's avatar
Robbert Krebbers committed
31

32
33
Class FinMap K M `{FMap M,  A, Lookup K A (M A),  A, Empty (M A),  A,
    PartialAlter K A (M A), OMap M, Merge M,  A, FinMapToList K A (M A),
34
    EqDecision K} := {
35
36
  map_eq {A} (m1 m2 : M A) : ( i, m1 !! i = m2 !! i)  m1 = m2;
  lookup_empty {A} i : ( : M A) !! i = None;
37
38
39
40
  lookup_partial_alter {A} f (m : M A) i :
    partial_alter f i m !! i = f (m !! i);
  lookup_partial_alter_ne {A} f (m : M A) i j :
    i  j  partial_alter f i m !! j = m !! j;
41
  lookup_fmap {A B} (f : A  B) (m : M A) i : (f <$> m) !! i = f <$> m !! i;
42
  NoDup_map_to_list {A} (m : M A) : NoDup (map_to_list m);
43
44
  elem_of_map_to_list {A} (m : M A) i x :
    (i,x)  map_to_list m  m !! i = Some x;
45
46
47
48
  lookup_omap {A B} (f : A  option B) (m : M A) i :
    omap f m !! i = m !! i = f; 
  lookup_merge {A B C} (f : option A  option B  option C)
      `{!DiagNone f} (m1 : M A) (m2 : M B) i :
49
    merge f m1 m2 !! i = f (m1 !! i) (m2 !! i)
Robbert Krebbers's avatar
Robbert Krebbers committed
50
51
}.

52
53
54
(** * Derived operations *)
(** All of the following functions are defined in a generic way for arbitrary
finite map implementations. These generic implementations do not cause a
55
56
significant performance loss, which justifies including them in the finite map
interface as primitive operations. *)
57
58
59
60
61
62
63
64
65
Instance map_insert `{PartialAlter K A M} : Insert K A M :=
  λ i x, partial_alter (λ _, Some x) i.
Instance map_alter `{PartialAlter K A M} : Alter K A M :=
  λ f, partial_alter (fmap f).
Instance map_delete `{PartialAlter K A M} : Delete K M :=
  partial_alter (λ _, None).
Instance map_singleton `{PartialAlter K A M, Empty M} :
  SingletonM K A M := λ i x, <[i:=x]> .

66
Definition list_to_map `{Insert K A M, Empty M} : list (K * A)  M :=
67
  fold_right (λ p, <[p.1:=p.2]>) .
68

69
70
Instance map_size `{FinMapToList K A M} : Size M := λ m, length (map_to_list m).

71
Definition map_to_set `{FinMapToList K A M,
72
    Singleton B C, Empty C, Union C} (f : K  A  B) (m : M) : C :=
73
74
  list_to_set (curry f <$> map_to_list m).
Definition set_to_map `{Elements B C, Insert K A M, Empty M}
75
    (f : B  K * A) (X : C) : M :=
76
  list_to_map (f <$> elements X).
Robbert Krebbers's avatar
Robbert Krebbers committed
77

78
79
80
81
82
83
Instance map_union_with `{Merge M} {A} : UnionWith A (M A) :=
  λ f, merge (union_with f).
Instance map_intersection_with `{Merge M} {A} : IntersectionWith A (M A) :=
  λ f, merge (intersection_with f).
Instance map_difference_with `{Merge M} {A} : DifferenceWith A (M A) :=
  λ f, merge (difference_with f).
Robbert Krebbers's avatar
Robbert Krebbers committed
84

85
86
87
(** Higher precedence to make sure it's not used for other types with a [Lookup]
instance, such as lists. *)
Instance map_equiv `{ A, Lookup K A (M A), Equiv A} : Equiv (M A) | 20 :=
88
  λ m1 m2,  i, m1 !! i  m2 !! i.
Robbert Krebbers's avatar
Robbert Krebbers committed
89

90
Definition map_Forall `{Lookup K A M} (P : K  A  Prop) : M  Prop :=
Robbert Krebbers's avatar
Robbert Krebbers committed
91
  λ m,  i x, m !! i = Some x  P i x.
Ralf Jung's avatar
Ralf Jung committed
92

93
Definition map_relation `{ A, Lookup K A (M A)} {A B} (R : A  B  Prop)
Robbert Krebbers's avatar
Robbert Krebbers committed
94
95
    (P : A  Prop) (Q : B  Prop) (m1 : M A) (m2 : M B) : Prop :=  i,
  option_relation R P Q (m1 !! i) (m2 !! i).
96
Definition map_included `{ A, Lookup K A (M A)} {A}
Robbert Krebbers's avatar
Robbert Krebbers committed
97
  (R : relation A) : relation (M A) := map_relation R (λ _, False) (λ _, True).
98
Definition map_disjoint `{ A, Lookup K A (M A)} {A} : relation (M A) :=
Robbert Krebbers's avatar
Robbert Krebbers committed
99
  map_relation (λ _ _, False) (λ _, True) (λ _, True).
100
Infix "##ₘ" := map_disjoint (at level 70) : stdpp_scope.
Tej Chajed's avatar
Tej Chajed committed
101
Hint Extern 0 (_ ## _) => symmetry; eassumption : core.
102
103
Notation "( m ##ₘ.)" := (map_disjoint m) (only parsing) : stdpp_scope.
Notation "(.##ₘ m )" := (λ m2, m2 ## m) (only parsing) : stdpp_scope.
104
Instance map_subseteq `{ A, Lookup K A (M A)} {A} : SubsetEq (M A) :=
Robbert Krebbers's avatar
Robbert Krebbers committed
105
  map_included (=).
Robbert Krebbers's avatar
Robbert Krebbers committed
106
107
108
109
110

(** The union of two finite maps only has a meaningful definition for maps
that are disjoint. However, as working with partial functions is inconvenient
in Coq, we define the union as a total function. In case both finite maps
have a value at the same index, we take the value of the first map. *)
111
Instance map_union `{Merge M} {A} : Union (M A) := union_with (λ x _, Some x).
112
113
114
Instance map_intersection `{Merge M} {A} : Intersection (M A) :=
  intersection_with (λ x _, Some x).

115
116
(** The difference operation removes all values from the first map whose
index contains a value in the second map as well. *)
117
Instance map_difference `{Merge M} {A} : Difference (M A) :=
118
  difference_with (λ _ _, None).
Robbert Krebbers's avatar
Robbert Krebbers committed
119

120
121
(** A stronger variant of map that allows the mapped function to use the index
of the elements. Implemented by conversion to lists, so not very efficient. *)
122
123
Definition map_imap `{ A, Insert K A (M A),  A, Empty (M A),
     A, FinMapToList K A (M A)} {A B} (f : K  A  option B) (m : M A) : M B :=
124
  list_to_map (omap (λ ix, (fst ix ,.) <$> curry f ix) (map_to_list m)).
125

126
127
128
129
130
131
132
(* The zip operation on maps combines two maps key-wise. The keys of resulting
map correspond to the keys that are in both maps. *)
Definition map_zip_with `{Merge M} {A B C} (f : A  B  C) : M A  M B  M C :=
  merge (λ mx my,
    match mx, my with Some x, Some y => Some (f x y) | _, _ => None end).
Notation map_zip := (map_zip_with pair).

133
134
135
136
137
(* Folds a function [f] over a map. The order in which the function is called
is unspecified. *)
Definition map_fold `{FinMapToList K A M} {B}
  (f : K  A  B  B) (b : B) : M  B := foldr (curry f) b  map_to_list.

138
Instance map_filter `{FinMapToList K A M, Insert K A M, Empty M} : Filter (K * A) M :=
139
140
  λ P _, map_fold (λ k v m, if decide (P (k,v)) then <[k := v]>m else m) .

141
142
143
144
145
146
Fixpoint map_seq `{Insert nat A M, Empty M} (start : nat) (xs : list A) : M :=
  match xs with
  | [] => 
  | x :: xs => <[start:=x]> (map_seq (S start) xs)
  end.

Dan Frumin's avatar
Dan Frumin committed
147
148
149
150
Instance finmap_lookup_total `{!Lookup K A (M A), !Inhabited A} : LookupTotal K A (M A) | 20 :=
  λ i m, default inhabitant (m !! i).
Typeclasses Opaque finmap_lookup_total.

151
152
153
154
(** * Theorems *)
Section theorems.
Context `{FinMap K M}.

Robbert Krebbers's avatar
Robbert Krebbers committed
155
156
(** ** Setoids *)
Section setoid.
157
  Context `{Equiv A}.
158

159
160
161
162
  Lemma map_equiv_lookup_l (m1 m2 : M A) i x :
    m1  m2  m1 !! i = Some x   y, m2 !! i = Some y  x  y.
  Proof. generalize (equiv_Some_inv_l (m1 !! i) (m2 !! i) x); naive_solver. Qed.

163
  Global Instance map_equivalence : Equivalence (@{A})  Equivalence (@{M A}).
Robbert Krebbers's avatar
Robbert Krebbers committed
164
165
  Proof.
    split.
166
167
    - by intros m i.
    - by intros m1 m2 ? i.
168
    - by intros m1 m2 m3 ?? i; trans (m2 !! i).
Robbert Krebbers's avatar
Robbert Krebbers committed
169
  Qed.
170
  Global Instance lookup_proper (i : K) : Proper ((@{M A}) ==> ()) (lookup i).
Robbert Krebbers's avatar
Robbert Krebbers committed
171
  Proof. by intros m1 m2 Hm. Qed.
Dan Frumin's avatar
Dan Frumin committed
172
173
174
175
176
177
178
  Global Instance lookup_total_proper (i : K) `{!Inhabited A} :
    Proper (@{A}) inhabitant 
    Proper ((@{M A}) ==> ()) (lookup_total i).
  Proof.
    intros ? m1 m2 Hm. unfold lookup_total, finmap_lookup_total.
    apply from_option_proper; auto. by intros ??.
  Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
179
  Global Instance partial_alter_proper :
180
    Proper ((() ==> ()) ==> (=) ==> () ==> (@{M A})) partial_alter.
Robbert Krebbers's avatar
Robbert Krebbers committed
181
182
183
184
185
186
  Proof.
    by intros f1 f2 Hf i ? <- m1 m2 Hm j; destruct (decide (i = j)) as [->|];
      rewrite ?lookup_partial_alter, ?lookup_partial_alter_ne by done;
      try apply Hf; apply lookup_proper.
  Qed.
  Global Instance insert_proper (i : K) :
187
    Proper (() ==> () ==> (@{M A})) (insert i).
Robbert Krebbers's avatar
Robbert Krebbers committed
188
  Proof. by intros ???; apply partial_alter_proper; [constructor|]. Qed.
189
  Global Instance singleton_proper k : Proper (() ==> (@{M A})) (singletonM k).
190
191
192
193
  Proof.
    intros ???; apply insert_proper; [done|].
    intros ?. rewrite lookup_empty; constructor.
  Qed.
194
  Global Instance delete_proper (i : K) : Proper (() ==> (@{M A})) (delete i).
Robbert Krebbers's avatar
Robbert Krebbers committed
195
196
  Proof. by apply partial_alter_proper; [constructor|]. Qed.
  Global Instance alter_proper :
197
    Proper ((() ==> ()) ==> (=) ==> () ==> (@{M A})) alter.
Robbert Krebbers's avatar
Robbert Krebbers committed
198
199
200
201
  Proof.
    intros ?? Hf; apply partial_alter_proper.
    by destruct 1; constructor; apply Hf.
  Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
202
203
  Lemma merge_ext `{Equiv B, Equiv C} (f g : option A  option B  option C)
      `{!DiagNone f, !DiagNone g} :
Robbert Krebbers's avatar
Robbert Krebbers committed
204
    (() ==> () ==> ())%signature f g 
205
    (() ==> () ==> (@{M _}))%signature (merge f) (merge g).
Robbert Krebbers's avatar
Robbert Krebbers committed
206
207
208
209
  Proof.
    by intros Hf ?? Hm1 ?? Hm2 i; rewrite !lookup_merge by done; apply Hf.
  Qed.
  Global Instance union_with_proper :
210
    Proper ((() ==> () ==> ()) ==> () ==> () ==>(@{M A})) union_with.
Robbert Krebbers's avatar
Robbert Krebbers committed
211
212
213
  Proof.
    intros ?? Hf ?? Hm1 ?? Hm2 i; apply (merge_ext _ _); auto.
    by do 2 destruct 1; first [apply Hf | constructor].
214
  Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
215
  Global Instance map_leibniz `{!LeibnizEquiv A} : LeibnizEquiv (M A).
216
  Proof. intros m1 m2 Hm; apply map_eq; intros i. apply leibniz_equiv, Hm. Qed.
217
218
  Lemma map_equiv_empty (m : M A) : m    m = .
  Proof.
219
220
221
    split; [intros Hm; apply map_eq; intros i|intros ->].
    - generalize (Hm i). by rewrite lookup_empty, equiv_None.
    - intros ?. rewrite lookup_empty; constructor.
222
  Qed.
223
  Global Instance map_fmap_proper `{Equiv B} (f : A  B) :
224
    Proper (() ==> ()) f  Proper (() ==> (@{M _})) (fmap f).
225
226
227
  Proof.
    intros ? m m' ? k; rewrite !lookup_fmap. by apply option_fmap_proper.
  Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
228
229
230
231
232
233
234
  Global Instance map_zip_with_proper `{Equiv B, Equiv C} (f : A  B  C) :
    Proper (() ==> () ==> ()) f 
    Proper (() ==> () ==> ()) (map_zip_with (M:=M) f).
  Proof.
    intros Hf m1 m1' Hm1 m2 m2' Hm2. apply merge_ext; try done.
    destruct 1; destruct 1; repeat f_equiv; constructor || done.
  Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
235
236
237
End setoid.

(** ** General properties *)
238
239
240
241
242
Lemma map_eq_iff {A} (m1 m2 : M A) : m1 = m2   i, m1 !! i = m2 !! i.
Proof. split. by intros ->. apply map_eq. Qed.
Lemma map_subseteq_spec {A} (m1 m2 : M A) :
  m1  m2   i x, m1 !! i = Some x  m2 !! i = Some x.
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
243
  unfold subseteq, map_subseteq, map_relation. split; intros Hm i;
244
245
    specialize (Hm i); destruct (m1 !! i), (m2 !! i); naive_solver.
Qed.
246
Global Instance map_included_preorder {A} (R : relation A) :
247
  PreOrder R  PreOrder (map_included R : relation (M A)).
248
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
249
  split; [intros m i; by destruct (m !! i); simpl|].
250
  intros m1 m2 m3 Hm12 Hm23 i; specialize (Hm12 i); specialize (Hm23 i).
251
  destruct (m1 !! i), (m2 !! i), (m3 !! i); simplify_eq/=;
252
    done || etrans; eauto.
253
Qed.
254
Global Instance map_subseteq_po : PartialOrder (@{M A}).
255
Proof.
256
257
258
  split; [apply _|].
  intros m1 m2; rewrite !map_subseteq_spec.
  intros; apply map_eq; intros i; apply option_eq; naive_solver.
259
Qed.
Dan Frumin's avatar
Dan Frumin committed
260
261
262
263
264
265
266
267
268
Lemma lookup_total_alt `{!Inhabited A} (m : M A) i :
  m !!! i = default inhabitant (m !! i).
Proof. reflexivity. Qed.
Lemma lookup_total_correct `{!Inhabited A} (m : M A) i x :
  m !! i = Some x  m !!! i = x.
Proof. rewrite lookup_total_alt. by intros ->. Qed.
Lemma lookup_lookup_total `{!Inhabited A} (m : M A) i :
  is_Some (m !! i)  m !! i = Some (m !!! i).
Proof. intros [x Hx]. by rewrite (lookup_total_correct m i x). Qed.
269
270
Lemma lookup_weaken {A} (m1 m2 : M A) i x :
  m1 !! i = Some x  m1  m2  m2 !! i = Some x.
271
Proof. rewrite !map_subseteq_spec. auto. Qed.
272
273
274
275
276
277
Lemma lookup_weaken_is_Some {A} (m1 m2 : M A) i :
  is_Some (m1 !! i)  m1  m2  is_Some (m2 !! i).
Proof. inversion 1. eauto using lookup_weaken. Qed.
Lemma lookup_weaken_None {A} (m1 m2 : M A) i :
  m2 !! i = None  m1  m2  m1 !! i = None.
Proof.
278
279
  rewrite map_subseteq_spec, !eq_None_not_Some.
  intros Hm2 Hm [??]; destruct Hm2; eauto.
280
281
Qed.
Lemma lookup_weaken_inv {A} (m1 m2 : M A) i x y :
282
283
  m1 !! i = Some x  m1  m2  m2 !! i = Some y  x = y.
Proof. intros Hm1 ? Hm2. eapply lookup_weaken in Hm1; eauto. congruence. Qed.
284
285
286
287
288
289
Lemma lookup_ne {A} (m : M A) i j : m !! i  m !! j  i  j.
Proof. congruence. Qed.
Lemma map_empty {A} (m : M A) : ( i, m !! i = None)  m = .
Proof. intros Hm. apply map_eq. intros. by rewrite Hm, lookup_empty. Qed.
Lemma lookup_empty_is_Some {A} i : ¬is_Some (( : M A) !! i).
Proof. rewrite lookup_empty. by inversion 1. Qed.
290
Lemma lookup_empty_Some {A} i (x : A) : ¬( : M A) !! i = Some x.
291
292
Proof. by rewrite lookup_empty. Qed.
Lemma map_subset_empty {A} (m : M A) : m  .
293
294
295
Proof.
  intros [_ []]. rewrite map_subseteq_spec. intros ??. by rewrite lookup_empty.
Qed.
296
297
Lemma map_fmap_empty {A B} (f : A  B) : f <$> ( : M A) = .
Proof. by apply map_eq; intros i; rewrite lookup_fmap, !lookup_empty. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
298
299
300
301
302
Lemma map_fmap_empty_inv {A B} (f : A  B) m : f <$> m =   m = .
Proof.
  intros Hm. apply map_eq; intros i. generalize (f_equal (lookup i) Hm).
  by rewrite lookup_fmap, !lookup_empty, fmap_None.
Qed.
303

304
305
306
307
308
Lemma map_subset_alt {A} (m1 m2 : M A) :
  m1  m2  m1  m2   i, m1 !! i = None  is_Some (m2 !! i).
Proof.
  rewrite strict_spec_alt. split.
  - intros [? Heq]; split; [done|].
Robbert Krebbers's avatar
Robbert Krebbers committed
309
    destruct (decide (Exists (λ ix, m1 !! ix.1 = None) (map_to_list m2)))
310
311
312
313
314
315
316
317
318
319
      as [[[i x] [?%elem_of_map_to_list ?]]%Exists_exists
         |Hm%(not_Exists_Forall _)]; [eauto|].
    destruct Heq; apply (anti_symm _), map_subseteq_spec; [done|intros i x Hi].
    assert (is_Some (m1 !! i)) as [x' ?].
    { by apply not_eq_None_Some,
        (proj1 (Forall_forall _ _) Hm (i,x)), elem_of_map_to_list. }
    by rewrite <-(lookup_weaken_inv m1 m2 i x' x).
  - intros [? (i&?&x&?)]; split; [done|]. congruence.
Qed.

320
(** ** Properties of the [partial_alter] operation *)
321
322
323
Lemma partial_alter_ext {A} (f g : option A  option A) (m : M A) i :
  ( x, m !! i = x  f x = g x)  partial_alter f i m = partial_alter g i m.
Proof.
324
325
  intros. apply map_eq; intros j. by destruct (decide (i = j)) as [->|?];
    rewrite ?lookup_partial_alter, ?lookup_partial_alter_ne; auto.
326
327
Qed.
Lemma partial_alter_compose {A} f g (m : M A) i:
328
329
  partial_alter (f  g) i m = partial_alter f i (partial_alter g i m).
Proof.
330
331
  intros. apply map_eq. intros ii. by destruct (decide (i = ii)) as [->|?];
    rewrite ?lookup_partial_alter, ?lookup_partial_alter_ne.
332
Qed.
333
Lemma partial_alter_commute {A} f g (m : M A) i j :
334
  i  j  partial_alter f i (partial_alter g j m) =
335
336
    partial_alter g j (partial_alter f i m).
Proof.
337
338
339
340
  intros. apply map_eq; intros jj. destruct (decide (jj = j)) as [->|?].
  { by rewrite lookup_partial_alter_ne,
      !lookup_partial_alter, lookup_partial_alter_ne. }
  destruct (decide (jj = i)) as [->|?].
341
  - by rewrite lookup_partial_alter,
342
     !lookup_partial_alter_ne, lookup_partial_alter by congruence.
343
  - by rewrite !lookup_partial_alter_ne by congruence.
344
345
346
347
Qed.
Lemma partial_alter_self_alt {A} (m : M A) i x :
  x = m !! i  partial_alter (λ _, x) i m = m.
Proof.
348
349
  intros. apply map_eq. intros ii. by destruct (decide (i = ii)) as [->|];
    rewrite ?lookup_partial_alter, ?lookup_partial_alter_ne.
350
Qed.
351
Lemma partial_alter_self {A} (m : M A) i : partial_alter (λ _, m !! i) i m = m.
352
Proof. by apply partial_alter_self_alt. Qed.
353
Lemma partial_alter_subseteq {A} f (m : M A) i :
354
  m !! i = None  m  partial_alter f i m.
355
356
357
358
Proof.
  rewrite map_subseteq_spec. intros Hi j x Hj.
  rewrite lookup_partial_alter_ne; congruence.
Qed.
359
Lemma partial_alter_subset {A} f (m : M A) i :
360
  m !! i = None  is_Some (f (m !! i))  m  partial_alter f i m.
361
Proof.
362
363
  intros Hi Hfi. apply map_subset_alt; split; [by apply partial_alter_subseteq|].
  exists i. by rewrite lookup_partial_alter.
364
365
366
Qed.

(** ** Properties of the [alter] operation *)
367
Lemma lookup_alter {A} (f : A  A) (m : M A) i : alter f i m !! i = f <$> m !! i.
368
Proof. unfold alter. apply lookup_partial_alter. Qed.
369
370
Lemma lookup_alter_ne {A} (f : A  A) (m : M A) i j :
  i  j  alter f i m !! j = m !! j.
371
Proof. unfold alter. apply lookup_partial_alter_ne. Qed.
372
373
374
Lemma alter_ext {A} (f g : A  A) (m : M A) i :
  ( x, m !! i = Some x  f x = g x)  alter f i m = alter g i m.
Proof. intro. apply partial_alter_ext. intros [x|] ?; f_equal/=; auto. Qed.
375
376
377
378
379
380
381
382
383
Lemma alter_compose {A} (f g : A  A) (m : M A) i:
  alter (f  g) i m = alter f i (alter g i m).
Proof.
  unfold alter, map_alter. rewrite <-partial_alter_compose.
  apply partial_alter_ext. by intros [?|].
Qed.
Lemma alter_commute {A} (f g : A  A) (m : M A) i j :
  i  j  alter f i (alter g j m) = alter g j (alter f i m).
Proof. apply partial_alter_commute. Qed.
384
Lemma lookup_alter_Some {A} (f : A  A) (m : M A) i j y :
385
386
387
  alter f i m !! j = Some y 
    (i = j   x, m !! j = Some x  y = f x)  (i  j  m !! j = Some y).
Proof.
388
  destruct (decide (i = j)) as [->|?].
389
  - rewrite lookup_alter. naive_solver (simplify_option_eq; eauto).
390
  - rewrite lookup_alter_ne by done. naive_solver.
391
Qed.
392
Lemma lookup_alter_None {A} (f : A  A) (m : M A) i j :
393
394
  alter f i m !! j = None  m !! j = None.
Proof.
395
396
  by destruct (decide (i = j)) as [->|?];
    rewrite ?lookup_alter, ?fmap_None, ?lookup_alter_ne.
397
Qed.
398
Lemma lookup_alter_is_Some {A} (f : A  A) (m : M A) i j :
399
400
  is_Some (alter f i m !! j)  is_Some (m !! j).
Proof. by rewrite <-!not_eq_None_Some, lookup_alter_None. Qed.
401
Lemma alter_id {A} (f : A  A) (m : M A) i :
Robbert Krebbers's avatar
Robbert Krebbers committed
402
  ( x, m !! i = Some x  f x = x)  alter f i m = m.
403
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
404
  intros Hi; apply map_eq; intros j; destruct (decide (i = j)) as [->|?].
405
  { rewrite lookup_alter; destruct (m !! j); f_equal/=; auto. }
Robbert Krebbers's avatar
Robbert Krebbers committed
406
  by rewrite lookup_alter_ne by done.
407
Qed.
408
409
410
411
412
413
414
415
416
417
418
419
Lemma alter_mono {A} f (m1 m2 : M A) i : m1  m2  alter f i m1  alter f i m2.
Proof.
  rewrite !map_subseteq_spec. intros ? j x.
  rewrite !lookup_alter_Some. naive_solver.
Qed.
Lemma alter_strict_mono {A} f (m1 m2 : M A) i :
  m1  m2  alter f i m1  alter f i m2.
Proof.
  rewrite !map_subset_alt.
  intros [? (j&?&?)]; split; auto using alter_mono.
  exists j. by rewrite lookup_alter_None, lookup_alter_is_Some.
Qed.
420
421
422
423
424
425
426
427
428
429

(** ** Properties of the [delete] operation *)
Lemma lookup_delete {A} (m : M A) i : delete i m !! i = None.
Proof. apply lookup_partial_alter. Qed.
Lemma lookup_delete_ne {A} (m : M A) i j : i  j  delete i m !! j = m !! j.
Proof. apply lookup_partial_alter_ne. Qed.
Lemma lookup_delete_Some {A} (m : M A) i j y :
  delete i m !! j = Some y  i  j  m !! j = Some y.
Proof.
  split.
430
  - destruct (decide (i = j)) as [->|?];
431
      rewrite ?lookup_delete, ?lookup_delete_ne; intuition congruence.
432
  - intros [??]. by rewrite lookup_delete_ne.
433
Qed.
434
435
436
Lemma lookup_delete_is_Some {A} (m : M A) i j :
  is_Some (delete i m !! j)  i  j  is_Some (m !! j).
Proof. unfold is_Some; setoid_rewrite lookup_delete_Some; naive_solver. Qed.
437
438
439
Lemma lookup_delete_None {A} (m : M A) i j :
  delete i m !! j = None  i = j  m !! j = None.
Proof.
440
441
  destruct (decide (i = j)) as [->|?];
    rewrite ?lookup_delete, ?lookup_delete_ne; tauto.
442
443
444
445
446
447
448
449
450
Qed.
Lemma delete_empty {A} i : delete i ( : M A) = .
Proof. rewrite <-(partial_alter_self ) at 2. by rewrite lookup_empty. Qed.
Lemma delete_commute {A} (m : M A) i j :
  delete i (delete j m) = delete j (delete i m).
Proof. destruct (decide (i = j)). by subst. by apply partial_alter_commute. Qed.
Lemma delete_insert_ne {A} (m : M A) i j x :
  i  j  delete i (<[j:=x]>m) = <[j:=x]>(delete i m).
Proof. intro. by apply partial_alter_commute. Qed.
451
Lemma delete_notin {A} (m : M A) i : m !! i = None  delete i m = m.
452
Proof.
453
454
  intros. apply map_eq. intros j. by destruct (decide (i = j)) as [->|?];
    rewrite ?lookup_delete, ?lookup_delete_ne.
455
Qed.
456
457
458
Lemma delete_idemp {A} (m : M A) i :
  delete i (delete i m) = delete i m.
Proof. by setoid_rewrite <-partial_alter_compose. Qed.
459
460
461
462
463
464
465
466
467
Lemma delete_partial_alter {A} (m : M A) i f :
  m !! i = None  delete i (partial_alter f i m) = m.
Proof.
  intros. unfold delete, map_delete. rewrite <-partial_alter_compose.
  unfold compose. by apply partial_alter_self_alt.
Qed.
Lemma delete_insert {A} (m : M A) i x :
  m !! i = None  delete i (<[i:=x]>m) = m.
Proof. apply delete_partial_alter. Qed.
468
469
470
Lemma delete_insert_delete {A} (m : M A) i x :
  delete i (<[i:=x]>m) = delete i m.
Proof. by setoid_rewrite <-partial_alter_compose. Qed.
471
472
Lemma insert_delete {A} (m : M A) i x : <[i:=x]>(delete i m) = <[i:=x]> m.
Proof. symmetry; apply (partial_alter_compose (λ _, Some x)). Qed.
473
Lemma delete_subseteq {A} (m : M A) i : delete i m  m.
474
475
476
Proof.
  rewrite !map_subseteq_spec. intros j x. rewrite lookup_delete_Some. tauto.
Qed.
477
Lemma delete_subset {A} (m : M A) i : is_Some (m !! i)  delete i m  m.
478
Proof.
479
480
  intros [x ?]; apply map_subset_alt; split; [apply delete_subseteq|].
  exists i. rewrite lookup_delete; eauto.
481
Qed.
482
Lemma delete_mono {A} (m1 m2 : M A) i : m1  m2  delete i m1  delete i m2.
483
Proof.
484
485
  rewrite !map_subseteq_spec. intros ? j x.
  rewrite !lookup_delete_Some. intuition eauto.
486
487
488
489
490
Qed.

(** ** Properties of the [insert] operation *)
Lemma lookup_insert {A} (m : M A) i x : <[i:=x]>m !! i = Some x.
Proof. unfold insert. apply lookup_partial_alter. Qed.
491
Lemma lookup_insert_rev {A}  (m : M A) i x y : <[i:=x]>m !! i = Some y  x = y.
492
Proof. rewrite lookup_insert. congruence. Qed.
493
Lemma lookup_insert_ne {A} (m : M A) i j x : i  j  <[i:=x]>m !! j = m !! j.
494
Proof. unfold insert. apply lookup_partial_alter_ne. Qed.
495
496
Lemma insert_insert {A} (m : M A) i x y : <[i:=x]>(<[i:=y]>m) = <[i:=x]>m.
Proof. unfold insert, map_insert. by rewrite <-partial_alter_compose. Qed.
497
498
499
500
501
502
503
Lemma insert_commute {A} (m : M A) i j x y :
  i  j  <[i:=x]>(<[j:=y]>m) = <[j:=y]>(<[i:=x]>m).
Proof. apply partial_alter_commute. Qed.
Lemma lookup_insert_Some {A} (m : M A) i j x y :
  <[i:=x]>m !! j = Some y  (i = j  x = y)  (i  j  m !! j = Some y).
Proof.
  split.
504
  - destruct (decide (i = j)) as [->|?];
505
      rewrite ?lookup_insert, ?lookup_insert_ne; intuition congruence.
506
  - intros [[-> ->]|[??]]; [apply lookup_insert|]. by rewrite lookup_insert_ne.
507
Qed.
508
509
510
Lemma lookup_insert_is_Some {A} (m : M A) i j x :
  is_Some (<[i:=x]>m !! j)  i = j  i  j  is_Some (m !! j).
Proof. unfold is_Some; setoid_rewrite lookup_insert_Some; naive_solver. Qed.
511
512
513
Lemma lookup_insert_is_Some' {A} (m : M A) i j x :
  is_Some (<[i:=x]>m !! j)  i = j  is_Some (m !! j).
Proof. rewrite lookup_insert_is_Some. destruct (decide (i=j)); naive_solver. Qed.
514
515
516
Lemma lookup_insert_None {A} (m : M A) i j x :
  <[i:=x]>m !! j = None  m !! j = None  i  j.
Proof.
517
518
519
  split; [|by intros [??]; rewrite lookup_insert_ne].
  destruct (decide (i = j)) as [->|];
    rewrite ?lookup_insert, ?lookup_insert_ne; intuition congruence.
520
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
521
Lemma insert_id {A} (m : M A) i x : m !! i = Some x  <[i:=x]>m = m.
522
523
524
525
526
527
528
529
Proof.
  intros; apply map_eq; intros j; destruct (decide (i = j)) as [->|];
    by rewrite ?lookup_insert, ?lookup_insert_ne by done.
Qed.
Lemma insert_included {A} R `{!Reflexive R} (m : M A) i x :
  ( y, m !! i = Some y  R y x)  map_included R m (<[i:=x]>m).
Proof.
  intros ? j; destruct (decide (i = j)) as [->|].
530
531
  - rewrite lookup_insert. destruct (m !! j); simpl; eauto.
  - rewrite lookup_insert_ne by done. by destruct (m !! j); simpl.
532
Qed.
533
Lemma insert_empty {A} i (x : A) : <[i:=x]>( : M A) = {[i := x]}.
534
535
536
Proof. done. Qed.
Lemma insert_non_empty {A} (m : M A) i x : <[i:=x]>m  .
Proof.
537
  intros Hi%(f_equal (.!! i)). by rewrite lookup_insert, lookup_empty in Hi.
538
539
Qed.

540
Lemma insert_subseteq {A} (m : M A) i x : m !! i = None  m  <[i:=x]>m.
541
Proof. apply partial_alter_subseteq. Qed.
542
Lemma insert_subset {A} (m : M A) i x : m !! i = None  m  <[i:=x]>m.
543
Proof. intro. apply partial_alter_subset; eauto. Qed.
544
545
546
547
548
Lemma insert_mono {A} (m1 m2 : M A) i x : m1  m2  <[i:=x]> m1  <[i:=x]>m2.
Proof.
  rewrite !map_subseteq_spec.
  intros Hm j y. rewrite !lookup_insert_Some. naive_solver.
Qed.
549
Lemma insert_subseteq_r {A} (m1 m2 : M A) i x :
550
  m1 !! i = None  m1  m2  m1  <[i:=x]>m2.
551
Proof.
552
  intros. trans (<[i:=x]> m1); eauto using insert_subseteq, insert_mono.
553
Qed.
554

555
Lemma insert_delete_subseteq {A} (m1 m2 : M A) i x :
556
  m1 !! i = None  <[i:=x]> m1  m2  m1  delete i m2.
557
Proof.
558
559
560
561
  rewrite !map_subseteq_spec. intros Hi Hix j y Hj.
  destruct (decide (i = j)) as [->|]; [congruence|].
  rewrite lookup_delete_ne by done.
  apply Hix; by rewrite lookup_insert_ne by done.
562
563
Qed.
Lemma delete_insert_subseteq {A} (m1 m2 : M A) i x :
564
  m1 !! i = Some x  delete i m1  m2  m1  <[i:=x]> m2.
565
Proof.
566
567
  rewrite !map_subseteq_spec.
  intros Hix Hi j y Hj. destruct (decide (i = j)) as [->|?].
568
569
  - rewrite lookup_insert. congruence.
  - rewrite lookup_insert_ne by done. apply Hi. by rewrite lookup_delete_ne.
570
571
Qed.
Lemma insert_delete_subset {A} (m1 m2 : M A) i x :
572
  m1 !! i = None  <[i:=x]> m1  m2  m1  delete i m2.
573
Proof.
574
575
576
  intros ? [Hm12 Hm21]; split; [eauto using insert_delete_subseteq|].
  contradict Hm21. apply delete_insert_subseteq; auto.
  eapply lookup_weaken, Hm12. by rewrite lookup_insert.
577
578
Qed.
Lemma insert_subset_inv {A} (m1 m2 : M A) i x :
579
  m1 !! i = None  <[i:=x]> m1  m2 
580
581
   m2', m2 = <[i:=x]>m2'  m1  m2'  m2' !! i = None.
Proof.
582
  intros Hi Hm1m2. exists (delete i m2). split_and?.
583
584
  - rewrite insert_delete, insert_id. done.
    eapply lookup_weaken, strict_include; eauto. by rewrite lookup_insert.
585
586
  - eauto using insert_delete_subset.
  - by rewrite lookup_delete.
587
588
589
590
Qed.

(** ** Properties of the singleton maps *)
Lemma lookup_singleton_Some {A} i j (x y : A) :
591
  ({[i := x]} : M A) !! j = Some y  i = j  x = y.
592
Proof.
593
  rewrite <-insert_empty,lookup_insert_Some, lookup_empty; intuition congruence.
594
Qed.
595
596
Lemma lookup_singleton_None {A} i j (x : A) :
  ({[i := x]} : M A) !! j = None  i  j.
597
Proof. rewrite <-insert_empty,lookup_insert_None, lookup_empty; tauto. Qed.
598
Lemma lookup_singleton {A} i (x : A) : ({[i := x]} : M A) !! i = Some x.
599
Proof. by rewrite lookup_singleton_Some. Qed.
600
601
Lemma lookup_singleton_ne {A} i j (x : A) :
  i  j  ({[i := x]} : M A) !! j = None.
602
Proof. by rewrite lookup_singleton_None. Qed.
603
Lemma map_non_empty_singleton {A} i (x : A) : {[i := x]}  ( : M A).
604
Proof.
605
  intros Hix. apply (f_equal (.!! i)) in Hix.
606
607
  by rewrite lookup_empty, lookup_singleton in Hix.
Qed.
608
Lemma insert_singleton {A} i (x y : A) : <[i:=y]>({[i := x]} : M A) = {[i := y]}.
609
Proof.
610
  unfold singletonM, map_singleton, insert, map_insert.
611
612
  by rewrite <-partial_alter_compose.
Qed.
613
614
Lemma alter_singleton {A} (f : A  A) i x :
  alter f i ({[i := x]} : M A) = {[i := f x]}.
615
Proof.
616
  intros. apply map_eq. intros i'. destruct (decide (i = i')) as [->|?].
617
618
  - by rewrite lookup_alter, !lookup_singleton.
  - by rewrite lookup_alter_ne, !lookup_singleton_ne.
619
620
Qed.
Lemma alter_singleton_ne {A} (f : A  A) i j x :
621
  i  j  alter f i ({[j := x]} : M A) = {[j := x]}.
622
Proof.
623
624
  intros. apply map_eq; intros i'. by destruct (decide (i = i')) as [->|?];
    rewrite ?lookup_alter, ?lookup_singleton_ne, ?lookup_alter_ne by done.
625
Qed.
626
Lemma singleton_non_empty {A} i (x : A) : {[i:=x]}  ( : M A).
627
Proof. apply insert_non_empty. Qed.
628
Lemma delete_singleton {A} i (x : A) : delete i {[i := x]} = ( : M A).
629
Proof. setoid_rewrite <-partial_alter_compose. apply delete_empty. Qed.
630
Lemma delete_singleton_ne {A} i j (x : A) :
631
  i  j  delete i ({[j := x]} : M A) = {[j := x]}.
632
Proof. intro. apply delete_notin. by apply lookup_singleton_ne. Qed.
633

634
635
636
637
638
(** ** Properties of the map operations *)
Lemma fmap_empty {A B} (f : A  B) : f <$>  = .
Proof. apply map_empty; intros i. by rewrite lookup_fmap, lookup_empty. Qed.
Lemma omap_empty {A B} (f : A  option B) : omap f  = .
Proof. apply map_empty; intros i. by rewrite lookup_omap, lookup_empty. Qed.
639
640
641
Lemma fmap_insert {A B} (f: A  B) m i x: f <$> <[i:=x]>m = <[i:=f x]>(f <$> m).
Proof.
  apply map_eq; intros i'; destruct (decide (i' = i)) as [->|].
642
643
  - by rewrite lookup_fmap, !lookup_insert.
  - by rewrite lookup_fmap, !lookup_insert_ne, lookup_fmap by done.
644
Qed.
645
646
647
648
649
650
Lemma fmap_delete {A B} (f: A  B) m i: f <$> delete i m = delete i (f <$> m).
Proof.
  apply map_eq; intros i'; destruct (decide (i' = i)) as [->|].
  - by rewrite lookup_fmap, !lookup_delete.
  - by rewrite lookup_fmap, !lookup_delete_ne, lookup_fmap by done.
Qed.
651
652
653
654
Lemma omap_insert {A B} (f : A  option B) m i x y :
  f x = Some y  omap f (<[i:=x]>m) = <[i:=y]>(omap f m).
Proof.
  intros; apply map_eq; intros i'; destruct (decide (i' = i)) as [->|].
655
656
  - by rewrite lookup_omap, !lookup_insert.
  - by rewrite lookup_omap, !lookup_insert_ne, lookup_omap by done.
657
Qed.
658
Lemma map_fmap_singleton {A B} (f : A  B) i x : f <$> {[i := x]} = {[i := f x]}.
659
660
661
Proof.
  by unfold singletonM, map_singleton; rewrite fmap_insert, map_fmap_empty.
Qed.
662
Lemma omap_singleton {A B} (f : A  option B) i x y :
663
  f x = Some y  omap f {[ i := x ]} = {[ i := y ]}.
664
Proof.
665
666
  intros. unfold singletonM, map_singleton.
  by erewrite omap_insert, omap_empty by eauto.
667
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
668
669
670
Lemma map_fmap_id {A} (m : M A) : id <$> m = m.
Proof. apply map_eq; intros i; by rewrite lookup_fmap, option_fmap_id. Qed.
Lemma map_fmap_compose {A B C} (f : A  B) (g : B  C) (m : M A) :
671
  g  f <$> m = g <$> (f <$> m).
Robbert Krebbers's avatar
Robbert Krebbers committed
672
Proof. apply map_eq; intros i; by rewrite !lookup_fmap,option_fmap_compose. Qed.
673
Lemma map_fmap_equiv_ext {A} `{Equiv B} (f1 f2 : A  B) (m : M A) :
674
675
676
677
678
  ( i x, m !! i = Some x  f1 x  f2 x)  f1 <$> m  f2 <$> m.
Proof.
  intros Hi i; rewrite !lookup_fmap.
  destruct (m !! i) eqn:?; constructor; eauto.
Qed.
679
Lemma map_fmap_ext {A B} (f1 f2 : A  B) (m : M A) :
Robbert Krebbers's avatar
Robbert Krebbers committed
680
681
682
683
684
  ( i x, m !! i = Some x  f1 x = f2 x)  f1 <$> m = f2 <$> m.
Proof.
  intros Hi; apply map_eq; intros i; rewrite !lookup_fmap.
  by destruct (m !! i) eqn:?; simpl; erewrite ?Hi by eauto.
Qed.
685
Lemma omap_ext {A B} (f1 f2 : A  option B) (m : M A) :
Robbert Krebbers's avatar
Robbert Krebbers committed
686
687
688
689
690
  ( i x, m !! i = Some x  f1 x = f2 x)  omap f1 m = omap f2 m.
Proof.
  intros Hi; apply map_eq; intros i; rewrite !lookup_omap.
  by destruct (m !! i) eqn:?; simpl; erewrite ?Hi by eauto.
Qed.
691

692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
Lemma map_fmap_mono {A B} (f : A  B) (m1 m2 : M A) :
  m1  m2  f <$> m1  f <$> m2.
Proof.
  rewrite !map_subseteq_spec; intros Hm i x.
  rewrite !lookup_fmap, !fmap_Some. naive_solver.
Qed.
Lemma map_fmap_strict_mono {A B} (f : A  B) (m1 m2 : M A) :
  m1  m2  f <$> m1  f <$> m2.
Proof.
  rewrite !map_subset_alt.
  intros [? (j&?&?)]<