base.v 31.5 KB
Newer Older
1
(* Copyright (c) 2012-2013, Robbert Krebbers. *)
2 3 4 5 6
(* This file is distributed under the terms of the BSD license. *)
(** This file collects type class interfaces, notations, and general theorems
that are used throughout the whole development. Most importantly it contains
abstract interfaces for ordered structures, collections, and various other data
structures. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
7 8 9 10
Global Generalizable All Variables.
Global Set Automatic Coercions Import.
Require Export Morphisms RelationClasses List Bool Utf8 Program Setoid NArith.

11 12 13 14
(** * General *)
(** The following coercion allows us to use Booleans as propositions. *)
Coercion Is_true : bool >-> Sortclass.

15 16
(** Ensure that [simpl] unfolds [id], [compose], and [flip] when fully
applied. *)
17 18
Arguments id _ _/.
Arguments compose _ _ _ _ _ _ /.
19
Arguments flip _ _ _ _ _ _/.
20

21 22 23 24
(** Change [True] and [False] into notations in order to enable overloading.
We will use this in the file [assertions] to give [True] and [False] a
different interpretation in [assert_scope] used for assertions of our axiomatic
semantics. *)
25 26
Notation "'True'" := True : type_scope.
Notation "'False'" := False : type_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
27

28 29 30
Notation curry := prod_curry.
Notation uncurry := prod_uncurry.

31 32
(** Throughout this development we use [C_scope] for all general purpose
notations that do not belong to a more specific scope. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
33 34 35
Delimit Scope C_scope with C.
Global Open Scope C_scope.

36
(** Introduce some Haskell style like notations. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
37 38 39 40 41 42 43 44 45
Notation "(=)" := eq (only parsing) : C_scope.
Notation "( x =)" := (eq x) (only parsing) : C_scope.
Notation "(= x )" := (λ y, eq y x) (only parsing) : C_scope.
Notation "(≠)" := (λ x y, x  y) (only parsing) : C_scope.
Notation "( x ≠)" := (λ y, x  y) (only parsing) : C_scope.
Notation "(≠ x )" := (λ y, y  x) (only parsing) : C_scope.

Hint Extern 0 (?x = ?x) => reflexivity.

46 47 48 49
Notation "(→)" := (λ A B, A  B) (only parsing) : C_scope.
Notation "( A →)" := (λ B, A  B) (only parsing) : C_scope.
Notation "(→ B )" := (λ A, A  B) (only parsing) : C_scope.

50
Notation "t $ r" := (t r)
51
  (at level 65, right associativity, only parsing) : C_scope.
52 53 54
Notation "($)" := (λ f x, f x) (only parsing) : C_scope.
Notation "($ x )" := (λ f, f x) (only parsing) : C_scope.

Robbert Krebbers's avatar
Robbert Krebbers committed
55 56 57 58
Infix "∘" := compose : C_scope.
Notation "(∘)" := compose (only parsing) : C_scope.
Notation "( f ∘)" := (compose f) (only parsing) : C_scope.
Notation "(∘ f )" := (λ g, compose g f) (only parsing) : C_scope.
59

60 61 62 63 64 65 66 67 68 69 70 71
Notation "(∧)" := and (only parsing) : C_scope.
Notation "( A ∧)" := (and A) (only parsing) : C_scope.
Notation "(∧ B )" := (λ A, A  B) (only parsing) : C_scope.

Notation "(∨)" := or (only parsing) : C_scope.
Notation "( A ∨)" := (or A) (only parsing) : C_scope.
Notation "(∨ B )" := (λ A, A  B) (only parsing) : C_scope.

Notation "(↔)" := iff (only parsing) : C_scope.
Notation "( A ↔)" := (iff A) (only parsing) : C_scope.
Notation "(↔ B )" := (λ A, A  B) (only parsing) : C_scope.

72 73
(** Set convenient implicit arguments for [existT] and introduce notations. *)
Arguments existT {_ _} _ _.
Robbert Krebbers's avatar
Robbert Krebbers committed
74 75 76
Notation "x ↾ p" := (exist _ x p) (at level 20) : C_scope.
Notation "` x" := (proj1_sig x) : C_scope.

77 78 79 80
(** * Type classes *)
(** ** Provable propositions *)
(** This type class collects provable propositions. It is useful to constraint
type classes by arbitrary propositions. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
81 82
Class PropHolds (P : Prop) := prop_holds: P.

83 84
Hint Extern 0 (PropHolds _) => assumption : typeclass_instances.
Instance: Proper (iff ==> iff) PropHolds.
85
Proof. repeat intro; trivial. Qed.
86 87 88

Ltac solve_propholds :=
  match goal with
89 90
  | |- PropHolds (?P) => apply _
  | |- ?P => change (PropHolds P); apply _
91 92 93 94 95 96 97
  end.

(** ** Decidable propositions *)
(** This type class by (Spitters/van der Weegen, 2011) collects decidable
propositions. For example to declare a parameter expressing decidable equality
on a type [A] we write [`{∀ x y : A, Decision (x = y)}] and use it by writing
[decide (x = y)]. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
98 99 100
Class Decision (P : Prop) := decide : {P} + {¬P}.
Arguments decide _ {_}.

101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
(** ** Inhabited types *)
(** This type class collects types that are inhabited. *)
Class Inhabited (A : Type) : Prop := populate { _ : A }.
Arguments populate {_} _.

Instance unit_inhabited: Inhabited unit := populate ().
Instance list_inhabited {A} : Inhabited (list A) := populate [].
Instance prod_inhabited {A B} (iA : Inhabited A)
    (iB : Inhabited B) : Inhabited (A * B) :=
  match iA, iB with
  | populate x, populate y => populate (x,y)
  end.
Instance sum_inhabited_l {A B} (iA : Inhabited A) : Inhabited (A + B) :=
  match iA with
  | populate x => populate (inl x)
  end.
Instance sum_inhabited_r {A B} (iB : Inhabited A) : Inhabited (A + B) :=
  match iB with
  | populate y => populate (inl y)
  end.
Instance option_inhabited {A} : Inhabited (option A) := populate None.

123 124 125
(** ** Setoid equality *)
(** We define an operational type class for setoid equality. This is based on
(Spitters/van der Weegen, 2011). *)
Robbert Krebbers's avatar
Robbert Krebbers committed
126 127 128 129 130 131 132 133 134 135
Class Equiv A := equiv: relation A.
Infix "≡" := equiv (at level 70, no associativity) : C_scope.
Notation "(≡)" := equiv (only parsing) : C_scope.
Notation "( x ≡)" := (equiv x) (only parsing) : C_scope.
Notation "(≡ x )" := (λ y, y  x) (only parsing) : C_scope.
Notation "(≢)" := (λ x y, ¬x  y) (only parsing) : C_scope.
Notation "x ≢ y":= (¬x  y) (at level 70, no associativity) : C_scope.
Notation "( x ≢)" := (λ y, x  y) (only parsing) : C_scope.
Notation "(≢ x )" := (λ y, y  x) (only parsing) : C_scope.

136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
(** The type class [LeibnizEquiv] collects setoid equalities that coincide
with Leibniz equality. We provide the tactic [fold_leibniz] to transform such
setoid equalities into Leibniz equalities, and [unfold_leibniz] for the
reverse. *)
Class LeibnizEquiv A `{Equiv A} := leibniz_equiv x y : x  y  x = y.

Ltac fold_leibniz := repeat
  match goal with
  | H : context [ @equiv ?A _ _ _ ] |- _ =>
    setoid_rewrite (leibniz_equiv (A:=A)) in H
  | |- context [ @equiv ?A _ _ _ ] =>
    setoid_rewrite (leibniz_equiv (A:=A))
  end.
Ltac unfold_leibniz := repeat
  match goal with
  | H : context [ @eq ?A _ _ ] |- _ =>
    setoid_rewrite <-(leibniz_equiv (A:=A)) in H
  | |- context [ @eq ?A _ _ ] =>
    setoid_rewrite <-(leibniz_equiv (A:=A))
  end.

157 158 159 160 161 162 163 164
(** A [Params f n] instance forces the setoid rewriting mechanism not to
rewrite in the first [n] arguments of the function [f]. We will declare such
instances for all operational type classes in this development. *)
Instance: Params (@equiv) 2.

(** The following instance forces [setoid_replace] to use setoid equality
(for types that have an [Equiv] instance) rather than the standard Leibniz
equality. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
165
Instance equiv_default_relation `{Equiv A} : DefaultRelation () | 3.
166 167
Hint Extern 0 (_  _) => reflexivity.
Hint Extern 0 (_  _) => symmetry; assumption.
Robbert Krebbers's avatar
Robbert Krebbers committed
168

169
(** ** Operations on collections *)
170
(** We define operational type classes for the traditional operations and
171
relations on collections: the empty collection [∅], the union [(∪)],
172 173
intersection [(∩)], and difference [(∖)], the singleton [{[_]}], the subset
[(⊆)] and element of [(∈)] relation, and disjointess [(⊥)]. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
174 175 176 177
Class Empty A := empty: A.
Notation "∅" := empty : C_scope.

Class Union A := union: A  A  A.
178
Instance: Params (@union) 2.
Robbert Krebbers's avatar
Robbert Krebbers committed
179 180 181 182 183
Infix "∪" := union (at level 50, left associativity) : C_scope.
Notation "(∪)" := union (only parsing) : C_scope.
Notation "( x ∪)" := (union x) (only parsing) : C_scope.
Notation "(∪ x )" := (λ y, union y x) (only parsing) : C_scope.

184 185 186 187 188
Definition union_list `{Empty A}
  `{Union A} : list A  A := fold_right () .
Arguments union_list _ _ _ !_ /.
Notation "⋃ l" := (union_list l) (at level 20, format "⋃  l") : C_scope.

Robbert Krebbers's avatar
Robbert Krebbers committed
189
Class Intersection A := intersection: A  A  A.
190
Instance: Params (@intersection) 2.
Robbert Krebbers's avatar
Robbert Krebbers committed
191 192 193 194 195 196
Infix "∩" := intersection (at level 40) : C_scope.
Notation "(∩)" := intersection (only parsing) : C_scope.
Notation "( x ∩)" := (intersection x) (only parsing) : C_scope.
Notation "(∩ x )" := (λ y, intersection y x) (only parsing) : C_scope.

Class Difference A := difference: A  A  A.
197
Instance: Params (@difference) 2.
Robbert Krebbers's avatar
Robbert Krebbers committed
198 199 200 201 202
Infix "∖" := difference (at level 40) : C_scope.
Notation "(∖)" := difference (only parsing) : C_scope.
Notation "( x ∖)" := (difference x) (only parsing) : C_scope.
Notation "(∖ x )" := (λ y, difference y x) (only parsing) : C_scope.

203 204 205 206 207 208
Class Singleton A B := singleton: A  B.
Instance: Params (@singleton) 3.
Notation "{[ x ]}" := (singleton x) : C_scope.
Notation "{[ x ; y ; .. ; z ]}" :=
  (union .. (union (singleton x) (singleton y)) .. (singleton z)) : C_scope.

Robbert Krebbers's avatar
Robbert Krebbers committed
209
Class SubsetEq A := subseteq: A  A  Prop.
210
Instance: Params (@subseteq) 2.
Robbert Krebbers's avatar
Robbert Krebbers committed
211 212 213 214 215 216 217 218 219
Infix "⊆" := subseteq (at level 70) : C_scope.
Notation "(⊆)" := subseteq (only parsing) : C_scope.
Notation "( X ⊆ )" := (subseteq X) (only parsing) : C_scope.
Notation "( ⊆ X )" := (λ Y, subseteq Y X) (only parsing) : C_scope.
Notation "X ⊈ Y" := (¬X  Y) (at level 70) : C_scope.
Notation "(⊈)" := (λ X Y, X  Y) (only parsing) : C_scope.
Notation "( X ⊈ )" := (λ Y, X  Y) (only parsing) : C_scope.
Notation "( ⊈ X )" := (λ Y, Y  X) (only parsing) : C_scope.

220 221 222 223 224 225 226 227 228 229 230 231
Hint Extern 0 (_  _) => reflexivity.

Class Subset A := subset: A  A  Prop.
Instance: Params (@subset) 2.
Infix "⊂" := subset (at level 70) : C_scope.
Notation "(⊂)" := subset (only parsing) : C_scope.
Notation "( X ⊂ )" := (subset X) (only parsing) : C_scope.
Notation "( ⊂ X )" := (λ Y, subset Y X) (only parsing) : C_scope.
Notation "X ⊄  Y" := (¬X  Y) (at level 70) : C_scope.
Notation "(⊄)" := (λ X Y, X  Y) (only parsing) : C_scope.
Notation "( X ⊄ )" := (λ Y, X  Y) (only parsing) : C_scope.
Notation "( ⊄ X )" := (λ Y, Y  X) (only parsing) : C_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
232 233

Class ElemOf A B := elem_of: A  B  Prop.
234
Instance: Params (@elem_of) 3.
Robbert Krebbers's avatar
Robbert Krebbers committed
235 236 237 238 239 240 241 242 243
Infix "∈" := elem_of (at level 70) : C_scope.
Notation "(∈)" := elem_of (only parsing) : C_scope.
Notation "( x ∈)" := (elem_of x) (only parsing) : C_scope.
Notation "(∈ X )" := (λ x, elem_of x X) (only parsing) : C_scope.
Notation "x ∉ X" := (¬x  X) (at level 80) : C_scope.
Notation "(∉)" := (λ x X, x  X) (only parsing) : C_scope.
Notation "( x ∉)" := (λ X, x  X) (only parsing) : C_scope.
Notation "(∉ X )" := (λ x, x  X) (only parsing) : C_scope.

Robbert Krebbers's avatar
Robbert Krebbers committed
244 245 246 247 248 249 250
Class Disjoint A := disjoint : A  A  Prop.
Instance: Params (@disjoint) 2.
Infix "⊥" := disjoint (at level 70) : C_scope.
Notation "(⊥)" := disjoint (only parsing) : C_scope.
Notation "( X ⊥)" := (disjoint X) (only parsing) : C_scope.
Notation "(⊥ X )" := (λ Y, disjoint Y X) (only parsing) : C_scope.

251 252
Inductive list_disjoint `{Empty A} `{Union A}
      `{Disjoint A} : list A  Prop :=
253 254 255
  | disjoint_nil :
     list_disjoint []
  | disjoint_cons X Xs :
256
     X   Xs 
257 258
     list_disjoint Xs 
     list_disjoint (X :: Xs).
259
Lemma list_disjoint_cons_inv `{Empty A} `{Union A} `{Disjoint A} X Xs :
260
  list_disjoint (X :: Xs) 
261
  X   Xs  list_disjoint Xs.
262 263 264 265
Proof. inversion_clear 1; auto. Qed.

Class Filter A B :=
  filter:  (P : A  Prop) `{ x, Decision (P x)}, B  B.
266

267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
(* Arguments filter {_ _ _} _ {_} !_ / : simpl nomatch. *)

(** ** Monadic operations *)
(** We define operational type classes for the monadic operations bind, join 
and fmap. These type classes are defined in a non-standard way by taking the
function as a parameter of the class. For example, we define
<<
  Class FMapD := fmap: ∀ {A B}, (A → B) → M A → M B.
>>
instead of
<<
  Class FMap {A B} (f : A → B) := fmap: M A → M B.
>>
This approach allows us to define [fmap] on lists such that [simpl] unfolds it
in the appropriate way, and so that it can be used for mutual recursion
(the mapped function [f] is not part of the fixpoint) as well. This is a hack,
and should be replaced by something more appropriate in future versions. *)

(* We use these type classes merely for convenient overloading of notations and
do not formalize any theory on monads (we do not even define a class with the
monad laws). *)
Class MRet (M : Type  Type) := mret:  {A}, A  M A.
Instance: Params (@mret) 3.
Arguments mret {_ _ _} _.

Class MBindD (M : Type  Type) {A B} (f : A  M B) := mbind: M A  M B.
Notation MBind M := ( {A B} (f : A  M B), MBindD M f)%type.
Instance: Params (@mbind) 5.
Arguments mbind {_ _ _} _ {_} !_ / : simpl nomatch.

Class MJoin (M : Type  Type) := mjoin:  {A}, M (M A)  M A.
Instance: Params (@mjoin) 3.
Arguments mjoin {_ _ _} !_ / : simpl nomatch.

Class FMapD (M : Type  Type) {A B} (f : A  B) := fmap: M A  M B.
Notation FMap M := ( {A B} (f : A  B), FMapD M f)%type.
Instance: Params (@fmap) 6.
Arguments fmap {_ _ _} _ {_} !_ / : simpl nomatch.

Notation "m ≫= f" := (mbind f m) (at level 60, right associativity) : C_scope.
Notation "( m ≫=)" := (λ f, mbind f m) (only parsing) : C_scope.
Notation "(≫= f )" := (mbind f) (only parsing) : C_scope.
Notation "(≫=)" := (λ m f, mbind f m) (only parsing) : C_scope.

Notation "x ← y ; z" := (y = (λ x : _, z))
  (at level 65, only parsing, next at level 35, right associativity) : C_scope.
313
Infix "<$>" := fmap (at level 60, right associativity) : C_scope.
314 315 316 317 318 319

Class MGuard (M : Type  Type) :=
  mguard:  P {dec : Decision P} {A}, M A  M A.
Notation "'guard' P ; o" := (mguard P o)
  (at level 65, only parsing, next at level 35, right associativity) : C_scope.

320
(** ** Operations on maps *)
321 322
(** In this section we define operational type classes for the operations
on maps. In the file [fin_maps] we will axiomatize finite maps.
323
The function lookup [m !! k] should yield the element at key [k] in [m]. *)
324 325
Class Lookup (K A M : Type) :=
  lookup: K  M  option A.
326 327 328 329 330 331
Instance: Params (@lookup) 4.

Notation "m !! i" := (lookup i m) (at level 20) : C_scope.
Notation "(!!)" := lookup (only parsing) : C_scope.
Notation "( m !!)" := (λ i, lookup i m) (only parsing) : C_scope.
Notation "(!! i )" := (lookup i) (only parsing) : C_scope.
332
Arguments lookup _ _ _ _ !_ !_ / : simpl nomatch.
333 334 335

(** The function insert [<[k:=a]>m] should update the element at key [k] with
value [a] in [m]. *)
336 337
Class Insert (K A M : Type) :=
  insert: K  A  M  M.
338 339 340
Instance: Params (@insert) 4.
Notation "<[ k := a ]>" := (insert k a)
  (at level 5, right associativity, format "<[ k := a ]>") : C_scope.
341
Arguments insert _ _ _ _ !_ _ !_ / : simpl nomatch.
342

343 344 345
(** The function delete [delete k m] should delete the value at key [k] in
[m]. If the key [k] is not a member of [m], the original map should be
returned. *)
346 347 348 349
Class Delete (K M : Type) :=
  delete: K  M  M.
Instance: Params (@delete) 3.
Arguments delete _ _ _ !_ !_ / : simpl nomatch.
350 351

(** The function [alter f k m] should update the value at key [k] using the
352
function [f], which is called with the original value. *)
353 354 355 356 357
Class AlterD (K A M : Type) (f : A  A) :=
  alter: K  M  M.
Notation Alter K A M := ( (f : A  A), AlterD K A M f)%type.
Instance: Params (@alter) 5.
Arguments alter {_ _ _} _ {_} !_ !_ / : simpl nomatch.
358 359

(** The function [alter f k m] should update the value at key [k] using the
360 361 362
function [f], which is called with the original value at key [k] or [None]
if [k] is not a member of [m]. The value at [k] should be deleted if [f] 
yields [None]. *)
363 364
Class PartialAlter (K A M : Type) :=
  partial_alter: (option A  option A)  K  M  M.
365
Instance: Params (@partial_alter) 4.
366
Arguments partial_alter _ _ _ _ _ !_ !_ / : simpl nomatch.
367 368 369

(** The function [dom C m] should yield the domain of [m]. That is a finite
collection of type [C] that contains the keys that are a member of [m]. *)
370 371 372
Class Dom (M C : Type) := dom: M  C.
Instance: Params (@dom) 3.
Arguments dom {_} _ {_} !_ / : simpl nomatch, clear implicits.
373 374

(** The function [merge f m1 m2] should merge the maps [m1] and [m2] by
375 376 377 378 379
constructing a new map whose value at key [k] is [f (m1 !! k) (m2 !! k)].*)
Class Merge (M : Type  Type) :=
  merge:  {A B C}, (option A  option B  option C)  M A  M B  M C.
Instance: Params (@merge) 4.
Arguments merge _ _ _ _ _ _ !_ !_ / : simpl nomatch.
380 381

(** We lift the insert and delete operation to lists of elements. *)
382
Definition insert_list `{Insert K A M} (l : list (K * A)) (m : M) : M :=
383 384
  fold_right (λ p, <[ fst p := snd p ]>) m l.
Instance: Params (@insert_list) 4.
385
Definition delete_list `{Delete K M} (l : list K) (m : M) : M :=
386
  fold_right delete m l.
387 388 389 390 391 392 393 394 395 396 397 398
Instance: Params (@delete_list) 3.

Definition insert_consecutive `{Insert nat A M}
    (i : nat) (l : list A) (m : M) : M :=
  fold_right (λ x f i, <[i:=x]>(f (S i))) (λ _, m) l i.
Instance: Params (@insert_consecutive) 3.

(** The function [union_with f m1 m2] is supposed to yield the union of [m1]
and [m2] using the function [f] to combine values of members that are in
both [m1] and [m2]. *)
Class UnionWith (A M : Type) :=
  union_with: (A  A  option A)  M  M  M.
399
Instance: Params (@union_with) 3.
400
Arguments union_with {_ _ _} _ !_ !_ / : simpl nomatch.
401

402 403 404
(** Similarly for intersection and difference. *)
Class IntersectionWith (A M : Type) :=
  intersection_with: (A  A  option A)  M  M  M.
405
Instance: Params (@intersection_with) 3.
406 407
Arguments intersection_with {_ _ _} _ !_ !_ / : simpl nomatch.

408 409
Class DifferenceWith (A M : Type) :=
  difference_with: (A  A  option A)  M  M  M.
410
Instance: Params (@difference_with) 3.
411
Arguments difference_with {_ _ _} _ !_ !_ / : simpl nomatch.
Robbert Krebbers's avatar
Robbert Krebbers committed
412

413 414 415 416
Definition intersection_with_list `{IntersectionWith A M}
  (f : A  A  option A) : M  list M  M := fold_right (intersection_with f).
Arguments intersection_with_list _ _ _ _ _ !_ /.

417 418 419 420
(** ** Common properties *)
(** These operational type classes allow us to refer to common mathematical
properties in a generic way. For example, for injectivity of [(k ++)] it
allows us to write [injective (k ++)] instead of [app_inv_head k]. *)
421
Class Injective {A B} (R : relation A) S (f : A  B) : Prop :=
422
  injective:  x y : A, S (f x) (f y)  R x y.
423
Class Idempotent {A} (R : relation A) (f : A  A  A) : Prop :=
424
  idempotent:  x, R (f x x) x.
425
Class Commutative {A B} (R : relation A) (f : B  B  A) : Prop :=
426
  commutative:  x y, R (f x y) (f y x).
427
Class LeftId {A} (R : relation A) (i : A) (f : A  A  A) : Prop :=
428
  left_id:  x, R (f i x) x.
429
Class RightId {A} (R : relation A) (i : A) (f : A  A  A) : Prop :=
430
  right_id:  x, R (f x i) x.
431
Class Associative {A} (R : relation A) (f : A  A  A) : Prop :=
432
  associative:  x y z, R (f x (f y z)) (f (f x y) z).
433
Class LeftAbsorb {A} (R : relation A) (i : A) (f : A  A  A) : Prop :=
434
  left_absorb:  x, R (f i x) i.
435
Class RightAbsorb {A} (R : relation A) (i : A) (f : A  A  A) : Prop :=
436
  right_absorb:  x, R (f x i) i.
437 438 439 440 441
Class LeftDistr {A} (R : relation A) (f g : A  A  A) : Prop :=
  left_distr:  x y z, R (f x (g y z)) (g (f x y) (f x z)).
Class RightDistr {A} (R : relation A) (f g : A  A  A) : Prop :=
  right_distr:  y z x, R (f (g y z) x) (g (f y x) (f z x)).
Class AntiSymmetric {A} (R : relation A) : Prop :=
442
  anti_symmetric:  x y, R x y  R y x  x = y.
Robbert Krebbers's avatar
Robbert Krebbers committed
443

444
Arguments irreflexivity {_} _ {_} _ _.
Robbert Krebbers's avatar
Robbert Krebbers committed
445 446 447 448 449 450
Arguments injective {_ _ _ _} _ {_} _ _ _.
Arguments idempotent {_ _} _ {_} _.
Arguments commutative {_ _ _} _ {_} _ _.
Arguments left_id {_ _} _ _ {_} _.
Arguments right_id {_ _} _ _ {_} _.
Arguments associative {_ _} _ {_} _ _ _.
451 452
Arguments left_absorb {_ _} _ _ {_} _.
Arguments right_absorb {_ _} _ _ {_} _.
453 454
Arguments left_distr {_ _} _ _ {_} _ _ _.
Arguments right_distr {_ _} _ _ {_} _ _ _.
455 456
Arguments anti_symmetric {_} _ {_} _ _ _ _.

457 458 459 460
Instance: Commutative () (@eq A).
Proof. red. intuition. Qed.
Instance: Commutative () (λ x y, @eq A y x).
Proof. red. intuition. Qed.
461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494
Instance: Commutative () ().
Proof. red. intuition. Qed.
Instance: Commutative () ().
Proof. red. intuition. Qed.
Instance: Associative () ().
Proof. red. intuition. Qed.
Instance: Idempotent () ().
Proof. red. intuition. Qed.
Instance: Commutative () ().
Proof. red. intuition. Qed.
Instance: Associative () ().
Proof. red. intuition. Qed.
Instance: Idempotent () ().
Proof. red. intuition. Qed.
Instance: LeftId () True ().
Proof. red. intuition. Qed.
Instance: RightId () True ().
Proof. red. intuition. Qed.
Instance: LeftAbsorb () False ().
Proof. red. intuition. Qed.
Instance: RightAbsorb () False ().
Proof. red. intuition. Qed.
Instance: LeftId () False ().
Proof. red. intuition. Qed.
Instance: RightId () False ().
Proof. red. intuition. Qed.
Instance: LeftAbsorb () True ().
Proof. red. intuition. Qed.
Instance: RightAbsorb () True ().
Proof. red. intuition. Qed.
Instance: LeftId () True impl.
Proof. unfold impl. red. intuition. Qed.
Instance: RightAbsorb () True impl.
Proof. unfold impl. red. intuition. Qed.
495 496 497 498 499 500 501 502
Instance: LeftDistr () () ().
Proof. red. intuition. Qed.
Instance: RightDistr () () ().
Proof. red. intuition. Qed.
Instance: LeftDistr () () ().
Proof. red. intuition. Qed.
Instance: RightDistr () () ().
Proof. red. intuition. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
503

504 505 506
(** The following lemmas are more specific versions of the projections of the
above type classes. These lemmas allow us to enforce Coq not to use the setoid
rewriting mechanism. *)
507 508
Lemma idempotent_eq {A} (f : A  A  A) `{!Idempotent (=) f} x :
  f x x = x.
509
Proof. auto. Qed.
510 511
Lemma commutative_eq {A B} (f : B  B  A) `{!Commutative (=) f} x y :
  f x y = f y x.
512
Proof. auto. Qed.
513 514
Lemma left_id_eq {A} (i : A) (f : A  A  A) `{!LeftId (=) i f} x :
  f i x = x.
515
Proof. auto. Qed.
516 517
Lemma right_id_eq {A} (i : A) (f : A  A  A) `{!RightId (=) i f} x :
  f x i = x.
518
Proof. auto. Qed.
519 520
Lemma associative_eq {A} (f : A  A  A) `{!Associative (=) f} x y z :
  f x (f y z) = f (f x y) z.
521
Proof. auto. Qed.
522 523 524 525 526 527
Lemma left_absorb_eq {A} (i : A) (f : A  A  A) `{!LeftAbsorb (=) i f} x :
  f i x = i.
Proof. auto. Qed.
Lemma right_absorb_eq {A} (i : A) (f : A  A  A) `{!RightAbsorb (=) i f} x :
  f x i = i.
Proof. auto. Qed.
528 529 530 531 532 533
Lemma left_distr_eq {A} (f g : A  A  A) `{!LeftDistr (=) f g} x y z :
  f x (g y z) = g (f x y) (f x z).
Proof. auto. Qed.
Lemma right_distr_eq {A} (f g : A  A  A) `{!RightDistr (=) f g} y z x :
  f (g y z) x = g (f y x) (f z x).
Proof. auto. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
534

535
(** ** Axiomatization of ordered structures *)
536 537
(** A pre-order equipped with a smallest element. *)
Class BoundedPreOrder A `{Empty A} `{SubsetEq A} : Prop := {
Robbert Krebbers's avatar
Robbert Krebbers committed
538 539 540
  bounded_preorder :>> PreOrder ();
  subseteq_empty x :   x
}.
541
Class PartialOrder A `{SubsetEq A} : Prop := {
542 543 544
  po_preorder :>> PreOrder ();
  po_antisym :> AntiSymmetric ()
}.
Robbert Krebbers's avatar
Robbert Krebbers committed
545

546
(** We do not include equality in the following interfaces so as to avoid the
547
need for proofs that the relations and operations respect setoid equality.
548 549
Instead, we will define setoid equality in a generic way as
[λ X Y, X ⊆ Y ∧ Y ⊆ X]. *)
550
Class BoundedJoinSemiLattice A `{Empty A} `{SubsetEq A} `{Union A} : Prop := {
551
  bjsl_preorder :>> BoundedPreOrder A;
552 553
  union_subseteq_l x y : x  x  y;
  union_subseteq_r x y : y  x  y;
Robbert Krebbers's avatar
Robbert Krebbers committed
554 555
  union_least x y z : x  z  y  z  x  y  z
}.
556
Class MeetSemiLattice A `{Empty A} `{SubsetEq A} `{Intersection A} : Prop := {
Robbert Krebbers's avatar
Robbert Krebbers committed
557
  msl_preorder :>> BoundedPreOrder A;
558 559
  intersection_subseteq_l x y : x  y  x;
  intersection_subseteq_r x y : x  y  y;
Robbert Krebbers's avatar
Robbert Krebbers committed
560 561
  intersection_greatest x y z : z  x  z  y  z  x  y
}.
562 563 564 565

(** A join distributive lattice with distributivity stated in the order
theoretic way. We will prove that distributivity of join, and distributivity
as an equality can be derived. *)
566
Class LowerBoundedLattice A `{Empty A} `{SubsetEq A}
567
    `{Union A} `{Intersection A} : Prop := {
568
  lbl_bjsl :>> BoundedJoinSemiLattice A;
569 570
  lbl_msl :>> MeetSemiLattice A;
  lbl_distr x y z : (x  y)  (x  z)  x  (y  z)
571
}.
572

573
(** ** Axiomatization of collections *)
574 575
(** The class [SimpleCollection A C] axiomatizes a collection of type [C] with
elements of type [A]. *)
576
Instance: Params (@map) 3.
577
Class SimpleCollection A C `{ElemOf A C}
578
    `{Empty C} `{Singleton A C} `{Union C} : Prop := {
579
  not_elem_of_empty (x : A) : x  ;
580
  elem_of_singleton (x y : A) : x  {[ y ]}  x = y;
581 582 583
  elem_of_union X Y (x : A) : x  X  Y  x  X  x  Y
}.
Class Collection A C `{ElemOf A C} `{Empty C} `{Singleton A C}
584
    `{Union C} `{Intersection C} `{Difference C} : Prop := {
585
  collection_simple :>> SimpleCollection A C;
Robbert Krebbers's avatar
Robbert Krebbers committed
586
  elem_of_intersection X Y (x : A) : x  X  Y  x  X  x  Y;
587 588 589 590 591 592 593
  elem_of_difference X Y (x : A) : x  X  Y  x  X  x  Y
}.
Class CollectionOps A C
    `{ElemOf A C} `{Empty C} `{Singleton A C}
    `{Union C} `{Intersection C} `{Difference C}
    `{IntersectionWith A C} `{Filter A C} : Prop := {
  collection_ops :>> Collection A C;
594
  elem_of_intersection_with (f : A  A  option A) X Y (x : A) :
595 596 597
    x  intersection_with f X Y   x1 x2, x1  X  x2  Y  f x1 x2 = Some x;
  elem_of_filter X P `{ x, Decision (P x)} x :
    x  filter P X  P x  x  X
Robbert Krebbers's avatar
Robbert Krebbers committed
598 599
}.

600 601 602
(** We axiomative a finite collection as a collection whose elements can be
enumerated as a list. These elements, given by the [elements] function, may be
in any order and should not contain duplicates. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
603
Class Elements A C := elements: C  list A.
604
Instance: Params (@elements) 3.
605 606 607 608 609 610 611 612 613 614 615 616 617 618

(** We redefine the standard library's [In] and [NoDup] using type classes. *)
Inductive elem_of_list {A} : ElemOf A (list A) :=
  | elem_of_list_here (x : A) l : x  x :: l
  | elem_of_list_further (x y : A) l : x  l  x  y :: l.
Existing Instance elem_of_list.

Inductive NoDup {A} : list A  Prop :=
  | NoDup_nil_2 : NoDup []
  | NoDup_cons_2 x l : x  l  NoDup l  NoDup (x :: l).

(** Decidability of equality of the carrier set is admissible, but we add it
anyway so as to avoid cycles in type class search. *)
Class FinCollection A C `{ElemOf A C} `{Empty C} `{Singleton A C}
619 620
    `{Union C} `{Intersection C} `{Difference C}
    `{Elements A C} `{ x y : A, Decision (x = y)} : Prop := {
Robbert Krebbers's avatar
Robbert Krebbers committed
621
  fin_collection :>> Collection A C;
622
  elements_spec X x : x  X  x  elements X;
Robbert Krebbers's avatar
Robbert Krebbers committed
623
  elements_nodup X : NoDup (elements X)
624 625
}.
Class Size C := size: C  nat.
626
Arguments size {_ _} !_ / : simpl nomatch.
627
Instance: Params (@size) 2.
Robbert Krebbers's avatar
Robbert Krebbers committed
628

629 630 631 632 633 634 635 636 637 638
(** The class [Collection M] axiomatizes a type constructor [M] that can be
used to construct a collection [M A] with elements of type [A]. The advantage
of this class, compared to [Collection], is that it also axiomatizes the
the monadic operations. The disadvantage, is that not many inhabits are
possible (we will only provide an inhabitant using unordered lists without
duplicates removed). More interesting implementations typically need
decidability of equality, or a total order on the elements, which do not fit
in a type constructor of type [Type → Type]. *)
Class CollectionMonad M `{ A, ElemOf A (M A)}
    `{ A, Empty (M A)} `{ A, Singleton A (M A)} `{ A, Union (M A)}
639
    `{!MBind M} `{!MRet M} `{!FMap M} `{!MJoin M} : Prop := {
640 641 642 643 644 645 646 647 648 649 650
  collection_monad_simple A :> SimpleCollection A (M A);
  elem_of_bind {A B} (f : A  M B) (X : M A) (x : B) :
    x  X = f   y, x  f y  y  X;
  elem_of_ret {A} (x y : A) :
    x  mret y  x = y;
  elem_of_fmap {A B} (f : A  B) (X : M A) (x : B) :
    x  f <$> X   y, x = f y  y  X;
  elem_of_join {A} (X : M (M A)) (x : A) :
    x  mjoin X   Y, x  Y  Y  X
}.

651 652 653
(** The function [fresh X] yields an element that is not contained in [X]. We
will later prove that [fresh] is [Proper] with respect to the induced setoid
equality on collections. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
654
Class Fresh A C := fresh: C  A.
655
Instance: Params (@fresh) 3.
656
Class FreshSpec A C `{ElemOf A C}
657
    `{Empty C} `{Singleton A C} `{Union C} `{Fresh A C} : Prop := {
658
  fresh_collection_simple :>> SimpleCollection A C;
659
  fresh_proper_alt X Y : ( x, x  X  x  Y)  fresh X = fresh Y;
Robbert Krebbers's avatar
Robbert Krebbers committed
660 661 662
  is_fresh (X : C) : fresh X  X
}.

663 664 665
(** * Miscellaneous *)
Lemma proj1_sig_inj {A} (P : A  Prop) x (Px : P x) y (Py : P y) :
  xPx = yPy  x = y.
666
Proof. injection 1; trivial. Qed.
667 668 669
Lemma not_symmetry `{R : relation A} `{!Symmetric R} (x y : A) :
  ¬R x y  ¬R y x.
Proof. intuition. Qed.
670 671 672 673
Lemma symmetry_iff `(R : relation A) `{!Symmetric R} (x y : A) :
  R x y  R y x.
Proof. intuition. Qed.

674 675 676
(** ** Pointwise relations *)
(** These instances are in Coq trunk since revision 15455, but are not in Coq
8.4 yet. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
677 678 679 680 681 682 683 684 685 686
Instance pointwise_reflexive {A} `{R : relation B} :
  Reflexive R  Reflexive (pointwise_relation A R) | 9.
Proof. firstorder. Qed.
Instance pointwise_symmetric {A} `{R : relation B} :
  Symmetric R  Symmetric (pointwise_relation A R) | 9.
Proof. firstorder. Qed.
Instance pointwise_transitive {A} `{R : relation B} :
  Transitive R  Transitive (pointwise_relation A R) | 9.
Proof. firstorder. Qed.

687
(** ** Products *)
688 689 690 691
Definition fst_map {A A' B} (f : A  A') (p : A * B) : A' * B :=
  (f (fst p), snd p).
Definition snd_map {A B B'} (f : B  B') (p : A * B) : A * B' :=
  (fst p, f (snd p)).
692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709
Arguments fst_map {_ _ _} _ !_ /.
Arguments snd_map {_ _ _} _ !_ /.

Instance:  {A A' B} (f : A  A'),
  Injective (=) (=) f  Injective (=) (=) (@fst_map A A' B f).
Proof.
  intros ????? [??] [??]; simpl; intro; f_equal.
  * apply (injective f). congruence.
  * congruence.
Qed.
Instance:  {A B B'} (f : B  B'),
  Injective (=) (=) f  Injective (=) (=) (@snd_map A B B' f).
Proof.
  intros ????? [??] [??]; simpl; intro; f_equal.
  * congruence.
  * apply (injective f). congruence.
Qed.

710 711
Definition prod_relation {A B} (R1 : relation A) (R2 : relation B) :
  relation (A * B) := λ x y, R1 (fst x) (fst y)  R2 (snd x) (snd y).
Robbert Krebbers's avatar
Robbert Krebbers committed
712 713 714

Section prod_relation.
  Context `{R1 : relation A} `{R2 : relation B}.
715 716
  Global Instance:
    Reflexive R1  Reflexive R2  Reflexive (prod_relation R1 R2).
Robbert Krebbers's avatar
Robbert Krebbers committed
717
  Proof. firstorder eauto. Qed.
718 719
  Global Instance:
    Symmetric R1  Symmetric R2  Symmetric (prod_relation R1 R2).
Robbert Krebbers's avatar
Robbert Krebbers committed
720
  Proof. firstorder eauto. Qed.
721 722
  Global Instance:
    Transitive R1  Transitive R2  Transitive (prod_relation R1 R2).
Robbert Krebbers's avatar
Robbert Krebbers committed
723
  Proof. firstorder eauto. Qed.
724 725
  Global Instance:
    Equivalence R1  Equivalence R2  Equivalence (prod_relation R1 R2).
Robbert Krebbers's avatar
Robbert Krebbers committed
726 727 728 729 730 731 732 733 734
  Proof. split; apply _. Qed.
  Global Instance: Proper (R1 ==> R2 ==> prod_relation R1 R2) pair.
  Proof. firstorder eauto. Qed.
  Global Instance: Proper (prod_relation R1 R2 ==> R1) fst.
  Proof. firstorder eauto. Qed.
  Global Instance: Proper (prod_relation R1 R2 ==> R2) snd.
  Proof. firstorder eauto. Qed.
End prod_relation.

735
(** ** Other *)
736
Definition proj_relation {A B} (R : relation A)
737
  (f : B  A) : relation B := λ x y, R (f x) (f y).
738 739 740
Definition proj_relation_equivalence {A B} (R : relation A) (f : B  A) :
  Equivalence R  Equivalence (proj_relation R f).
Proof. unfold proj_relation. firstorder auto. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
741 742

Instance:  A B (x : B), Commutative (=) (λ _ _ : A, x).
743
Proof. red. trivial. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
744
Instance:  A (x : A), Associative (=) (λ _ _ : A, x).
745
Proof. red. trivial. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
746
Instance:  A, Associative (=) (λ x _ : A, x).
747
Proof. red. trivial. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
748
Instance:  A, Associative (=) (λ _ x : A, x).
749
Proof. red. trivial. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
750
Instance:  A, Idempotent (=) (λ x _ : A, x).
751
Proof. red. trivial. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
752
Instance:  A, Idempotent (=) (λ _ x : A, x).
753
Proof. red. trivial. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
754

755 756
Instance left_id_propholds {A} (R : relation A) i f :
  LeftId R i f   x, PropHolds (R (f i x) x).
757
Proof. red. trivial. Qed.
758 759
Instance right_id_propholds {A} (R : relation A) i f :
  RightId R i f   x, PropHolds (R (f x i) x).
760
Proof. red. trivial. Qed.
761 762 763 764 765 766
Instance left_absorb_propholds {A} (R : relation A) i f :
  LeftAbsorb R i f   x, PropHolds (R (f i x) i).
Proof. red. trivial. Qed.
Instance right_absorb_propholds {A} (R : relation A) i f :
  RightAbsorb R i f   x, PropHolds (R (f x i) i).
Proof. red. trivial. Qed.
767 768
Instance idem_propholds {A} (R : relation A) f :
  Idempotent R f   x, PropHolds (R (f x x) x).
769
Proof. red. trivial. Qed.