sets.v 47.3 KB
Newer Older
1
(* Copyright (c) 2012-2019, Coq-std++ developers. *)
2
(* This file is distributed under the terms of the BSD license. *)
3
(** This file collects definitions and theorems on sets. Most
4
importantly, it implements some tactics to automatically solve goals involving
5
sets. *)
6
From stdpp Require Export orders list.
7
8
(* FIXME: This file needs a 'Proof Using' hint, but the default we use
   everywhere makes for lots of extra ssumptions. *)
9

10
11
(* Higher precedence to make sure these instances are not used for other types
with an [ElemOf] instance, such as lists. *)
12
Instance set_equiv `{ElemOf A C} : Equiv C | 20 := λ X Y,
13
   x, x  X  x  Y.
14
Instance set_subseteq `{ElemOf A C} : SubsetEq C | 20 := λ X Y,
15
   x, x  X  x  Y.
16
Instance set_disjoint `{ElemOf A C} : Disjoint C | 20 := λ X Y,
17
   x, x  X  x  Y  False.
18
Typeclasses Opaque set_equiv set_subseteq set_disjoint.
19

20
21
(** * Setoids *)
Section setoids_simple.
22
  Context `{SemiSet A C}.
Robbert Krebbers's avatar
Robbert Krebbers committed
23

24
  Global Instance set_equiv_equivalence : Equivalence (@{C}).
25
  Proof.
26
27
28
29
    split.
    - done.
    - intros X Y ? x. by symmetry.
    - intros X Y Z ?? x; by trans (x  Y).
30
  Qed.
31
  Global Instance singleton_proper : Proper ((=) ==> (@{C})) singleton.
32
  Proof. apply _. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
33
  Global Instance elem_of_proper : Proper ((=) ==> () ==> iff) (@{C}) | 5.
34
  Proof. by intros x ? <- X Y. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
35
  Global Instance disjoint_proper: Proper (() ==> () ==> iff) (##@{C}).
36
  Proof.
37
    intros X1 X2 HX Y1 Y2 HY; apply forall_proper; intros x. by rewrite HX, HY.
38
  Qed.
39
  Global Instance union_proper : Proper (() ==> () ==> (@{C})) union.
40
  Proof. intros X1 X2 HX Y1 Y2 HY x. rewrite !elem_of_union. f_equiv; auto. Qed.
41
  Global Instance union_list_proper: Proper (() ==> (@{C})) union_list.
42
  Proof. by induction 1; simpl; try apply union_proper. Qed.
43
  Global Instance subseteq_proper : Proper ((@{C}) ==> (@{C}) ==> iff) ().
44
45
46
47
48
49
  Proof.
    intros X1 X2 HX Y1 Y2 HY. apply forall_proper; intros x. by rewrite HX, HY.
  Qed.
End setoids_simple.

Section setoids.
50
  Context `{Set_ A C}.
51

52
53
  (** * Setoids *)
  Global Instance intersection_proper :
54
    Proper (() ==> () ==> (@{C})) intersection.
55
  Proof.
56
    intros X1 X2 HX Y1 Y2 HY x. by rewrite !elem_of_intersection, HX, HY.
57
  Qed.
58
  Global Instance difference_proper :
59
     Proper (() ==> () ==> (@{C})) difference.
60
  Proof.
61
    intros X1 X2 HX Y1 Y2 HY x. by rewrite !elem_of_difference, HX, HY.
62
  Qed.
63
End setoids.
Robbert Krebbers's avatar
Robbert Krebbers committed
64

65
Section setoids_monad.
66
  Context `{MonadSet M}.
67

68
  Global Instance set_fmap_proper {A B} :
69
    Proper (pointwise_relation _ (=) ==> () ==> ()) (@fmap M _ A B).
70
  Proof.
71
72
    intros f1 f2 Hf X1 X2 HX x. rewrite !elem_of_fmap. f_equiv; intros z.
    by rewrite HX, Hf.
73
  Qed.
74
  Global Instance set_bind_proper {A B} :
75
    Proper (pointwise_relation _ () ==> () ==> ()) (@mbind M _ A B).
76
77
  Proof.
    intros f1 f2 Hf X1 X2 HX x. rewrite !elem_of_bind. f_equiv; intros z.
78
    by rewrite HX, (Hf z).
79
  Qed.
80
  Global Instance set_join_proper {A} :
81
82
83
84
85
    Proper (() ==> ()) (@mjoin M _ A).
  Proof.
    intros X1 X2 HX x. rewrite !elem_of_join. f_equiv; intros z. by rewrite HX.
  Qed.
End setoids_monad.
86

87
88
89
90
91
(** * Tactics *)
(** The tactic [set_unfold] transforms all occurrences of [(∪)], [(∩)], [(∖)],
[(<$>)], [∅], [{[_]}], [(≡)], and [(⊆)] into logically equivalent propositions
involving just [∈]. For example, [A → x ∈ X ∪ ∅] becomes [A → x ∈ X ∨ False].

92
93
94
This transformation is implemented using type classes instead of setoid
rewriting to ensure that we traverse each term at most once and to be able to
deal with occurences of the set operations under binders. *)
95
Class SetUnfold (P Q : Prop) := { set_unfold : P  Q }.
96
Arguments set_unfold _ _ {_} : assert.
97
98
99
100
101
Hint Mode SetUnfold + - : typeclass_instances.

Class SetUnfoldSimpl (P Q : Prop) := { set_unfold_simpl : SetUnfold P Q }.
Hint Extern 0 (SetUnfoldSimpl _ _) => csimpl; constructor : typeclass_instances.

102
Instance set_unfold_default P : SetUnfold P P | 1000. done. Qed.
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
Definition set_unfold_1 `{SetUnfold P Q} : P  Q := proj1 (set_unfold P Q).
Definition set_unfold_2 `{SetUnfold P Q} : Q  P := proj2 (set_unfold P Q).

Lemma set_unfold_impl P Q P' Q' :
  SetUnfold P P'  SetUnfold Q Q'  SetUnfold (P  Q) (P'  Q').
Proof. constructor. by rewrite (set_unfold P P'), (set_unfold Q Q'). Qed.
Lemma set_unfold_and P Q P' Q' :
  SetUnfold P P'  SetUnfold Q Q'  SetUnfold (P  Q) (P'  Q').
Proof. constructor. by rewrite (set_unfold P P'), (set_unfold Q Q'). Qed.
Lemma set_unfold_or P Q P' Q' :
  SetUnfold P P'  SetUnfold Q Q'  SetUnfold (P  Q) (P'  Q').
Proof. constructor. by rewrite (set_unfold P P'), (set_unfold Q Q'). Qed.
Lemma set_unfold_iff P Q P' Q' :
  SetUnfold P P'  SetUnfold Q Q'  SetUnfold (P  Q) (P'  Q').
Proof. constructor. by rewrite (set_unfold P P'), (set_unfold Q Q'). Qed.
Lemma set_unfold_not P P' : SetUnfold P P'  SetUnfold (¬P) (¬P').
Proof. constructor. by rewrite (set_unfold P P'). Qed.
Lemma set_unfold_forall {A} (P P' : A  Prop) :
  ( x, SetUnfold (P x) (P' x))  SetUnfold ( x, P x) ( x, P' x).
Proof. constructor. naive_solver. Qed.
Lemma set_unfold_exist {A} (P P' : A  Prop) :
  ( x, SetUnfold (P x) (P' x))  SetUnfold ( x, P x) ( x, P' x).
Proof. constructor. naive_solver. Qed.

(* Avoid too eager application of the above instances (and thus too eager
unfolding of type class transparent definitions). *)
Hint Extern 0 (SetUnfold (_  _) _) =>
  class_apply set_unfold_impl : typeclass_instances.
Hint Extern 0 (SetUnfold (_  _) _) =>
  class_apply set_unfold_and : typeclass_instances.
Hint Extern 0 (SetUnfold (_  _) _) =>
  class_apply set_unfold_or : typeclass_instances.
Hint Extern 0 (SetUnfold (_  _) _) =>
  class_apply set_unfold_iff : typeclass_instances.
Hint Extern 0 (SetUnfold (¬ _) _) =>
  class_apply set_unfold_not : typeclass_instances.
Hint Extern 1 (SetUnfold ( _, _) _) =>
  class_apply set_unfold_forall : typeclass_instances.
Hint Extern 0 (SetUnfold ( _, _) _) =>
  class_apply set_unfold_exist : typeclass_instances.

Section set_unfold_simple.
145
  Context `{SemiSet A C}.
146
147
148
  Implicit Types x y : A.
  Implicit Types X Y : C.

149
  Global Instance set_unfold_empty x : SetUnfold (x  ( : C)) False.
150
  Proof. constructor. split. apply not_elem_of_empty. done. Qed.
151
  Global Instance set_unfold_singleton x y : SetUnfold (x  ({[ y ]} : C)) (x = y).
152
153
154
155
156
157
158
159
160
161
162
163
  Proof. constructor; apply elem_of_singleton. Qed.
  Global Instance set_unfold_union x X Y P Q :
    SetUnfold (x  X) P  SetUnfold (x  Y) Q  SetUnfold (x  X  Y) (P  Q).
  Proof.
    intros ??; constructor.
    by rewrite elem_of_union, (set_unfold (x  X) P), (set_unfold (x  Y) Q).
  Qed.
  Global Instance set_unfold_equiv_same X : SetUnfold (X  X) True | 1.
  Proof. done. Qed.
  Global Instance set_unfold_equiv_empty_l X (P : A  Prop) :
    ( x, SetUnfold (x  X) (P x))  SetUnfold (  X) ( x, ¬P x) | 5.
  Proof.
164
    intros ?; constructor. unfold equiv, set_equiv.
165
    pose proof (not_elem_of_empty (C:=C)); naive_solver.
166
  Qed.
167
  Global Instance set_unfold_equiv_empty_r (P : A  Prop) X :
168
    ( x, SetUnfold (x  X) (P x))  SetUnfold (X  ) ( x, ¬P x) | 5.
169
  Proof.
170
    intros ?; constructor. unfold equiv, set_equiv.
171
    pose proof (not_elem_of_empty (C:=C)); naive_solver.
172
  Qed.
173
  Global Instance set_unfold_equiv (P Q : A  Prop) X :
174
175
    ( x, SetUnfold (x  X) (P x))  ( x, SetUnfold (x  Y) (Q x)) 
    SetUnfold (X  Y) ( x, P x  Q x) | 10.
176
  Proof. constructor. apply forall_proper; naive_solver. Qed.
177
  Global Instance set_unfold_subseteq (P Q : A  Prop) X Y :
178
179
    ( x, SetUnfold (x  X) (P x))  ( x, SetUnfold (x  Y) (Q x)) 
    SetUnfold (X  Y) ( x, P x  Q x).
180
  Proof. constructor. apply forall_proper; naive_solver. Qed.
181
  Global Instance set_unfold_subset (P Q : A  Prop) X :
182
    ( x, SetUnfold (x  X) (P x))  ( x, SetUnfold (x  Y) (Q x)) 
183
    SetUnfold (X  Y) (( x, P x  Q x)  ¬∀ x, Q x  P x).
184
  Proof.
185
186
    constructor. unfold strict.
    repeat f_equiv; apply forall_proper; naive_solver.
187
  Qed.
188
  Global Instance set_unfold_disjoint (P Q : A  Prop) X Y :
Robbert Krebbers's avatar
Robbert Krebbers committed
189
    ( x, SetUnfold (x  X) (P x))  ( x, SetUnfold (x  Y) (Q x)) 
190
    SetUnfold (X ## Y) ( x, P x  Q x  False).
191
  Proof. constructor. unfold disjoint, set_disjoint. naive_solver. Qed.
192
193
194
195
196
197

  Context `{!LeibnizEquiv C}.
  Global Instance set_unfold_equiv_same_L X : SetUnfold (X = X) True | 1.
  Proof. done. Qed.
  Global Instance set_unfold_equiv_empty_l_L X (P : A  Prop) :
    ( x, SetUnfold (x  X) (P x))  SetUnfold ( = X) ( x, ¬P x) | 5.
198
  Proof. constructor. unfold_leibniz. by apply set_unfold_equiv_empty_l. Qed.
199
  Global Instance set_unfold_equiv_empty_r_L (P : A  Prop) X :
200
    ( x, SetUnfold (x  X) (P x))  SetUnfold (X = ) ( x, ¬P x) | 5.
201
  Proof. constructor. unfold_leibniz. by apply set_unfold_equiv_empty_r. Qed.
202
  Global Instance set_unfold_equiv_L (P Q : A  Prop) X Y :
203
204
    ( x, SetUnfold (x  X) (P x))  ( x, SetUnfold (x  Y) (Q x)) 
    SetUnfold (X = Y) ( x, P x  Q x) | 10.
205
  Proof. constructor. unfold_leibniz. by apply set_unfold_equiv. Qed.
206
207
208
End set_unfold_simple.

Section set_unfold.
209
  Context `{Set_ A C}.
210
211
212
213
214
215
  Implicit Types x y : A.
  Implicit Types X Y : C.

  Global Instance set_unfold_intersection x X Y P Q :
    SetUnfold (x  X) P  SetUnfold (x  Y) Q  SetUnfold (x  X  Y) (P  Q).
  Proof.
216
217
    intros ??; constructor. rewrite elem_of_intersection.
    by rewrite (set_unfold (x  X) P), (set_unfold (x  Y) Q).
218
219
220
221
  Qed.
  Global Instance set_unfold_difference x X Y P Q :
    SetUnfold (x  X) P  SetUnfold (x  Y) Q  SetUnfold (x  X  Y) (P  ¬Q).
  Proof.
222
223
    intros ??; constructor. rewrite elem_of_difference.
    by rewrite (set_unfold (x  X) P), (set_unfold (x  Y) Q).
224
225
226
227
  Qed.
End set_unfold.

Section set_unfold_monad.
228
  Context `{MonadSet M}.
229

230
231
  Global Instance set_unfold_ret {A} (x y : A) :
    SetUnfold (x  mret (M:=M) y) (x = y).
232
  Proof. constructor; apply elem_of_ret. Qed.
233
  Global Instance set_unfold_bind {A B} (f : A  M B) X (P Q : A  Prop) :
234
235
236
    ( y, SetUnfold (y  X) (P y))  ( y, SetUnfold (x  f y) (Q y)) 
    SetUnfold (x  X = f) ( y, Q y  P y).
  Proof. constructor. rewrite elem_of_bind; naive_solver. Qed.
237
  Global Instance set_unfold_fmap {A B} (f : A  B) (X : M A) (P : A  Prop) :
238
239
240
    ( y, SetUnfold (y  X) (P y)) 
    SetUnfold (x  f <$> X) ( y, x = f y  P y).
  Proof. constructor. rewrite elem_of_fmap; naive_solver. Qed.
241
  Global Instance set_unfold_join {A} (X : M (M A)) (P : M A  Prop) :
242
243
244
245
    ( Y, SetUnfold (Y  X) (P Y))  SetUnfold (x  mjoin X) ( Y, x  Y  P Y).
  Proof. constructor. rewrite elem_of_join; naive_solver. Qed.
End set_unfold_monad.

Robbert Krebbers's avatar
Robbert Krebbers committed
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
Section set_unfold_list.
  Context {A : Type}.
  Implicit Types x : A.
  Implicit Types l : list A.

  Global Instance set_unfold_nil x : SetUnfold (x  []) False.
  Proof. constructor; apply elem_of_nil. Qed.
  Global Instance set_unfold_cons x y l P :
    SetUnfold (x  l) P  SetUnfold (x  y :: l) (x = y  P).
  Proof. constructor. by rewrite elem_of_cons, (set_unfold (x  l) P). Qed.
  Global Instance set_unfold_app x l k P Q :
    SetUnfold (x  l) P  SetUnfold (x  k) Q  SetUnfold (x  l ++ k) (P  Q).
  Proof.
    intros ??; constructor.
    by rewrite elem_of_app, (set_unfold (x  l) P), (set_unfold (x  k) Q).
  Qed.
  Global Instance set_unfold_included l k (P Q : A  Prop) :
    ( x, SetUnfold (x  l) (P x))  ( x, SetUnfold (x  k) (Q x)) 
    SetUnfold (l  k) ( x, P x  Q x).
  Proof.
    constructor; unfold subseteq, list_subseteq.
    apply forall_proper; naive_solver.
  Qed.
End set_unfold_list.

271
272
273
Ltac set_unfold :=
  let rec unfold_hyps :=
    try match goal with
274
275
276
277
278
279
280
    | H : ?P |- _ =>
       lazymatch type of P with
       | Prop =>
         apply set_unfold_1 in H; revert H;
         first [unfold_hyps; intros H | intros H; fail 1]
       | _ => fail
       end
281
282
283
    end in
  apply set_unfold_2; unfold_hyps; csimpl in *.

284
285
(** Since [firstorder] already fails or loops on very small goals generated by
[set_solver], we use the [naive_solver] tactic as a substitute. *)
286
Tactic Notation "set_solver" "by" tactic3(tac) :=
287
  try fast_done;
288
289
290
291
292
293
294
295
296
297
298
299
300
  intros; setoid_subst;
  set_unfold;
  intros; setoid_subst;
  try match goal with |- _  _ => apply dec_stable end;
  naive_solver tac.
Tactic Notation "set_solver" "-" hyp_list(Hs) "by" tactic3(tac) :=
  clear Hs; set_solver by tac.
Tactic Notation "set_solver" "+" hyp_list(Hs) "by" tactic3(tac) :=
  clear -Hs; set_solver by tac.
Tactic Notation "set_solver" := set_solver by idtac.
Tactic Notation "set_solver" "-" hyp_list(Hs) := clear Hs; set_solver.
Tactic Notation "set_solver" "+" hyp_list(Hs) := clear -Hs; set_solver.

301
302
303
304
Hint Extern 1000 (_  _) => set_solver : set_solver.
Hint Extern 1000 (_  _) => set_solver : set_solver.
Hint Extern 1000 (_  _) => set_solver : set_solver.

305

306
307
308
(** * Sets with [∪], [∅] and [{[_]}] *)
Section semi_set.
  Context `{SemiSet A C}.
309
310
311
312
313
314
315
  Implicit Types x y : A.
  Implicit Types X Y : C.
  Implicit Types Xs Ys : list C.

  (** Equality *)
  Lemma elem_of_equiv X Y : X  Y   x, x  X  x  Y.
  Proof. set_solver. Qed.
316
  Lemma set_equiv_spec X Y : X  Y  X  Y  Y  X.
317
318
319
  Proof. set_solver. Qed.

  (** Subset relation *)
320
  Global Instance set_subseteq_antisymm: AntiSymm () (@{C}).
321
322
  Proof. intros ??. set_solver. Qed.

323
  Global Instance set_subseteq_preorder: PreOrder (@{C}).
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
  Proof. split. by intros ??. intros ???; set_solver. Qed.

  Lemma subseteq_union X Y : X  Y  X  Y  Y.
  Proof. set_solver. Qed.
  Lemma subseteq_union_1 X Y : X  Y  X  Y  Y.
  Proof. by rewrite subseteq_union. Qed.
  Lemma subseteq_union_2 X Y : X  Y  Y  X  Y.
  Proof. by rewrite subseteq_union. Qed.

  Lemma union_subseteq_l X Y : X  X  Y.
  Proof. set_solver. Qed.
  Lemma union_subseteq_r X Y : Y  X  Y.
  Proof. set_solver. Qed.
  Lemma union_least X Y Z : X  Z  Y  Z  X  Y  Z.
  Proof. set_solver. Qed.

  Lemma elem_of_subseteq X Y : X  Y   x, x  X  x  Y.
  Proof. done. Qed.
  Lemma elem_of_subset X Y : X  Y  ( x, x  X  x  Y)  ¬( x, x  Y  x  X).
  Proof. set_solver. Qed.

  (** Union *)
346
347
  Lemma union_subseteq X Y Z : X  Y  Z  X  Z  Y  Z.
  Proof. set_solver. Qed.
348
349
350
351
352
353
  Lemma not_elem_of_union x X Y : x  X  Y  x  X  x  Y.
  Proof. set_solver. Qed.
  Lemma elem_of_union_l x X Y : x  X  x  X  Y.
  Proof. set_solver. Qed.
  Lemma elem_of_union_r x X Y : x  Y  x  X  Y.
  Proof. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
354
  Lemma union_mono_l X Y1 Y2 : Y1  Y2  X  Y1  X  Y2.
355
  Proof. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
356
  Lemma union_mono_r X1 X2 Y : X1  X2  X1  Y  X2  Y.
357
  Proof. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
358
  Lemma union_mono X1 X2 Y1 Y2 : X1  X2  Y1  Y2  X1  Y1  X2  Y2.
359
360
  Proof. set_solver. Qed.

361
  Global Instance union_idemp : IdemP (@{C}) ().
362
  Proof. intros X. set_solver. Qed.
363
  Global Instance union_empty_l : LeftId (@{C})  ().
364
  Proof. intros X. set_solver. Qed.
365
  Global Instance union_empty_r : RightId (@{C})  ().
366
  Proof. intros X. set_solver. Qed.
367
  Global Instance union_comm : Comm (@{C}) ().
368
  Proof. intros X Y. set_solver. Qed.
369
  Global Instance union_assoc : Assoc (@{C}) ().
370
371
372
373
374
  Proof. intros X Y Z. set_solver. Qed.

  Lemma empty_union X Y : X  Y    X    Y  .
  Proof. set_solver. Qed.

375
  Lemma union_cancel_l X Y Z : Z ## X  Z ## Y  Z  X  Z  Y  X  Y.
Robbert Krebbers's avatar
Robbert Krebbers committed
376
  Proof. set_solver. Qed.
377
  Lemma union_cancel_r X Y Z : X ## Z  Y ## Z  X  Z  Y  Z  X  Y.
Robbert Krebbers's avatar
Robbert Krebbers committed
378
379
  Proof. set_solver. Qed.

380
  (** Empty *)
Robbert Krebbers's avatar
Robbert Krebbers committed
381
382
  Lemma empty_subseteq X :   X.
  Proof. set_solver. Qed.
383
384
  Lemma elem_of_equiv_empty X : X     x, x  X.
  Proof. set_solver. Qed.
385
  Lemma elem_of_empty x : x  ( : C)  False.
386
387
388
389
390
391
392
393
394
395
396
  Proof. set_solver. Qed.
  Lemma equiv_empty X : X    X  .
  Proof. set_solver. Qed.
  Lemma union_positive_l X Y : X  Y    X  .
  Proof. set_solver. Qed.
  Lemma union_positive_l_alt X Y : X    X  Y  .
  Proof. set_solver. Qed.
  Lemma non_empty_inhabited x X : x  X  X  .
  Proof. set_solver. Qed.

  (** Singleton *)
397
  Lemma elem_of_singleton_1 x y : x  ({[y]} : C)  x = y.
398
  Proof. by rewrite elem_of_singleton. Qed.
399
  Lemma elem_of_singleton_2 x y : x = y  x  ({[y]} : C).
400
401
402
403
404
  Proof. by rewrite elem_of_singleton. Qed.
  Lemma elem_of_subseteq_singleton x X : x  X  {[ x ]}  X.
  Proof. set_solver. Qed.
  Lemma non_empty_singleton x : ({[ x ]} : C)  .
  Proof. set_solver. Qed.
405
  Lemma not_elem_of_singleton x y : x  ({[ y ]} : C)  x  y.
406
407
408
  Proof. by rewrite elem_of_singleton. Qed.

  (** Disjointness *)
409
  Lemma elem_of_disjoint X Y : X ## Y   x, x  X  x  Y  False.
410
411
  Proof. done. Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
412
  Global Instance disjoint_sym : Symmetric (##@{C}).
413
  Proof. intros X Y. set_solver. Qed.
414
  Lemma disjoint_empty_l Y :  ## Y.
415
  Proof. set_solver. Qed.
416
  Lemma disjoint_empty_r X : X ## .
417
  Proof. set_solver. Qed.
418
  Lemma disjoint_singleton_l x Y : {[ x ]} ## Y  x  Y.
419
  Proof. set_solver. Qed.
420
  Lemma disjoint_singleton_r y X : X ## {[ y ]}  y  X.
421
  Proof. set_solver. Qed.
422
  Lemma disjoint_union_l X1 X2 Y : X1  X2 ## Y  X1 ## Y  X2 ## Y.
423
  Proof. set_solver. Qed.
424
  Lemma disjoint_union_r X Y1 Y2 : X ## Y1  Y2  X ## Y1  X ## Y2.
425
426
427
428
  Proof. set_solver. Qed.

  (** Big unions *)
  Lemma elem_of_union_list Xs x : x   Xs   X, X  Xs  x  X.
429
430
  Proof.
    split.
431
432
    - induction Xs; simpl; intros HXs; [by apply elem_of_empty in HXs|].
      setoid_rewrite elem_of_cons. apply elem_of_union in HXs. naive_solver.
Ralf Jung's avatar
Ralf Jung committed
433
    - intros [X [Hx]]. induction Hx; simpl; [by apply elem_of_union_l |].
434
      intros. apply elem_of_union_r; auto.
435
  Qed.
436

437
438
439
440
441
442
443
  Lemma union_list_nil :  @nil C = .
  Proof. done. Qed.
  Lemma union_list_cons X Xs :  (X :: Xs) = X   Xs.
  Proof. done. Qed.
  Lemma union_list_singleton X :  [X]  X.
  Proof. simpl. by rewrite (right_id  _). Qed.
  Lemma union_list_app Xs1 Xs2 :  (Xs1 ++ Xs2)   Xs1   Xs2.
444
  Proof.
445
446
    induction Xs1 as [|X Xs1 IH]; simpl; [by rewrite (left_id  _)|].
    by rewrite IH, (assoc _).
447
  Qed.
448
  Lemma union_list_reverse Xs :  (reverse Xs)   Xs.
449
  Proof.
450
451
452
    induction Xs as [|X Xs IH]; simpl; [done |].
    by rewrite reverse_cons, union_list_app,
      union_list_singleton, (comm _), IH.
453
  Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
454
455
  Lemma union_list_mono Xs Ys : Xs * Ys   Xs   Ys.
  Proof. induction 1; simpl; auto using union_mono. Qed.
456
  Lemma empty_union_list Xs :  Xs    Forall ( ) Xs.
457
  Proof.
458
459
460
    split.
    - induction Xs; simpl; rewrite ?empty_union; intuition.
    - induction 1 as [|?? E1 ? E2]; simpl. done. by apply empty_union.
461
  Qed.
462

463
464
465
466
467
  Section leibniz.
    Context `{!LeibnizEquiv C}.

    Lemma elem_of_equiv_L X Y : X = Y   x, x  X  x  Y.
    Proof. unfold_leibniz. apply elem_of_equiv. Qed.
468
469
    Lemma set_equiv_spec_L X Y : X = Y  X  Y  Y  X.
    Proof. unfold_leibniz. apply set_equiv_spec. Qed.
470
471

    (** Subset relation *)
472
    Global Instance set_subseteq_partialorder : PartialOrder (@{C}).
473
474
475
476
477
478
479
480
481
482
    Proof. split. apply _. intros ??. unfold_leibniz. apply (anti_symm _). Qed.

    Lemma subseteq_union_L X Y : X  Y  X  Y = Y.
    Proof. unfold_leibniz. apply subseteq_union. Qed.
    Lemma subseteq_union_1_L X Y : X  Y  X  Y = Y.
    Proof. unfold_leibniz. apply subseteq_union_1. Qed.
    Lemma subseteq_union_2_L X Y : X  Y = Y  X  Y.
    Proof. unfold_leibniz. apply subseteq_union_2. Qed.

    (** Union *)
483
    Global Instance union_idemp_L : IdemP (=@{C}) ().
484
    Proof. intros ?. unfold_leibniz. apply (idemp _). Qed.
485
    Global Instance union_empty_l_L : LeftId (=@{C})  ().
486
    Proof. intros ?. unfold_leibniz. apply (left_id _ _). Qed.
487
    Global Instance union_empty_r_L : RightId (=@{C})  ().
488
    Proof. intros ?. unfold_leibniz. apply (right_id _ _). Qed.
489
    Global Instance union_comm_L : Comm (=@{C}) ().
490
    Proof. intros ??. unfold_leibniz. apply (comm _). Qed.
491
    Global Instance union_assoc_L : Assoc (=@{C}) ().
492
493
494
495
496
    Proof. intros ???. unfold_leibniz. apply (assoc _). Qed.

    Lemma empty_union_L X Y : X  Y =   X =   Y = .
    Proof. unfold_leibniz. apply empty_union. Qed.

497
    Lemma union_cancel_l_L X Y Z : Z ## X  Z ## Y  Z  X = Z  Y  X = Y.
Robbert Krebbers's avatar
Robbert Krebbers committed
498
    Proof. unfold_leibniz. apply union_cancel_l. Qed.
499
    Lemma union_cancel_r_L X Y Z : X ## Z  Y ## Z  X  Z = Y  Z  X = Y.
Robbert Krebbers's avatar
Robbert Krebbers committed
500
501
    Proof. unfold_leibniz. apply union_cancel_r. Qed.

502
503
504
505
506
507
508
509
510
511
512
513
514
    (** Empty *)
    Lemma elem_of_equiv_empty_L X : X =    x, x  X.
    Proof. unfold_leibniz. apply elem_of_equiv_empty. Qed.
    Lemma equiv_empty_L X : X    X = .
    Proof. unfold_leibniz. apply equiv_empty. Qed.
    Lemma union_positive_l_L X Y : X  Y =   X = .
    Proof. unfold_leibniz. apply union_positive_l. Qed.
    Lemma union_positive_l_alt_L X Y : X    X  Y  .
    Proof. unfold_leibniz. apply union_positive_l_alt. Qed.
    Lemma non_empty_inhabited_L x X : x  X  X  .
    Proof. unfold_leibniz. apply non_empty_inhabited. Qed.

    (** Singleton *)
515
    Lemma non_empty_singleton_L x : {[ x ]}  ( : C).
516
517
518
519
520
521
522
523
524
525
526
527
528
529
    Proof. unfold_leibniz. apply non_empty_singleton. Qed.

    (** Big unions *)
    Lemma union_list_singleton_L X :  [X] = X.
    Proof. unfold_leibniz. apply union_list_singleton. Qed.
    Lemma union_list_app_L Xs1 Xs2 :  (Xs1 ++ Xs2) =  Xs1   Xs2.
    Proof. unfold_leibniz. apply union_list_app. Qed.
    Lemma union_list_reverse_L Xs :  (reverse Xs) =  Xs.
    Proof. unfold_leibniz. apply union_list_reverse. Qed.
    Lemma empty_union_list_L Xs :  Xs =   Forall (= ) Xs.
    Proof. unfold_leibniz. by rewrite empty_union_list. Qed. 
  End leibniz.

  Section dec.
530
    Context `{!RelDecision (@{C})}.
531
    Lemma set_subseteq_inv X Y : X  Y  X  Y  X  Y.
532
    Proof. destruct (decide (X  Y)); [by right|left;set_solver]. Qed.
533
    Lemma set_not_subset_inv X Y : X  Y  X  Y  X  Y.
534
535
536
537
538
539
540
541
    Proof. destruct (decide (X  Y)); [by right|left;set_solver]. Qed.

    Lemma non_empty_union X Y : X  Y    X    Y  .
    Proof. rewrite empty_union. destruct (decide (X  )); intuition. Qed.
    Lemma non_empty_union_list Xs :  Xs    Exists ( ) Xs.
    Proof. rewrite empty_union_list. apply (not_Forall_Exists _). Qed.

    Context `{!LeibnizEquiv C}.
542
543
544
545
    Lemma set_subseteq_inv_L X Y : X  Y  X  Y  X = Y.
    Proof. unfold_leibniz. apply set_subseteq_inv. Qed.
    Lemma set_not_subset_inv_L X Y : X  Y  X  Y  X = Y.
    Proof. unfold_leibniz. apply set_not_subset_inv. Qed.
546
547
548
549
550
    Lemma non_empty_union_L X Y : X  Y    X    Y  .
    Proof. unfold_leibniz. apply non_empty_union. Qed.
    Lemma non_empty_union_list_L Xs :  Xs    Exists ( ) Xs.
    Proof. unfold_leibniz. apply non_empty_union_list. Qed.
  End dec.
551
End semi_set.
552
553


554
555
556
(** * Sets with [∪], [∩], [∖], [∅] and [{[_]}] *)
Section set.
  Context `{Set_ A C}.
557
  Implicit Types x y : A.
558
  Implicit Types X Y : C.
Robbert Krebbers's avatar
Robbert Krebbers committed
559

560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
  (** Intersection *)
  Lemma subseteq_intersection X Y : X  Y  X  Y  X.
  Proof. set_solver. Qed. 
  Lemma subseteq_intersection_1 X Y : X  Y  X  Y  X.
  Proof. apply subseteq_intersection. Qed.
  Lemma subseteq_intersection_2 X Y : X  Y  X  X  Y.
  Proof. apply subseteq_intersection. Qed.

  Lemma intersection_subseteq_l X Y : X  Y  X.
  Proof. set_solver. Qed.
  Lemma intersection_subseteq_r X Y : X  Y  Y.
  Proof. set_solver. Qed.
  Lemma intersection_greatest X Y Z : Z  X  Z  Y  Z  X  Y.
  Proof. set_solver. Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
575
  Lemma intersection_mono_l X Y1 Y2 : Y1  Y2  X  Y1  X  Y2.
576
  Proof. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
577
  Lemma intersection_mono_r X1 X2 Y : X1  X2  X1  Y  X2  Y.
578
  Proof. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
579
  Lemma intersection_mono X1 X2 Y1 Y2 :
580
    X1  X2  Y1  Y2  X1  Y1  X2  Y2.
581
  Proof. set_solver. Qed.
582

583
  Global Instance intersection_idemp : IdemP (@{C}) ().
584
  Proof. intros X; set_solver. Qed.
585
  Global Instance intersection_comm : Comm (@{C}) ().
586
  Proof. intros X Y; set_solver. Qed.
587
  Global Instance intersection_assoc : Assoc (@{C}) ().
588
  Proof. intros X Y Z; set_solver. Qed.
589
  Global Instance intersection_empty_l : LeftAbsorb (@{C})  ().
590
  Proof. intros X; set_solver. Qed.
591
  Global Instance intersection_empty_r: RightAbsorb (@{C})  ().
592
593
  Proof. intros X; set_solver. Qed.

594
  Lemma intersection_singletons x : ({[x]} : C)  {[x]}  {[x]}.
595
  Proof. set_solver. Qed.
596
597
598
599
600
601
602
603
604
605
606

  Lemma union_intersection_l X Y Z : X  (Y  Z)  (X  Y)  (X  Z).
  Proof. set_solver. Qed.
  Lemma union_intersection_r X Y Z : (X  Y)  Z  (X  Z)  (Y  Z).
  Proof. set_solver. Qed.
  Lemma intersection_union_l X Y Z : X  (Y  Z)  (X  Y)  (X  Z).
  Proof. set_solver. Qed.
  Lemma intersection_union_r X Y Z : (X  Y)  Z  (X  Z)  (Y  Z).
  Proof. set_solver. Qed.

  (** Difference *)
Robbert Krebbers's avatar
Robbert Krebbers committed
607
  Lemma difference_twice X Y : (X  Y)  Y  X  Y.
608
  Proof. set_solver. Qed.
609
  Lemma subseteq_empty_difference X Y : X  Y  X  Y  .
610
  Proof. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
611
  Lemma difference_diag X : X  X  .
612
  Proof. set_solver. Qed.
613
614
  Lemma difference_empty X : X    X.
  Proof. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
615
  Lemma difference_union_distr_l X Y Z : (X  Y)  Z  X  Z  Y  Z.
616
  Proof. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
617
  Lemma difference_union_distr_r X Y Z : Z  (X  Y)  (Z  X)  (Z  Y).
618
  Proof. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
619
  Lemma difference_intersection_distr_l X Y Z : (X  Y)  Z  X  Z  Y  Z.
620
  Proof. set_solver. Qed.
621
  Lemma difference_disjoint X Y : X ## Y  X  Y  X.
622
  Proof. set_solver. Qed.
623
624
  Lemma subset_difference_elem_of {x: A} {s: C} (inx: x  s): s  {[ x ]}  s.
  Proof. set_solver. Qed.
Ralf Jung's avatar
Ralf Jung committed
625
626
  Lemma difference_difference X Y Z : (X  Y)  Z  X  (Y  Z).
  Proof. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
627

Robbert Krebbers's avatar
Robbert Krebbers committed
628
  Lemma difference_mono X1 X2 Y1 Y2 :
Robbert Krebbers's avatar
Robbert Krebbers committed
629
630
    X1  X2  Y2  Y1  X1  Y1  X2  Y2.
  Proof. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
631
  Lemma difference_mono_l X Y1 Y2 : Y2  Y1  X  Y1  X  Y2.
Robbert Krebbers's avatar
Robbert Krebbers committed
632
  Proof. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
633
  Lemma difference_mono_r X1 X2 Y : X1  X2  X1  Y  X2  Y.
Robbert Krebbers's avatar
Robbert Krebbers committed
634
635
  Proof. set_solver. Qed.

636
  (** Disjointness *)
637
  Lemma disjoint_intersection X Y : X ## Y  X  Y  .
638
639
  Proof. set_solver. Qed.

640
641
  Section leibniz.
    Context `{!LeibnizEquiv C}.
642
643
644
645
646
647
648
649
650

    (** Intersection *)
    Lemma subseteq_intersection_L X Y : X  Y  X  Y = X.
    Proof. unfold_leibniz. apply subseteq_intersection. Qed.
    Lemma subseteq_intersection_1_L X Y : X  Y  X  Y = X.
    Proof. unfold_leibniz. apply subseteq_intersection_1. Qed.
    Lemma subseteq_intersection_2_L X Y : X  Y = X  X  Y.
    Proof. unfold_leibniz. apply subseteq_intersection_2. Qed.

651
    Global Instance intersection_idemp_L : IdemP (=@{C}) ().
652
    Proof. intros ?. unfold_leibniz. apply (idemp _). Qed.
653
    Global Instance intersection_comm_L : Comm (=@{C}) ().
654
    Proof. intros ??. unfold_leibniz. apply (comm _). Qed.
655
    Global Instance intersection_assoc_L : Assoc (=@{C}) ().
656
    Proof. intros ???. unfold_leibniz. apply (assoc _). Qed.
657
    Global Instance intersection_empty_l_L: LeftAbsorb (=@{C})  ().
658
    Proof. intros ?. unfold_leibniz. apply (left_absorb _ _). Qed.
659
    Global Instance intersection_empty_r_L: RightAbsorb (=@{C})  ().
660
661
    Proof. intros ?. unfold_leibniz. apply (right_absorb _ _). Qed.

662
    Lemma intersection_singletons_L x : {[x]}  {[x]} = ({[x]} : C).
663
    Proof. unfold_leibniz. apply intersection_singletons. Qed.
664
665
666
667
668

    Lemma union_intersection_l_L X Y Z : X  (Y  Z) = (X  Y)  (X  Z).
    Proof. unfold_leibniz; apply union_intersection_l. Qed.
    Lemma union_intersection_r_L X Y Z : (X  Y)  Z = (X  Z)  (Y  Z).
    Proof. unfold_leibniz; apply union_intersection_r. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
669
    Lemma intersection_union_l_L X Y Z : X  (Y  Z) = (X  Y)  (X  Z).
670
    Proof. unfold_leibniz; apply intersection_union_l. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
671
    Lemma intersection_union_r_L X Y Z : (X  Y)  Z = (X  Z)  (Y  Z).
672
673
674
    Proof. unfold_leibniz; apply intersection_union_r. Qed.

    (** Difference *)
675
676
    Lemma difference_twice_L X Y : (X  Y)  Y = X  Y.
    Proof. unfold_leibniz. apply difference_twice. Qed.
677
678
    Lemma subseteq_empty_difference_L X Y : X  Y  X  Y = .
    Proof. unfold_leibniz. apply subseteq_empty_difference. Qed.
679
680
    Lemma difference_diag_L X : X  X = .
    Proof. unfold_leibniz. apply difference_diag. Qed.
681
682
    Lemma difference_empty_L X : X   = X.
    Proof. unfold_leibniz. apply difference_empty. Qed.
683
684
    Lemma difference_union_distr_l_L X Y Z : (X  Y)  Z = X  Z  Y  Z.
    Proof. unfold_leibniz. apply difference_union_distr_l. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
685
686
    Lemma difference_union_distr_r_L X Y Z : Z  (X  Y) = (Z  X)  (Z  Y).
    Proof. unfold_leibniz. apply difference_union_distr_r. Qed.
687
688
689
    Lemma difference_intersection_distr_l_L X Y Z :
      (X  Y)  Z = X  Z  Y  Z.
    Proof. unfold_leibniz. apply difference_intersection_distr_l. Qed.
690
    Lemma difference_disjoint_L X Y : X ## Y  X  Y = X.
691
    Proof. unfold_leibniz. apply difference_disjoint. Qed.
Ralf Jung's avatar
Ralf Jung committed
692
693
    Lemma difference_difference_L X Y Z : (X  Y)  Z = X  (Y  Z).
    Proof. unfold_leibniz. apply difference_difference. Qed.
694
695

    (** Disjointness *)
696
    Lemma disjoint_intersection_L X Y : X ## Y  X  Y = .
697
    Proof. unfold_leibniz. apply disjoint_intersection. Qed.
698
699
700
  End leibniz.

  Section dec.
Robbert Krebbers's avatar
Robbert Krebbers committed
701
    Context `{!RelDecision (@{C})}.
702
    Lemma not_elem_of_intersection x X Y : x  X  Y  x  X  x  Y.
703
    Proof. rewrite elem_of_intersection. destruct (decide (x  X)); tauto. Qed.
704
    Lemma not_elem_of_difference x X Y : x  X  Y  x  X  x  Y.
705
    Proof. rewrite elem_of_difference. destruct (decide (x  Y)); tauto. Qed.
706
707
    Lemma union_difference X Y : X  Y  Y  X  Y  X.
    Proof.
708
      intros ? x; split; rewrite !elem_of_union, elem_of_difference; [|intuition].
709
      destruct (decide (x  X)); intuition.
710
    Qed.
711
712
713
714
715
    Lemma difference_union X Y : X  Y  Y  X  Y.
    Proof.
      intros x. rewrite !elem_of_union; rewrite elem_of_difference.
      split; [ | destruct (decide (x  Y)) ]; intuition.
    Qed.
716
    Lemma subseteq_disjoint_union X Y : X  Y   Z, Y  X  Z  X ## Z.
717
718
719
720
    Proof.
      split; [|set_solver].
      exists (Y  X); split; [auto using union_difference|set_solver].
    Qed.
721
    Lemma non_empty_difference X Y : X  Y  Y  X  .
722
    Proof. intros [HXY1 HXY2] Hdiff. destruct HXY2. set_solver. Qed.
723
    Lemma empty_difference_subseteq X Y : X  Y    X  Y.
724
    Proof. set_solver. Qed.
725
726
727
728
    Lemma singleton_union_difference X Y x :
      {[x]}  (X  Y)  ({[x]}  X)  (Y  {[x]}).
    Proof.
      intro y; split; intros Hy; [ set_solver | ].
729
      destruct (decide (y  ({[x]} : C))); set_solver.
730
    Qed.
731

732
733
734
    Context `{!LeibnizEquiv C}.
    Lemma union_difference_L X Y : X  Y  Y = X  Y  X.
    Proof. unfold_leibniz. apply union_difference. Qed.
735
736
    Lemma difference_union_L X Y : X  Y  Y = X