gmultiset.v 19.9 KB
Newer Older
1
(* Copyright (c) 2012-2019, Coq-std++ developers. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
2 3
(* This file is distributed under the terms of the BSD license. *)
From stdpp Require Import gmap.
4
Set Default Proof Using "Type".
Robbert Krebbers's avatar
Robbert Krebbers committed
5 6

Record gmultiset A `{Countable A} := GMultiSet { gmultiset_car : gmap A nat }.
7 8
Arguments GMultiSet {_ _ _} _ : assert.
Arguments gmultiset_car {_ _ _} _ : assert.
Robbert Krebbers's avatar
Robbert Krebbers committed
9

10
Instance gmultiset_eq_dec `{Countable A} : EqDecision (gmultiset A).
Robbert Krebbers's avatar
Robbert Krebbers committed
11 12
Proof. solve_decision. Defined.

13
Program Instance gmultiset_countable `{Countable A} :
Robbert Krebbers's avatar
Robbert Krebbers committed
14 15 16 17 18 19 20 21 22 23
    Countable (gmultiset A) := {|
  encode X := encode (gmultiset_car X);  decode p := GMultiSet <$> decode p
|}.
Next Obligation. intros A ?? [X]; simpl. by rewrite decode_encode. Qed.

Section definitions.
  Context `{Countable A}.

  Definition multiplicity (x : A) (X : gmultiset A) : nat :=
    match gmultiset_car X !! x with Some n => S n | None => 0 end.
24
  Global Instance gmultiset_elem_of : ElemOf A (gmultiset A) := λ x X,
Robbert Krebbers's avatar
Robbert Krebbers committed
25
    0 < multiplicity x X.
26
  Global Instance gmultiset_subseteq : SubsetEq (gmultiset A) := λ X Y,  x,
Robbert Krebbers's avatar
Robbert Krebbers committed
27
    multiplicity x X  multiplicity x Y.
28 29
  Global Instance gmultiset_equiv : Equiv (gmultiset A) := λ X Y,  x,
    multiplicity x X = multiplicity x Y.
Robbert Krebbers's avatar
Robbert Krebbers committed
30

31
  Global Instance gmultiset_elements : Elements A (gmultiset A) := λ X,
32
    let (X) := X in ''(x,n)  map_to_list X; replicate (S n) x.
33
  Global Instance gmultiset_size : Size (gmultiset A) := length  elements.
Robbert Krebbers's avatar
Robbert Krebbers committed
34

35 36
  Global Instance gmultiset_empty : Empty (gmultiset A) := GMultiSet .
  Global Instance gmultiset_singleton : Singleton A (gmultiset A) := λ x,
Robbert Krebbers's avatar
Robbert Krebbers committed
37
    GMultiSet {[ x := 0 ]}.
38
  Global Instance gmultiset_union : Union (gmultiset A) := λ X Y,
39 40 41 42 43 44 45
    let (X) := X in let (Y) := Y in
    GMultiSet $ union_with (λ x y, Some (x `max` y)) X Y.
  Global Instance gmultiset_intersection : Intersection (gmultiset A) := λ X Y,
    let (X) := X in let (Y) := Y in
    GMultiSet $ intersection_with (λ x y, Some (x `min` y)) X Y.
  (** Often called the "sum" *)
  Global Instance gmultiset_disj_union : DisjUnion (gmultiset A) := λ X Y,
Robbert Krebbers's avatar
Robbert Krebbers committed
46 47
    let (X) := X in let (Y) := Y in
    GMultiSet $ union_with (λ x y, Some (S (x + y))) X Y.
48
  Global Instance gmultiset_difference : Difference (gmultiset A) := λ X Y,
Robbert Krebbers's avatar
Robbert Krebbers committed
49 50 51
    let (X) := X in let (Y) := Y in
    GMultiSet $ difference_with (λ x y,
      let z := x - y in guard (0 < z); Some (pred z)) X Y.
52

53
  Global Instance gmultiset_dom : Dom (gmultiset A) (gset A) := λ X,
54
    let (X) := X in dom _ X.
55
End definitions. 
Robbert Krebbers's avatar
Robbert Krebbers committed
56

57 58 59
Typeclasses Opaque gmultiset_elem_of gmultiset_subseteq.
Typeclasses Opaque gmultiset_elements gmultiset_size gmultiset_empty.
Typeclasses Opaque gmultiset_singleton gmultiset_union gmultiset_difference.
60
Typeclasses Opaque gmultiset_dom.
61

Robbert Krebbers's avatar
Robbert Krebbers committed
62 63 64 65 66 67 68 69 70 71 72 73
Section lemmas.
Context `{Countable A}.
Implicit Types x y : A.
Implicit Types X Y : gmultiset A.

Lemma gmultiset_eq X Y : X = Y   x, multiplicity x X = multiplicity x Y.
Proof.
  split; [by intros ->|intros HXY].
  destruct X as [X], Y as [Y]; f_equal; apply map_eq; intros x.
  specialize (HXY x); unfold multiplicity in *; simpl in *.
  repeat case_match; naive_solver.
Qed.
74 75
Global Instance gmultiset_leibniz : LeibnizEquiv (gmultiset A).
Proof. intros X Y. by rewrite gmultiset_eq. Qed.
76
Global Instance gmultiset_equiv_equivalence : Equivalence (@{gmultiset A}).
77
Proof. constructor; repeat intro; naive_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
78 79 80 81 82 83 84 85

(* Multiplicity *)
Lemma multiplicity_empty x : multiplicity x  = 0.
Proof. done. Qed.
Lemma multiplicity_singleton x : multiplicity x {[ x ]} = 1.
Proof. unfold multiplicity; simpl. by rewrite lookup_singleton. Qed.
Lemma multiplicity_singleton_ne x y : x  y  multiplicity x {[ y ]} = 0.
Proof. intros. unfold multiplicity; simpl. by rewrite lookup_singleton_ne. Qed.
86 87 88 89 90 91 92
Lemma multiplicity_singleton' x y :
  multiplicity x {[ y ]} = if decide (x = y) then 1 else 0.
Proof.
  destruct (decide _) as [->|].
  - by rewrite multiplicity_singleton.
  - by rewrite multiplicity_singleton_ne.
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
93
Lemma multiplicity_union X Y x :
94 95 96 97 98 99 100 101 102 103 104 105 106
  multiplicity x (X  Y) = multiplicity x X `max` multiplicity x Y.
Proof.
  destruct X as [X], Y as [Y]; unfold multiplicity; simpl.
  rewrite lookup_union_with. destruct (X !! _), (Y !! _); simpl; lia.
Qed.
Lemma multiplicity_intersection X Y x :
  multiplicity x (X  Y) = multiplicity x X `min` multiplicity x Y.
Proof.
  destruct X as [X], Y as [Y]; unfold multiplicity; simpl.
  rewrite lookup_intersection_with. destruct (X !! _), (Y !! _); simpl; lia.
Qed.
Lemma multiplicity_disj_union X Y x :
  multiplicity x (X  Y) = multiplicity x X + multiplicity x Y.
Robbert Krebbers's avatar
Robbert Krebbers committed
107 108
Proof.
  destruct X as [X], Y as [Y]; unfold multiplicity; simpl.
Ralf Jung's avatar
Ralf Jung committed
109
  rewrite lookup_union_with. destruct (X !! _), (Y !! _); simpl; lia.
Robbert Krebbers's avatar
Robbert Krebbers committed
110 111 112 113 114 115
Qed.
Lemma multiplicity_difference X Y x :
  multiplicity x (X  Y) = multiplicity x X - multiplicity x Y.
Proof.
  destruct X as [X], Y as [Y]; unfold multiplicity; simpl.
  rewrite lookup_difference_with.
Ralf Jung's avatar
Ralf Jung committed
116
  destruct (X !! _), (Y !! _); simplify_option_eq; lia.
Robbert Krebbers's avatar
Robbert Krebbers committed
117 118
Qed.

119
(* Set_ *)
120 121 122
Lemma elem_of_multiplicity x X : x  X  0 < multiplicity x X.
Proof. done. Qed.

123
Global Instance gmultiset_simple_set : SemiSet A (gmultiset A).
124 125
Proof.
  split.
Ralf Jung's avatar
Ralf Jung committed
126
  - intros x. rewrite elem_of_multiplicity, multiplicity_empty. lia.
127 128 129
  - intros x y.
    rewrite elem_of_multiplicity, multiplicity_singleton'.
    destruct (decide (x = y)); intuition lia.
Ralf Jung's avatar
Ralf Jung committed
130
  - intros X Y x. rewrite !elem_of_multiplicity, multiplicity_union. lia.
131
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
132
Global Instance gmultiset_elem_of_dec : RelDecision (@{gmultiset A}).
133
Proof. refine (λ x X, cast_if (decide (0 < multiplicity x X))); done. Defined.
134

135 136 137
Lemma gmultiset_elem_of_disj_union X Y x : x  X  Y  x  X  x  Y.
Proof. rewrite !elem_of_multiplicity, multiplicity_disj_union. lia. Qed.

138 139 140
Global Instance set_unfold_gmultiset_disj_union x X Y P Q :
  SetUnfold (x  X) P  SetUnfold (x  Y) Q  SetUnfold (x  X  Y) (P  Q).
Proof.
141 142
  intros ??; constructor. rewrite gmultiset_elem_of_disj_union.
  by rewrite <-(set_unfold (x  X) P), <-(set_unfold (x  Y) Q).
143 144
Qed.

145
(* Algebraic laws *)
146 147
(** For union *)
Global Instance gmultiset_union_comm : Comm (=@{gmultiset A}) ().
Robbert Krebbers's avatar
Robbert Krebbers committed
148
Proof.
Ralf Jung's avatar
Ralf Jung committed
149
  intros X Y. apply gmultiset_eq; intros x. rewrite !multiplicity_union; lia.
Robbert Krebbers's avatar
Robbert Krebbers committed
150
Qed.
151
Global Instance gmultiset_union_assoc : Assoc (=@{gmultiset A}) ().
Robbert Krebbers's avatar
Robbert Krebbers committed
152
Proof.
Ralf Jung's avatar
Ralf Jung committed
153
  intros X Y Z. apply gmultiset_eq; intros x. rewrite !multiplicity_union; lia.
Robbert Krebbers's avatar
Robbert Krebbers committed
154
Qed.
155
Global Instance gmultiset_union_left_id : LeftId (=@{gmultiset A})  ().
Robbert Krebbers's avatar
Robbert Krebbers committed
156 157 158 159
Proof.
  intros X. apply gmultiset_eq; intros x.
  by rewrite multiplicity_union, multiplicity_empty.
Qed.
160
Global Instance gmultiset_union_right_id : RightId (=@{gmultiset A})  ().
Robbert Krebbers's avatar
Robbert Krebbers committed
161
Proof. intros X. by rewrite (comm_L ()), (left_id_L _ _). Qed.
162 163 164 165
Global Instance gmultiset_union_idemp : IdemP (=@{gmultiset A}) ().
Proof.
  intros X. apply gmultiset_eq; intros x. rewrite !multiplicity_union; lia.
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
166

167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
(** For intersection *)
Global Instance gmultiset_intersection_comm : Comm (=@{gmultiset A}) ().
Proof.
  intros X Y. apply gmultiset_eq; intros x. rewrite !multiplicity_intersection; lia.
Qed.
Global Instance gmultiset_intersection_assoc : Assoc (=@{gmultiset A}) ().
Proof.
  intros X Y Z. apply gmultiset_eq; intros x. rewrite !multiplicity_intersection; lia.
Qed.
Global Instance gmultiset_intersection_left_absorb : LeftAbsorb (=@{gmultiset A})  ().
Proof.
  intros X. apply gmultiset_eq; intros x.
  by rewrite multiplicity_intersection, multiplicity_empty.
Qed.
Global Instance gmultiset_intersection_right_absorb : RightAbsorb (=@{gmultiset A})  ().
Proof. intros X. by rewrite (comm_L ()), (left_absorb_L _ _). Qed.
Global Instance gmultiset_intersection_idemp : IdemP (=@{gmultiset A}) ().
Proof.
  intros X. apply gmultiset_eq; intros x. rewrite !multiplicity_intersection; lia.
Qed.

188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
Lemma gmultiset_union_intersection_l X Y Z : X  (Y  Z) = (X  Y)  (X  Z).
Proof.
  apply gmultiset_eq; intros y.
  rewrite multiplicity_union, !multiplicity_intersection, !multiplicity_union. lia.
Qed.
Lemma gmultiset_union_intersection_r X Y Z : (X  Y)  Z = (X  Z)  (Y  Z).
Proof. by rewrite <-!(comm_L _ Z), gmultiset_union_intersection_l. Qed.
Lemma gmultiset_intersection_union_l X Y Z : X  (Y  Z) = (X  Y)  (X  Z).
Proof.
  apply gmultiset_eq; intros y.
  rewrite multiplicity_union, !multiplicity_intersection, !multiplicity_union. lia.
Qed.
Lemma gmultiset_intersection_union_r X Y Z : (X  Y)  Z = (X  Z)  (Y  Z).
Proof. by rewrite <-!(comm_L _ Z), gmultiset_intersection_union_l. Qed.

203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
(** For disjoint union (aka sum) *)
Global Instance gmultiset_disj_union_comm : Comm (=@{gmultiset A}) ().
Proof.
  intros X Y. apply gmultiset_eq; intros x. rewrite !multiplicity_disj_union; lia.
Qed.
Global Instance gmultiset_disj_union_assoc : Assoc (=@{gmultiset A}) ().
Proof.
  intros X Y Z. apply gmultiset_eq; intros x. rewrite !multiplicity_disj_union; lia.
Qed.
Global Instance gmultiset_disj_union_left_id : LeftId (=@{gmultiset A})  ().
Proof.
  intros X. apply gmultiset_eq; intros x.
  by rewrite multiplicity_disj_union, multiplicity_empty.
Qed.
Global Instance gmultiset_disj_union_right_id : RightId (=@{gmultiset A})  ().
Proof. intros X. by rewrite (comm_L ()), (left_id_L _ _). Qed.

Global Instance gmultiset_disj_union_inj_1 X : Inj (=) (=) (X ).
Robbert Krebbers's avatar
Robbert Krebbers committed
221 222
Proof.
  intros Y1 Y2. rewrite !gmultiset_eq. intros HX x; generalize (HX x).
223
  rewrite !multiplicity_disj_union. lia.
Robbert Krebbers's avatar
Robbert Krebbers committed
224
Qed.
225
Global Instance gmultiset_disj_union_inj_2 X : Inj (=) (=) ( X).
Robbert Krebbers's avatar
Robbert Krebbers committed
226 227
Proof. intros Y1 Y2. rewrite <-!(comm_L _ X). apply (inj _). Qed.

228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
Lemma gmultiset_disj_union_intersection_l X Y Z : X  (Y  Z) = (X  Y)  (X  Z).
Proof.
  apply gmultiset_eq; intros y.
  rewrite multiplicity_disj_union, !multiplicity_intersection,
    !multiplicity_disj_union. lia.
Qed.
Lemma gmultiset_disj_union_intersection_r X Y Z : (X  Y)  Z = (X  Z)  (Y  Z).
Proof. by rewrite <-!(comm_L _ Z), gmultiset_disj_union_intersection_l. Qed.

Lemma gmultiset_disj_union_union_l X Y Z : X  (Y  Z) = (X  Y)  (X  Z).
Proof.
  apply gmultiset_eq; intros y.
  rewrite multiplicity_disj_union, !multiplicity_union,
    !multiplicity_disj_union. lia.
Qed.
Lemma gmultiset_disj_union_union_r X Y Z : (X  Y)  Z = (X  Z)  (Y  Z).
Proof. by rewrite <-!(comm_L _ Z), gmultiset_disj_union_union_l. Qed.

246
(** Misc *)
247
Lemma gmultiset_non_empty_singleton x : {[ x ]} @{gmultiset A} .
Robbert Krebbers's avatar
Robbert Krebbers committed
248
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
249 250
  rewrite gmultiset_eq. intros Hx; generalize (Hx x).
  by rewrite multiplicity_singleton, multiplicity_empty.
Robbert Krebbers's avatar
Robbert Krebbers committed
251 252
Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
253 254 255 256 257 258 259 260
(* Properties of the elements operation *)
Lemma gmultiset_elements_empty : elements ( : gmultiset A) = [].
Proof.
  unfold elements, gmultiset_elements; simpl. by rewrite map_to_list_empty.
Qed.
Lemma gmultiset_elements_empty_inv X : elements X = []  X = .
Proof.
  destruct X as [X]; unfold elements, gmultiset_elements; simpl.
261 262 263
  intros; apply (f_equal GMultiSet). destruct (map_to_list X) as [|[]] eqn:?.
  - by apply map_to_list_empty_inv.
  - naive_solver.
Robbert Krebbers's avatar
Robbert Krebbers committed
264 265 266 267 268 269 270 271 272 273
Qed.
Lemma gmultiset_elements_empty' X : elements X = []  X = .
Proof.
  split; intros HX; [by apply gmultiset_elements_empty_inv|].
  by rewrite HX, gmultiset_elements_empty.
Qed.
Lemma gmultiset_elements_singleton x : elements ({[ x ]} : gmultiset A) = [ x ].
Proof.
  unfold elements, gmultiset_elements; simpl. by rewrite map_to_list_singleton.
Qed.
274 275
Lemma gmultiset_elements_disj_union X Y :
  elements (X  Y)  elements X ++ elements Y.
Robbert Krebbers's avatar
Robbert Krebbers committed
276 277 278 279
Proof.
  destruct X as [X], Y as [Y]; unfold elements, gmultiset_elements.
  set (f xn := let '(x, n) := xn in replicate (S n) x); simpl.
  revert Y; induction X as [|x n X HX IH] using map_ind; intros Y.
280
  { by rewrite (left_id_L _ _ Y), map_to_list_empty. }
Robbert Krebbers's avatar
Robbert Krebbers committed
281 282 283 284 285 286
  destruct (Y !! x) as [n'|] eqn:HY.
  - rewrite <-(insert_id Y x n'), <-(insert_delete Y) by done.
    erewrite <-insert_union_with by done.
    rewrite !map_to_list_insert, !bind_cons
      by (by rewrite ?lookup_union_with, ?lookup_delete, ?HX).
    rewrite (assoc_L _), <-(comm (++) (f (_,n'))), <-!(assoc_L _), <-IH.
287 288
    rewrite (assoc_L _). f_equiv.
    rewrite (comm _); simpl. by rewrite replicate_plus, Permutation_middle.
Robbert Krebbers's avatar
Robbert Krebbers committed
289 290 291 292 293 294 295 296 297 298 299
  - rewrite <-insert_union_with_l, !map_to_list_insert, !bind_cons
      by (by rewrite ?lookup_union_with, ?HX, ?HY).
    by rewrite <-(assoc_L (++)), <-IH.
Qed.
Lemma gmultiset_elem_of_elements x X : x  elements X  x  X.
Proof.
  destruct X as [X]. unfold elements, gmultiset_elements.
  set (f xn := let '(x, n) := xn in replicate (S n) x); simpl.
  unfold elem_of at 2, gmultiset_elem_of, multiplicity; simpl.
  rewrite elem_of_list_bind. split.
  - intros [[??] [[<- ?]%elem_of_replicate ->%elem_of_map_to_list]]; lia.
Ralf Jung's avatar
Ralf Jung committed
300
  - intros. destruct (X !! x) as [n|] eqn:Hx; [|lia].
Robbert Krebbers's avatar
Robbert Krebbers committed
301
    exists (x,n); split; [|by apply elem_of_map_to_list].
Ralf Jung's avatar
Ralf Jung committed
302
    apply elem_of_replicate; auto with lia.
Robbert Krebbers's avatar
Robbert Krebbers committed
303
Qed.
304 305 306 307
Lemma gmultiset_elem_of_dom x X : x  dom (gset A) X  x  X.
Proof.
  unfold dom, gmultiset_dom, elem_of at 2, gmultiset_elem_of, multiplicity.
  destruct X as [X]; simpl; rewrite elem_of_dom, <-not_eq_None_Some.
Ralf Jung's avatar
Ralf Jung committed
308
  destruct (X !! x); naive_solver lia.
309
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344

(* Properties of the size operation *)
Lemma gmultiset_size_empty : size ( : gmultiset A) = 0.
Proof. done. Qed.
Lemma gmultiset_size_empty_inv X : size X = 0  X = .
Proof.
  unfold size, gmultiset_size; simpl. rewrite length_zero_iff_nil.
  apply gmultiset_elements_empty_inv.
Qed.
Lemma gmultiset_size_empty_iff X : size X = 0  X = .
Proof.
  split; [apply gmultiset_size_empty_inv|].
  by intros ->; rewrite gmultiset_size_empty.
Qed.
Lemma gmultiset_size_non_empty_iff X : size X  0  X  .
Proof. by rewrite gmultiset_size_empty_iff. Qed.

Lemma gmultiset_choose_or_empty X : ( x, x  X)  X = .
Proof.
  destruct (elements X) as [|x l] eqn:HX; [right|left].
  - by apply gmultiset_elements_empty_inv.
  - exists x. rewrite <-gmultiset_elem_of_elements, HX. by left.
Qed.
Lemma gmultiset_choose X : X     x, x  X.
Proof. intros. by destruct (gmultiset_choose_or_empty X). Qed.
Lemma gmultiset_size_pos_elem_of X : 0 < size X   x, x  X.
Proof.
  intros Hsz. destruct (gmultiset_choose_or_empty X) as [|HX]; [done|].
  contradict Hsz. rewrite HX, gmultiset_size_empty; lia.
Qed.

Lemma gmultiset_size_singleton x : size ({[ x ]} : gmultiset A) = 1.
Proof.
  unfold size, gmultiset_size; simpl. by rewrite gmultiset_elements_singleton.
Qed.
345
Lemma gmultiset_size_disj_union X Y : size (X  Y) = size X + size Y.
Robbert Krebbers's avatar
Robbert Krebbers committed
346 347
Proof.
  unfold size, gmultiset_size; simpl.
348
  by rewrite gmultiset_elements_disj_union, app_length.
Robbert Krebbers's avatar
Robbert Krebbers committed
349
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
350 351

(* Order stuff *)
352
Global Instance gmultiset_po : PartialOrder (@{gmultiset A}).
Robbert Krebbers's avatar
Robbert Krebbers committed
353 354 355 356 357 358 359
Proof.
  split; [split|].
  - by intros X x.
  - intros X Y Z HXY HYZ x. by trans (multiplicity x Y).
  - intros X Y HXY HYX; apply gmultiset_eq; intros x. by apply (anti_symm ()).
Qed.

360 361 362 363 364
Lemma gmultiset_subseteq_alt X Y :
  X  Y 
  map_relation () (λ _, False) (λ _, True) (gmultiset_car X) (gmultiset_car Y).
Proof.
  apply forall_proper; intros x. unfold multiplicity.
Ralf Jung's avatar
Ralf Jung committed
365
  destruct (gmultiset_car X !! x), (gmultiset_car Y !! x); naive_solver lia.
366
Qed.
367
Global Instance gmultiset_subseteq_dec : RelDecision (@{gmultiset A}).
368
Proof.
369
 refine (λ X Y, cast_if (decide (map_relation ()
370 371 372 373
   (λ _, False) (λ _, True) (gmultiset_car X) (gmultiset_car Y))));
   by rewrite gmultiset_subseteq_alt.
Defined.

Robbert Krebbers's avatar
Robbert Krebbers committed
374 375
Lemma gmultiset_subset_subseteq X Y : X  Y  X  Y.
Proof. apply strict_include. Qed.
Tej Chajed's avatar
Tej Chajed committed
376
Hint Resolve gmultiset_subset_subseteq : core.
Robbert Krebbers's avatar
Robbert Krebbers committed
377 378

Lemma gmultiset_empty_subseteq X :   X.
Ralf Jung's avatar
Ralf Jung committed
379
Proof. intros x. rewrite multiplicity_empty. lia. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
380 381

Lemma gmultiset_union_subseteq_l X Y : X  X  Y.
Ralf Jung's avatar
Ralf Jung committed
382
Proof. intros x. rewrite multiplicity_union. lia. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
383
Lemma gmultiset_union_subseteq_r X Y : Y  X  Y.
Ralf Jung's avatar
Ralf Jung committed
384
Proof. intros x. rewrite multiplicity_union. lia. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
385
Lemma gmultiset_union_mono X1 X2 Y1 Y2 : X1  X2  Y1  Y2  X1  Y1  X2  Y2.
386 387 388 389
Proof.
  intros HX HY x. rewrite !multiplicity_union.
  specialize (HX x); specialize (HY x); lia.
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
390 391 392 393
Lemma gmultiset_union_mono_l X Y1 Y2 : Y1  Y2  X  Y1  X  Y2.
Proof. intros. by apply gmultiset_union_mono. Qed.
Lemma gmultiset_union_mono_r X1 X2 Y : X1  X2  X1  Y  X2  Y.
Proof. intros. by apply gmultiset_union_mono. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
394

395 396 397 398 399 400 401 402 403 404 405
Lemma gmultiset_disj_union_subseteq_l X Y : X  X  Y.
Proof. intros x. rewrite multiplicity_disj_union. lia. Qed.
Lemma gmultiset_disj_union_subseteq_r X Y : Y  X  Y.
Proof. intros x. rewrite multiplicity_disj_union. lia. Qed.
Lemma gmultiset_disj_union_mono X1 X2 Y1 Y2 : X1  X2  Y1  Y2  X1  Y1  X2  Y2.
Proof. intros ?? x. rewrite !multiplicity_disj_union. by apply Nat.add_le_mono. Qed.
Lemma gmultiset_disj_union_mono_l X Y1 Y2 : Y1  Y2  X  Y1  X  Y2.
Proof. intros. by apply gmultiset_disj_union_mono. Qed.
Lemma gmultiset_disj_union_mono_r X1 X2 Y : X1  X2  X1  Y  X2  Y.
Proof. intros. by apply gmultiset_disj_union_mono. Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
406
Lemma gmultiset_subset X Y : X  Y  size X < size Y  X  Y.
Ralf Jung's avatar
Ralf Jung committed
407
Proof. intros. apply strict_spec_alt; split; naive_solver auto with lia. Qed.
408
Lemma gmultiset_disj_union_subset_l X Y : Y    X  X  Y.
Robbert Krebbers's avatar
Robbert Krebbers committed
409 410
Proof.
  intros HY%gmultiset_size_non_empty_iff.
411 412
  apply gmultiset_subset; auto using gmultiset_disj_union_subseteq_l.
  rewrite gmultiset_size_disj_union; lia.
Robbert Krebbers's avatar
Robbert Krebbers committed
413
Qed.
414 415
Lemma gmultiset_union_subset_r X Y : X    Y  X  Y.
Proof. rewrite (comm_L ()). apply gmultiset_disj_union_subset_l. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
416

Robbert Krebbers's avatar
Robbert Krebbers committed
417
Lemma gmultiset_elem_of_singleton_subseteq x X : x  X  {[ x ]}  X.
Robbert Krebbers's avatar
Robbert Krebbers committed
418
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
419
  rewrite elem_of_multiplicity. split.
420 421
  - intros Hx y. rewrite multiplicity_singleton'.
    destruct (decide (y = x)); naive_solver lia.
Ralf Jung's avatar
Ralf Jung committed
422
  - intros Hx. generalize (Hx x). rewrite multiplicity_singleton. lia.
Robbert Krebbers's avatar
Robbert Krebbers committed
423 424
Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
425 426 427
Lemma gmultiset_elem_of_subseteq X1 X2 x : x  X1  X1  X2  x  X2.
Proof. rewrite !gmultiset_elem_of_singleton_subseteq. by intros ->. Qed.

428
Lemma gmultiset_disj_union_difference X Y : X  Y  Y = X  Y  X.
Robbert Krebbers's avatar
Robbert Krebbers committed
429 430
Proof.
  intros HXY. apply gmultiset_eq; intros x; specialize (HXY x).
431
  rewrite multiplicity_disj_union, multiplicity_difference; lia.
Robbert Krebbers's avatar
Robbert Krebbers committed
432
Qed.
433
Lemma gmultiset_disj_union_difference' x Y : x  Y  Y = {[ x ]}  Y  {[ x ]}.
Robbert Krebbers's avatar
Robbert Krebbers committed
434
Proof.
435
  intros. by apply gmultiset_disj_union_difference,
Robbert Krebbers's avatar
Robbert Krebbers committed
436 437
    gmultiset_elem_of_singleton_subseteq.
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
438

Robbert Krebbers's avatar
Robbert Krebbers committed
439 440
Lemma gmultiset_size_difference X Y : Y  X  size (X  Y) = size X - size Y.
Proof.
441 442
  intros HX%gmultiset_disj_union_difference.
  rewrite HX at 2; rewrite gmultiset_size_disj_union. lia.
Robbert Krebbers's avatar
Robbert Krebbers committed
443 444
Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
445 446 447 448
Lemma gmultiset_non_empty_difference X Y : X  Y  Y  X  .
Proof.
  intros [_ HXY2] Hdiff; destruct HXY2; intros x.
  generalize (f_equal (multiplicity x) Hdiff).
Ralf Jung's avatar
Ralf Jung committed
449
  rewrite multiplicity_difference, multiplicity_empty; lia.
Robbert Krebbers's avatar
Robbert Krebbers committed
450 451 452 453 454
Qed.

Lemma gmultiset_difference_subset X Y : X    X  Y  Y  X  Y.
Proof.
  intros. eapply strict_transitive_l; [by apply gmultiset_union_subset_r|].
455
  by rewrite <-(gmultiset_disj_union_difference X Y).
Robbert Krebbers's avatar
Robbert Krebbers committed
456 457
Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
458
(* Mononicity *)
Robbert Krebbers's avatar
Robbert Krebbers committed
459
Lemma gmultiset_elements_submseteq X Y : X  Y  elements X + elements Y.
Robbert Krebbers's avatar
Robbert Krebbers committed
460
Proof.
461
  intros ->%gmultiset_disj_union_difference. rewrite gmultiset_elements_disj_union.
Robbert Krebbers's avatar
Robbert Krebbers committed
462
  by apply submseteq_inserts_r.
Robbert Krebbers's avatar
Robbert Krebbers committed
463 464
Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
465
Lemma gmultiset_subseteq_size X Y : X  Y  size X  size Y.
Robbert Krebbers's avatar
Robbert Krebbers committed
466
Proof. intros. by apply submseteq_length, gmultiset_elements_submseteq. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
467 468 469 470

Lemma gmultiset_subset_size X Y : X  Y  size X < size Y.
Proof.
  intros HXY. assert (size (Y  X)  0).
Robbert Krebbers's avatar
Robbert Krebbers committed
471
  { by apply gmultiset_size_non_empty_iff, gmultiset_non_empty_difference. }
472 473
  rewrite (gmultiset_disj_union_difference X Y),
    gmultiset_size_disj_union by auto. lia.
Robbert Krebbers's avatar
Robbert Krebbers committed
474 475 476
Qed.

(* Well-foundedness *)
477
Lemma gmultiset_wf : wf (@{gmultiset A}).
Robbert Krebbers's avatar
Robbert Krebbers committed
478 479 480
Proof.
  apply (wf_projected (<) size); auto using gmultiset_subset_size, lt_wf.
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
481 482

Lemma gmultiset_ind (P : gmultiset A  Prop) :
483
  P   ( x X, P X  P ({[ x ]}  X))   X, P X.
Robbert Krebbers's avatar
Robbert Krebbers committed
484 485 486
Proof.
  intros Hemp Hinsert X. induction (gmultiset_wf X) as [X _ IH].
  destruct (gmultiset_choose_or_empty X) as [[x Hx]| ->]; auto.
487
  rewrite (gmultiset_disj_union_difference' x X) by done.
Robbert Krebbers's avatar
Robbert Krebbers committed
488 489
  apply Hinsert, IH, gmultiset_difference_subset,
    gmultiset_elem_of_singleton_subseteq; auto using gmultiset_non_empty_singleton.
Robbert Krebbers's avatar
Robbert Krebbers committed
490
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
491
End lemmas.