gmultiset.v 19.9 KB
Newer Older
1
(* Copyright (c) 2012-2019, Coq-std++ developers. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
2
3
(* This file is distributed under the terms of the BSD license. *)
From stdpp Require Import gmap.
4
Set Default Proof Using "Type".
Robbert Krebbers's avatar
Robbert Krebbers committed
5
6

Record gmultiset A `{Countable A} := GMultiSet { gmultiset_car : gmap A nat }.
7
8
Arguments GMultiSet {_ _ _} _ : assert.
Arguments gmultiset_car {_ _ _} _ : assert.
Robbert Krebbers's avatar
Robbert Krebbers committed
9

10
Instance gmultiset_eq_dec `{Countable A} : EqDecision (gmultiset A).
Robbert Krebbers's avatar
Robbert Krebbers committed
11
12
Proof. solve_decision. Defined.

13
Program Instance gmultiset_countable `{Countable A} :
Robbert Krebbers's avatar
Robbert Krebbers committed
14
15
16
17
18
19
20
21
22
23
    Countable (gmultiset A) := {|
  encode X := encode (gmultiset_car X);  decode p := GMultiSet <$> decode p
|}.
Next Obligation. intros A ?? [X]; simpl. by rewrite decode_encode. Qed.

Section definitions.
  Context `{Countable A}.

  Definition multiplicity (x : A) (X : gmultiset A) : nat :=
    match gmultiset_car X !! x with Some n => S n | None => 0 end.
24
  Global Instance gmultiset_elem_of : ElemOf A (gmultiset A) := λ x X,
Robbert Krebbers's avatar
Robbert Krebbers committed
25
    0 < multiplicity x X.
26
  Global Instance gmultiset_subseteq : SubsetEq (gmultiset A) := λ X Y,  x,
Robbert Krebbers's avatar
Robbert Krebbers committed
27
    multiplicity x X  multiplicity x Y.
28
29
  Global Instance gmultiset_equiv : Equiv (gmultiset A) := λ X Y,  x,
    multiplicity x X = multiplicity x Y.
Robbert Krebbers's avatar
Robbert Krebbers committed
30

31
  Global Instance gmultiset_elements : Elements A (gmultiset A) := λ X,
32
    let (X) := X in ''(x,n)  map_to_list X; replicate (S n) x.
33
  Global Instance gmultiset_size : Size (gmultiset A) := length  elements.
Robbert Krebbers's avatar
Robbert Krebbers committed
34

35
36
  Global Instance gmultiset_empty : Empty (gmultiset A) := GMultiSet .
  Global Instance gmultiset_singleton : Singleton A (gmultiset A) := λ x,
Robbert Krebbers's avatar
Robbert Krebbers committed
37
    GMultiSet {[ x := 0 ]}.
38
  Global Instance gmultiset_union : Union (gmultiset A) := λ X Y,
39
40
41
42
43
44
45
    let (X) := X in let (Y) := Y in
    GMultiSet $ union_with (λ x y, Some (x `max` y)) X Y.
  Global Instance gmultiset_intersection : Intersection (gmultiset A) := λ X Y,
    let (X) := X in let (Y) := Y in
    GMultiSet $ intersection_with (λ x y, Some (x `min` y)) X Y.
  (** Often called the "sum" *)
  Global Instance gmultiset_disj_union : DisjUnion (gmultiset A) := λ X Y,
Robbert Krebbers's avatar
Robbert Krebbers committed
46
47
    let (X) := X in let (Y) := Y in
    GMultiSet $ union_with (λ x y, Some (S (x + y))) X Y.
48
  Global Instance gmultiset_difference : Difference (gmultiset A) := λ X Y,
Robbert Krebbers's avatar
Robbert Krebbers committed
49
50
51
    let (X) := X in let (Y) := Y in
    GMultiSet $ difference_with (λ x y,
      let z := x - y in guard (0 < z); Some (pred z)) X Y.
52

53
  Global Instance gmultiset_dom : Dom (gmultiset A) (gset A) := λ X,
54
    let (X) := X in dom _ X.
55
End definitions. 
Robbert Krebbers's avatar
Robbert Krebbers committed
56

57
58
59
Typeclasses Opaque gmultiset_elem_of gmultiset_subseteq.
Typeclasses Opaque gmultiset_elements gmultiset_size gmultiset_empty.
Typeclasses Opaque gmultiset_singleton gmultiset_union gmultiset_difference.
60
Typeclasses Opaque gmultiset_dom.
61

Robbert Krebbers's avatar
Robbert Krebbers committed
62
63
64
65
66
67
68
69
70
71
72
73
Section lemmas.
Context `{Countable A}.
Implicit Types x y : A.
Implicit Types X Y : gmultiset A.

Lemma gmultiset_eq X Y : X = Y   x, multiplicity x X = multiplicity x Y.
Proof.
  split; [by intros ->|intros HXY].
  destruct X as [X], Y as [Y]; f_equal; apply map_eq; intros x.
  specialize (HXY x); unfold multiplicity in *; simpl in *.
  repeat case_match; naive_solver.
Qed.
74
75
Global Instance gmultiset_leibniz : LeibnizEquiv (gmultiset A).
Proof. intros X Y. by rewrite gmultiset_eq. Qed.
76
Global Instance gmultiset_equiv_equivalence : Equivalence (@{gmultiset A}).
77
Proof. constructor; repeat intro; naive_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
78
79
80
81
82
83
84
85
86

(* Multiplicity *)
Lemma multiplicity_empty x : multiplicity x  = 0.
Proof. done. Qed.
Lemma multiplicity_singleton x : multiplicity x {[ x ]} = 1.
Proof. unfold multiplicity; simpl. by rewrite lookup_singleton. Qed.
Lemma multiplicity_singleton_ne x y : x  y  multiplicity x {[ y ]} = 0.
Proof. intros. unfold multiplicity; simpl. by rewrite lookup_singleton_ne. Qed.
Lemma multiplicity_union X Y x :
87
88
89
90
91
92
93
94
95
96
97
98
99
  multiplicity x (X  Y) = multiplicity x X `max` multiplicity x Y.
Proof.
  destruct X as [X], Y as [Y]; unfold multiplicity; simpl.
  rewrite lookup_union_with. destruct (X !! _), (Y !! _); simpl; lia.
Qed.
Lemma multiplicity_intersection X Y x :
  multiplicity x (X  Y) = multiplicity x X `min` multiplicity x Y.
Proof.
  destruct X as [X], Y as [Y]; unfold multiplicity; simpl.
  rewrite lookup_intersection_with. destruct (X !! _), (Y !! _); simpl; lia.
Qed.
Lemma multiplicity_disj_union X Y x :
  multiplicity x (X  Y) = multiplicity x X + multiplicity x Y.
Robbert Krebbers's avatar
Robbert Krebbers committed
100
101
Proof.
  destruct X as [X], Y as [Y]; unfold multiplicity; simpl.
Ralf Jung's avatar
Ralf Jung committed
102
  rewrite lookup_union_with. destruct (X !! _), (Y !! _); simpl; lia.
Robbert Krebbers's avatar
Robbert Krebbers committed
103
104
105
106
107
108
Qed.
Lemma multiplicity_difference X Y x :
  multiplicity x (X  Y) = multiplicity x X - multiplicity x Y.
Proof.
  destruct X as [X], Y as [Y]; unfold multiplicity; simpl.
  rewrite lookup_difference_with.
Ralf Jung's avatar
Ralf Jung committed
109
  destruct (X !! _), (Y !! _); simplify_option_eq; lia.
Robbert Krebbers's avatar
Robbert Krebbers committed
110
111
Qed.

112
(* Set_ *)
113
114
115
Lemma elem_of_multiplicity x X : x  X  0 < multiplicity x X.
Proof. done. Qed.

116
Global Instance gmultiset_simple_set : SemiSet A (gmultiset A).
117
118
Proof.
  split.
Ralf Jung's avatar
Ralf Jung committed
119
  - intros x. rewrite elem_of_multiplicity, multiplicity_empty. lia.
120
121
122
123
  - intros x y. destruct (decide (x = y)) as [->|].
    + rewrite elem_of_multiplicity, multiplicity_singleton. split; auto with lia.
    + rewrite elem_of_multiplicity, multiplicity_singleton_ne by done.
      by split; auto with lia.
Ralf Jung's avatar
Ralf Jung committed
124
  - intros X Y x. rewrite !elem_of_multiplicity, multiplicity_union. lia.
125
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
126
Global Instance gmultiset_elem_of_dec : RelDecision (@{gmultiset A}).
127
Proof. refine (λ x X, cast_if (decide (0 < multiplicity x X))); done. Defined.
128

129
130
131
Lemma gmultiset_elem_of_disj_union X Y x : x  X  Y  x  X  x  Y.
Proof. rewrite !elem_of_multiplicity, multiplicity_disj_union. lia. Qed.

132
133
134
Global Instance set_unfold_gmultiset_disj_union x X Y P Q :
  SetUnfold (x  X) P  SetUnfold (x  Y) Q  SetUnfold (x  X  Y) (P  Q).
Proof.
135
136
  intros ??; constructor. rewrite gmultiset_elem_of_disj_union.
  by rewrite <-(set_unfold (x  X) P), <-(set_unfold (x  Y) Q).
137
138
Qed.

139
(* Algebraic laws *)
140
141
(** For union *)
Global Instance gmultiset_union_comm : Comm (=@{gmultiset A}) ().
Robbert Krebbers's avatar
Robbert Krebbers committed
142
Proof.
Ralf Jung's avatar
Ralf Jung committed
143
  intros X Y. apply gmultiset_eq; intros x. rewrite !multiplicity_union; lia.
Robbert Krebbers's avatar
Robbert Krebbers committed
144
Qed.
145
Global Instance gmultiset_union_assoc : Assoc (=@{gmultiset A}) ().
Robbert Krebbers's avatar
Robbert Krebbers committed
146
Proof.
Ralf Jung's avatar
Ralf Jung committed
147
  intros X Y Z. apply gmultiset_eq; intros x. rewrite !multiplicity_union; lia.
Robbert Krebbers's avatar
Robbert Krebbers committed
148
Qed.
149
Global Instance gmultiset_union_left_id : LeftId (=@{gmultiset A})  ().
Robbert Krebbers's avatar
Robbert Krebbers committed
150
151
152
153
Proof.
  intros X. apply gmultiset_eq; intros x.
  by rewrite multiplicity_union, multiplicity_empty.
Qed.
154
Global Instance gmultiset_union_right_id : RightId (=@{gmultiset A})  ().
Robbert Krebbers's avatar
Robbert Krebbers committed
155
Proof. intros X. by rewrite (comm_L ()), (left_id_L _ _). Qed.
156
157
158
159
Global Instance gmultiset_union_idemp : IdemP (=@{gmultiset A}) ().
Proof.
  intros X. apply gmultiset_eq; intros x. rewrite !multiplicity_union; lia.
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
160

161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
(** For intersection *)
Global Instance gmultiset_intersection_comm : Comm (=@{gmultiset A}) ().
Proof.
  intros X Y. apply gmultiset_eq; intros x. rewrite !multiplicity_intersection; lia.
Qed.
Global Instance gmultiset_intersection_assoc : Assoc (=@{gmultiset A}) ().
Proof.
  intros X Y Z. apply gmultiset_eq; intros x. rewrite !multiplicity_intersection; lia.
Qed.
Global Instance gmultiset_intersection_left_absorb : LeftAbsorb (=@{gmultiset A})  ().
Proof.
  intros X. apply gmultiset_eq; intros x.
  by rewrite multiplicity_intersection, multiplicity_empty.
Qed.
Global Instance gmultiset_intersection_right_absorb : RightAbsorb (=@{gmultiset A})  ().
Proof. intros X. by rewrite (comm_L ()), (left_absorb_L _ _). Qed.
Global Instance gmultiset_intersection_idemp : IdemP (=@{gmultiset A}) ().
Proof.
  intros X. apply gmultiset_eq; intros x. rewrite !multiplicity_intersection; lia.
Qed.

182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
Lemma gmultiset_union_intersection_l X Y Z : X  (Y  Z) = (X  Y)  (X  Z).
Proof.
  apply gmultiset_eq; intros y.
  rewrite multiplicity_union, !multiplicity_intersection, !multiplicity_union. lia.
Qed.
Lemma gmultiset_union_intersection_r X Y Z : (X  Y)  Z = (X  Z)  (Y  Z).
Proof. by rewrite <-!(comm_L _ Z), gmultiset_union_intersection_l. Qed.
Lemma gmultiset_intersection_union_l X Y Z : X  (Y  Z) = (X  Y)  (X  Z).
Proof.
  apply gmultiset_eq; intros y.
  rewrite multiplicity_union, !multiplicity_intersection, !multiplicity_union. lia.
Qed.
Lemma gmultiset_intersection_union_r X Y Z : (X  Y)  Z = (X  Z)  (Y  Z).
Proof. by rewrite <-!(comm_L _ Z), gmultiset_intersection_union_l. Qed.

197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
(** For disjoint union (aka sum) *)
Global Instance gmultiset_disj_union_comm : Comm (=@{gmultiset A}) ().
Proof.
  intros X Y. apply gmultiset_eq; intros x. rewrite !multiplicity_disj_union; lia.
Qed.
Global Instance gmultiset_disj_union_assoc : Assoc (=@{gmultiset A}) ().
Proof.
  intros X Y Z. apply gmultiset_eq; intros x. rewrite !multiplicity_disj_union; lia.
Qed.
Global Instance gmultiset_disj_union_left_id : LeftId (=@{gmultiset A})  ().
Proof.
  intros X. apply gmultiset_eq; intros x.
  by rewrite multiplicity_disj_union, multiplicity_empty.
Qed.
Global Instance gmultiset_disj_union_right_id : RightId (=@{gmultiset A})  ().
Proof. intros X. by rewrite (comm_L ()), (left_id_L _ _). Qed.

Global Instance gmultiset_disj_union_inj_1 X : Inj (=) (=) (X ).
Robbert Krebbers's avatar
Robbert Krebbers committed
215
216
Proof.
  intros Y1 Y2. rewrite !gmultiset_eq. intros HX x; generalize (HX x).
217
  rewrite !multiplicity_disj_union. lia.
Robbert Krebbers's avatar
Robbert Krebbers committed
218
Qed.
219
Global Instance gmultiset_disj_union_inj_2 X : Inj (=) (=) ( X).
Robbert Krebbers's avatar
Robbert Krebbers committed
220
221
Proof. intros Y1 Y2. rewrite <-!(comm_L _ X). apply (inj _). Qed.

222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
Lemma gmultiset_disj_union_intersection_l X Y Z : X  (Y  Z) = (X  Y)  (X  Z).
Proof.
  apply gmultiset_eq; intros y.
  rewrite multiplicity_disj_union, !multiplicity_intersection,
    !multiplicity_disj_union. lia.
Qed.
Lemma gmultiset_disj_union_intersection_r X Y Z : (X  Y)  Z = (X  Z)  (Y  Z).
Proof. by rewrite <-!(comm_L _ Z), gmultiset_disj_union_intersection_l. Qed.

Lemma gmultiset_disj_union_union_l X Y Z : X  (Y  Z) = (X  Y)  (X  Z).
Proof.
  apply gmultiset_eq; intros y.
  rewrite multiplicity_disj_union, !multiplicity_union,
    !multiplicity_disj_union. lia.
Qed.
Lemma gmultiset_disj_union_union_r X Y Z : (X  Y)  Z = (X  Z)  (Y  Z).
Proof. by rewrite <-!(comm_L _ Z), gmultiset_disj_union_union_l. Qed.

240
(** Misc *)
241
Lemma gmultiset_non_empty_singleton x : {[ x ]} @{gmultiset A} .
Robbert Krebbers's avatar
Robbert Krebbers committed
242
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
243
244
  rewrite gmultiset_eq. intros Hx; generalize (Hx x).
  by rewrite multiplicity_singleton, multiplicity_empty.
Robbert Krebbers's avatar
Robbert Krebbers committed
245
246
Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
247
248
249
250
251
252
253
254
(* Properties of the elements operation *)
Lemma gmultiset_elements_empty : elements ( : gmultiset A) = [].
Proof.
  unfold elements, gmultiset_elements; simpl. by rewrite map_to_list_empty.
Qed.
Lemma gmultiset_elements_empty_inv X : elements X = []  X = .
Proof.
  destruct X as [X]; unfold elements, gmultiset_elements; simpl.
255
256
257
  intros; apply (f_equal GMultiSet). destruct (map_to_list X) as [|[]] eqn:?.
  - by apply map_to_list_empty_inv.
  - naive_solver.
Robbert Krebbers's avatar
Robbert Krebbers committed
258
259
260
261
262
263
264
265
266
267
Qed.
Lemma gmultiset_elements_empty' X : elements X = []  X = .
Proof.
  split; intros HX; [by apply gmultiset_elements_empty_inv|].
  by rewrite HX, gmultiset_elements_empty.
Qed.
Lemma gmultiset_elements_singleton x : elements ({[ x ]} : gmultiset A) = [ x ].
Proof.
  unfold elements, gmultiset_elements; simpl. by rewrite map_to_list_singleton.
Qed.
268
269
Lemma gmultiset_elements_disj_union X Y :
  elements (X  Y)  elements X ++ elements Y.
Robbert Krebbers's avatar
Robbert Krebbers committed
270
271
272
273
Proof.
  destruct X as [X], Y as [Y]; unfold elements, gmultiset_elements.
  set (f xn := let '(x, n) := xn in replicate (S n) x); simpl.
  revert Y; induction X as [|x n X HX IH] using map_ind; intros Y.
274
  { by rewrite (left_id_L _ _ Y), map_to_list_empty. }
Robbert Krebbers's avatar
Robbert Krebbers committed
275
276
277
278
279
280
  destruct (Y !! x) as [n'|] eqn:HY.
  - rewrite <-(insert_id Y x n'), <-(insert_delete Y) by done.
    erewrite <-insert_union_with by done.
    rewrite !map_to_list_insert, !bind_cons
      by (by rewrite ?lookup_union_with, ?lookup_delete, ?HX).
    rewrite (assoc_L _), <-(comm (++) (f (_,n'))), <-!(assoc_L _), <-IH.
281
282
    rewrite (assoc_L _). f_equiv.
    rewrite (comm _); simpl. by rewrite replicate_plus, Permutation_middle.
Robbert Krebbers's avatar
Robbert Krebbers committed
283
284
285
286
287
288
289
290
291
292
293
  - rewrite <-insert_union_with_l, !map_to_list_insert, !bind_cons
      by (by rewrite ?lookup_union_with, ?HX, ?HY).
    by rewrite <-(assoc_L (++)), <-IH.
Qed.
Lemma gmultiset_elem_of_elements x X : x  elements X  x  X.
Proof.
  destruct X as [X]. unfold elements, gmultiset_elements.
  set (f xn := let '(x, n) := xn in replicate (S n) x); simpl.
  unfold elem_of at 2, gmultiset_elem_of, multiplicity; simpl.
  rewrite elem_of_list_bind. split.
  - intros [[??] [[<- ?]%elem_of_replicate ->%elem_of_map_to_list]]; lia.
Ralf Jung's avatar
Ralf Jung committed
294
  - intros. destruct (X !! x) as [n|] eqn:Hx; [|lia].
Robbert Krebbers's avatar
Robbert Krebbers committed
295
    exists (x,n); split; [|by apply elem_of_map_to_list].
Ralf Jung's avatar
Ralf Jung committed
296
    apply elem_of_replicate; auto with lia.
Robbert Krebbers's avatar
Robbert Krebbers committed
297
Qed.
298
299
300
301
Lemma gmultiset_elem_of_dom x X : x  dom (gset A) X  x  X.
Proof.
  unfold dom, gmultiset_dom, elem_of at 2, gmultiset_elem_of, multiplicity.
  destruct X as [X]; simpl; rewrite elem_of_dom, <-not_eq_None_Some.
Ralf Jung's avatar
Ralf Jung committed
302
  destruct (X !! x); naive_solver lia.
303
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338

(* Properties of the size operation *)
Lemma gmultiset_size_empty : size ( : gmultiset A) = 0.
Proof. done. Qed.
Lemma gmultiset_size_empty_inv X : size X = 0  X = .
Proof.
  unfold size, gmultiset_size; simpl. rewrite length_zero_iff_nil.
  apply gmultiset_elements_empty_inv.
Qed.
Lemma gmultiset_size_empty_iff X : size X = 0  X = .
Proof.
  split; [apply gmultiset_size_empty_inv|].
  by intros ->; rewrite gmultiset_size_empty.
Qed.
Lemma gmultiset_size_non_empty_iff X : size X  0  X  .
Proof. by rewrite gmultiset_size_empty_iff. Qed.

Lemma gmultiset_choose_or_empty X : ( x, x  X)  X = .
Proof.
  destruct (elements X) as [|x l] eqn:HX; [right|left].
  - by apply gmultiset_elements_empty_inv.
  - exists x. rewrite <-gmultiset_elem_of_elements, HX. by left.
Qed.
Lemma gmultiset_choose X : X     x, x  X.
Proof. intros. by destruct (gmultiset_choose_or_empty X). Qed.
Lemma gmultiset_size_pos_elem_of X : 0 < size X   x, x  X.
Proof.
  intros Hsz. destruct (gmultiset_choose_or_empty X) as [|HX]; [done|].
  contradict Hsz. rewrite HX, gmultiset_size_empty; lia.
Qed.

Lemma gmultiset_size_singleton x : size ({[ x ]} : gmultiset A) = 1.
Proof.
  unfold size, gmultiset_size; simpl. by rewrite gmultiset_elements_singleton.
Qed.
339
Lemma gmultiset_size_disj_union X Y : size (X  Y) = size X + size Y.
Robbert Krebbers's avatar
Robbert Krebbers committed
340
341
Proof.
  unfold size, gmultiset_size; simpl.
342
  by rewrite gmultiset_elements_disj_union, app_length.
Robbert Krebbers's avatar
Robbert Krebbers committed
343
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
344
345

(* Order stuff *)
346
Global Instance gmultiset_po : PartialOrder (@{gmultiset A}).
Robbert Krebbers's avatar
Robbert Krebbers committed
347
348
349
350
351
352
353
Proof.
  split; [split|].
  - by intros X x.
  - intros X Y Z HXY HYZ x. by trans (multiplicity x Y).
  - intros X Y HXY HYX; apply gmultiset_eq; intros x. by apply (anti_symm ()).
Qed.

354
355
356
357
358
Lemma gmultiset_subseteq_alt X Y :
  X  Y 
  map_relation () (λ _, False) (λ _, True) (gmultiset_car X) (gmultiset_car Y).
Proof.
  apply forall_proper; intros x. unfold multiplicity.
Ralf Jung's avatar
Ralf Jung committed
359
  destruct (gmultiset_car X !! x), (gmultiset_car Y !! x); naive_solver lia.
360
Qed.
361
Global Instance gmultiset_subseteq_dec : RelDecision (@{gmultiset A}).
362
Proof.
363
 refine (λ X Y, cast_if (decide (map_relation ()
364
365
366
367
   (λ _, False) (λ _, True) (gmultiset_car X) (gmultiset_car Y))));
   by rewrite gmultiset_subseteq_alt.
Defined.

Robbert Krebbers's avatar
Robbert Krebbers committed
368
369
Lemma gmultiset_subset_subseteq X Y : X  Y  X  Y.
Proof. apply strict_include. Qed.
Tej Chajed's avatar
Tej Chajed committed
370
Hint Resolve gmultiset_subset_subseteq : core.
Robbert Krebbers's avatar
Robbert Krebbers committed
371
372

Lemma gmultiset_empty_subseteq X :   X.
Ralf Jung's avatar
Ralf Jung committed
373
Proof. intros x. rewrite multiplicity_empty. lia. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
374
375

Lemma gmultiset_union_subseteq_l X Y : X  X  Y.
Ralf Jung's avatar
Ralf Jung committed
376
Proof. intros x. rewrite multiplicity_union. lia. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
377
Lemma gmultiset_union_subseteq_r X Y : Y  X  Y.
Ralf Jung's avatar
Ralf Jung committed
378
Proof. intros x. rewrite multiplicity_union. lia. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
379
Lemma gmultiset_union_mono X1 X2 Y1 Y2 : X1  X2  Y1  Y2  X1  Y1  X2  Y2.
380
381
382
383
Proof.
  intros HX HY x. rewrite !multiplicity_union.
  specialize (HX x); specialize (HY x); lia.
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
384
385
386
387
Lemma gmultiset_union_mono_l X Y1 Y2 : Y1  Y2  X  Y1  X  Y2.
Proof. intros. by apply gmultiset_union_mono. Qed.
Lemma gmultiset_union_mono_r X1 X2 Y : X1  X2  X1  Y  X2  Y.
Proof. intros. by apply gmultiset_union_mono. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
388

389
390
391
392
393
394
395
396
397
398
399
Lemma gmultiset_disj_union_subseteq_l X Y : X  X  Y.
Proof. intros x. rewrite multiplicity_disj_union. lia. Qed.
Lemma gmultiset_disj_union_subseteq_r X Y : Y  X  Y.
Proof. intros x. rewrite multiplicity_disj_union. lia. Qed.
Lemma gmultiset_disj_union_mono X1 X2 Y1 Y2 : X1  X2  Y1  Y2  X1  Y1  X2  Y2.
Proof. intros ?? x. rewrite !multiplicity_disj_union. by apply Nat.add_le_mono. Qed.
Lemma gmultiset_disj_union_mono_l X Y1 Y2 : Y1  Y2  X  Y1  X  Y2.
Proof. intros. by apply gmultiset_disj_union_mono. Qed.
Lemma gmultiset_disj_union_mono_r X1 X2 Y : X1  X2  X1  Y  X2  Y.
Proof. intros. by apply gmultiset_disj_union_mono. Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
400
Lemma gmultiset_subset X Y : X  Y  size X < size Y  X  Y.
Ralf Jung's avatar
Ralf Jung committed
401
Proof. intros. apply strict_spec_alt; split; naive_solver auto with lia. Qed.
402
Lemma gmultiset_disj_union_subset_l X Y : Y    X  X  Y.
Robbert Krebbers's avatar
Robbert Krebbers committed
403
404
Proof.
  intros HY%gmultiset_size_non_empty_iff.
405
406
  apply gmultiset_subset; auto using gmultiset_disj_union_subseteq_l.
  rewrite gmultiset_size_disj_union; lia.
Robbert Krebbers's avatar
Robbert Krebbers committed
407
Qed.
408
409
Lemma gmultiset_union_subset_r X Y : X    Y  X  Y.
Proof. rewrite (comm_L ()). apply gmultiset_disj_union_subset_l. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
410

Robbert Krebbers's avatar
Robbert Krebbers committed
411
Lemma gmultiset_elem_of_singleton_subseteq x X : x  X  {[ x ]}  X.
Robbert Krebbers's avatar
Robbert Krebbers committed
412
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
413
414
  rewrite elem_of_multiplicity. split.
  - intros Hx y; destruct (decide (x = y)) as [->|].
Ralf Jung's avatar
Ralf Jung committed
415
416
417
    + rewrite multiplicity_singleton; lia.
    + rewrite multiplicity_singleton_ne by done; lia.
  - intros Hx. generalize (Hx x). rewrite multiplicity_singleton. lia.
Robbert Krebbers's avatar
Robbert Krebbers committed
418
419
Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
420
421
422
Lemma gmultiset_elem_of_subseteq X1 X2 x : x  X1  X1  X2  x  X2.
Proof. rewrite !gmultiset_elem_of_singleton_subseteq. by intros ->. Qed.

423
Lemma gmultiset_disj_union_difference X Y : X  Y  Y = X  Y  X.
Robbert Krebbers's avatar
Robbert Krebbers committed
424
425
Proof.
  intros HXY. apply gmultiset_eq; intros x; specialize (HXY x).
426
  rewrite multiplicity_disj_union, multiplicity_difference; lia.
Robbert Krebbers's avatar
Robbert Krebbers committed
427
Qed.
428
Lemma gmultiset_disj_union_difference' x Y : x  Y  Y = {[ x ]}  Y  {[ x ]}.
Robbert Krebbers's avatar
Robbert Krebbers committed
429
Proof.
430
  intros. by apply gmultiset_disj_union_difference,
Robbert Krebbers's avatar
Robbert Krebbers committed
431
432
    gmultiset_elem_of_singleton_subseteq.
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
433

Robbert Krebbers's avatar
Robbert Krebbers committed
434
435
Lemma gmultiset_size_difference X Y : Y  X  size (X  Y) = size X - size Y.
Proof.
436
437
  intros HX%gmultiset_disj_union_difference.
  rewrite HX at 2; rewrite gmultiset_size_disj_union. lia.
Robbert Krebbers's avatar
Robbert Krebbers committed
438
439
Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
440
441
442
443
Lemma gmultiset_non_empty_difference X Y : X  Y  Y  X  .
Proof.
  intros [_ HXY2] Hdiff; destruct HXY2; intros x.
  generalize (f_equal (multiplicity x) Hdiff).
Ralf Jung's avatar
Ralf Jung committed
444
  rewrite multiplicity_difference, multiplicity_empty; lia.
Robbert Krebbers's avatar
Robbert Krebbers committed
445
446
447
448
449
Qed.

Lemma gmultiset_difference_subset X Y : X    X  Y  Y  X  Y.
Proof.
  intros. eapply strict_transitive_l; [by apply gmultiset_union_subset_r|].
450
  by rewrite <-(gmultiset_disj_union_difference X Y).
Robbert Krebbers's avatar
Robbert Krebbers committed
451
452
Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
453
(* Mononicity *)
Robbert Krebbers's avatar
Robbert Krebbers committed
454
Lemma gmultiset_elements_submseteq X Y : X  Y  elements X + elements Y.
Robbert Krebbers's avatar
Robbert Krebbers committed
455
Proof.
456
  intros ->%gmultiset_disj_union_difference. rewrite gmultiset_elements_disj_union.
Robbert Krebbers's avatar
Robbert Krebbers committed
457
  by apply submseteq_inserts_r.
Robbert Krebbers's avatar
Robbert Krebbers committed
458
459
Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
460
Lemma gmultiset_subseteq_size X Y : X  Y  size X  size Y.
Robbert Krebbers's avatar
Robbert Krebbers committed
461
Proof. intros. by apply submseteq_length, gmultiset_elements_submseteq. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
462
463
464
465

Lemma gmultiset_subset_size X Y : X  Y  size X < size Y.
Proof.
  intros HXY. assert (size (Y  X)  0).
Robbert Krebbers's avatar
Robbert Krebbers committed
466
  { by apply gmultiset_size_non_empty_iff, gmultiset_non_empty_difference. }
467
468
  rewrite (gmultiset_disj_union_difference X Y),
    gmultiset_size_disj_union by auto. lia.
Robbert Krebbers's avatar
Robbert Krebbers committed
469
470
471
Qed.

(* Well-foundedness *)
472
Lemma gmultiset_wf : wf (@{gmultiset A}).
Robbert Krebbers's avatar
Robbert Krebbers committed
473
474
475
Proof.
  apply (wf_projected (<) size); auto using gmultiset_subset_size, lt_wf.
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
476
477

Lemma gmultiset_ind (P : gmultiset A  Prop) :
478
  P   ( x X, P X  P ({[ x ]}  X))   X, P X.
Robbert Krebbers's avatar
Robbert Krebbers committed
479
480
481
Proof.
  intros Hemp Hinsert X. induction (gmultiset_wf X) as [X _ IH].
  destruct (gmultiset_choose_or_empty X) as [[x Hx]| ->]; auto.
482
  rewrite (gmultiset_disj_union_difference' x X) by done.
Robbert Krebbers's avatar
Robbert Krebbers committed
483
484
  apply Hinsert, IH, gmultiset_difference_subset,
    gmultiset_elem_of_singleton_subseteq; auto using gmultiset_non_empty_singleton.
Robbert Krebbers's avatar
Robbert Krebbers committed
485
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
486
End lemmas.