fin_maps.v 75.7 KB
Newer Older
<
1
(* Copyright (c) 2012-2017, Robbert Krebbers. *)
2
3
4
(* This file is distributed under the terms of the BSD license. *)
(** Finite maps associate data to keys. This file defines an interface for
finite maps and collects some theory on it. Most importantly, it proves useful
5
induction principles for finite maps and implements the tactic
6
[simplify_map_eq] to simplify goals involving finite maps. *)
7
From Coq Require Import Permutation.
8
From stdpp Require Export relations orders vector fin_collections.
9
10
(* FIXME: This file needs a 'Proof Using' hint, but the default we use
   everywhere makes for lots of extra ssumptions. *)
11

12
13
(** * Axiomatization of finite maps *)
(** We require Leibniz equality to be extensional on finite maps. This of
14
15
16
17
18
course limits the space of finite map implementations, but since we are mainly
interested in finite maps with numbers as indexes, we do not consider this to
be a serious limitation. The main application of finite maps is to implement
the memory, where extensionality of Leibniz equality is very important for a
convenient use in the assertions of our axiomatic semantics. *)
19

Robbert Krebbers's avatar
Robbert Krebbers committed
20
21
(** Finiteness is axiomatized by requiring that each map can be translated
to an association list. The translation to association lists is used to
22
prove well founded recursion on finite maps. *)
23

24
25
26
(** Finite map implementations are required to implement the [merge] function
which enables us to give a generic implementation of [union_with],
[intersection_with], and [difference_with]. *)
27

28
Class FinMapToList K A M := map_to_list: M  list (K * A).
Robbert Krebbers's avatar
Robbert Krebbers committed
29

30
31
Class FinMap K M `{FMap M,  A, Lookup K A (M A),  A, Empty (M A),  A,
    PartialAlter K A (M A), OMap M, Merge M,  A, FinMapToList K A (M A),
32
    EqDecision K} := {
33
34
  map_eq {A} (m1 m2 : M A) : ( i, m1 !! i = m2 !! i)  m1 = m2;
  lookup_empty {A} i : ( : M A) !! i = None;
35
36
37
38
  lookup_partial_alter {A} f (m : M A) i :
    partial_alter f i m !! i = f (m !! i);
  lookup_partial_alter_ne {A} f (m : M A) i j :
    i  j  partial_alter f i m !! j = m !! j;
39
  lookup_fmap {A B} (f : A  B) (m : M A) i : (f <$> m) !! i = f <$> m !! i;
40
  NoDup_map_to_list {A} (m : M A) : NoDup (map_to_list m);
41
42
  elem_of_map_to_list {A} (m : M A) i x :
    (i,x)  map_to_list m  m !! i = Some x;
43
  lookup_omap {A B} (f : A  option B) m i : omap f m !! i = m !! i = f;
44
  lookup_merge {A B C} (f: option A  option B  option C) `{!DiagNone f} m1 m2 i :
45
    merge f m1 m2 !! i = f (m1 !! i) (m2 !! i)
Robbert Krebbers's avatar
Robbert Krebbers committed
46
47
}.

48
49
50
(** * Derived operations *)
(** All of the following functions are defined in a generic way for arbitrary
finite map implementations. These generic implementations do not cause a
51
52
significant performance loss to make including them in the finite map interface
worthwhile. *)
53
54
55
56
57
58
59
60
61
62
Instance map_insert `{PartialAlter K A M} : Insert K A M :=
  λ i x, partial_alter (λ _, Some x) i.
Instance map_alter `{PartialAlter K A M} : Alter K A M :=
  λ f, partial_alter (fmap f).
Instance map_delete `{PartialAlter K A M} : Delete K M :=
  partial_alter (λ _, None).
Instance map_singleton `{PartialAlter K A M, Empty M} :
  SingletonM K A M := λ i x, <[i:=x]> .

Definition map_of_list `{Insert K A M, Empty M} : list (K * A)  M :=
63
  fold_right (λ p, <[p.1:=p.2]>) .
64
65
66
67
68
69
70

Definition map_to_collection `{FinMapToList K A M,
    Singleton B C, Empty C, Union C} (f : K  A  B) (m : M) : C :=
  of_list (curry f <$> map_to_list m).
Definition map_of_collection `{Elements B C, Insert K A M, Empty M}
    (f : B  K * A) (X : C) : M :=
  map_of_list (f <$> elements X).
Robbert Krebbers's avatar
Robbert Krebbers committed
71

72
73
74
75
76
77
Instance map_union_with `{Merge M} {A} : UnionWith A (M A) :=
  λ f, merge (union_with f).
Instance map_intersection_with `{Merge M} {A} : IntersectionWith A (M A) :=
  λ f, merge (intersection_with f).
Instance map_difference_with `{Merge M} {A} : DifferenceWith A (M A) :=
  λ f, merge (difference_with f).
Robbert Krebbers's avatar
Robbert Krebbers committed
78

79
Instance map_equiv `{ A, Lookup K A (M A), Equiv A} : Equiv (M A) | 18 :=
80
  λ m1 m2,  i, m1 !! i  m2 !! i.
Robbert Krebbers's avatar
Robbert Krebbers committed
81

82
83
(** The relation [intersection_forall R] on finite maps describes that the
relation [R] holds for each pair in the intersection. *)
84
Definition map_Forall `{Lookup K A M} (P : K  A  Prop) : M  Prop :=
Robbert Krebbers's avatar
Robbert Krebbers committed
85
  λ m,  i x, m !! i = Some x  P i x.
86
Definition map_relation `{ A, Lookup K A (M A)} {A B} (R : A  B  Prop)
Robbert Krebbers's avatar
Robbert Krebbers committed
87
88
    (P : A  Prop) (Q : B  Prop) (m1 : M A) (m2 : M B) : Prop :=  i,
  option_relation R P Q (m1 !! i) (m2 !! i).
89
Definition map_included `{ A, Lookup K A (M A)} {A}
Robbert Krebbers's avatar
Robbert Krebbers committed
90
  (R : relation A) : relation (M A) := map_relation R (λ _, False) (λ _, True).
91
Definition map_disjoint `{ A, Lookup K A (M A)} {A} : relation (M A) :=
Robbert Krebbers's avatar
Robbert Krebbers committed
92
93
94
95
96
  map_relation (λ _ _, False) (λ _, True) (λ _, True).
Infix "⊥ₘ" := map_disjoint (at level 70) : C_scope.
Hint Extern 0 (_  _) => symmetry; eassumption.
Notation "( m ⊥ₘ.)" := (map_disjoint m) (only parsing) : C_scope.
Notation "(.⊥ₘ m )" := (λ m2, m2  m) (only parsing) : C_scope.
97
Instance map_subseteq `{ A, Lookup K A (M A)} {A} : SubsetEq (M A) :=
Robbert Krebbers's avatar
Robbert Krebbers committed
98
  map_included (=).
Robbert Krebbers's avatar
Robbert Krebbers committed
99
100
101
102
103

(** The union of two finite maps only has a meaningful definition for maps
that are disjoint. However, as working with partial functions is inconvenient
in Coq, we define the union as a total function. In case both finite maps
have a value at the same index, we take the value of the first map. *)
104
Instance map_union `{Merge M} {A} : Union (M A) := union_with (λ x _, Some x).
105
106
107
Instance map_intersection `{Merge M} {A} : Intersection (M A) :=
  intersection_with (λ x _, Some x).

108
109
(** The difference operation removes all values from the first map whose
index contains a value in the second map as well. *)
110
Instance map_difference `{Merge M} {A} : Difference (M A) :=
111
  difference_with (λ _ _, None).
Robbert Krebbers's avatar
Robbert Krebbers committed
112

113
114
(** A stronger variant of map that allows the mapped function to use the index
of the elements. Implemented by conversion to lists, so not very efficient. *)
115
116
Definition map_imap `{ A, Insert K A (M A),  A, Empty (M A),
     A, FinMapToList K A (M A)} {A B} (f : K  A  option B) (m : M A) : M B :=
117
118
  map_of_list (omap (λ ix, (fst ix,) <$> curry f ix) (map_to_list m)).

119
120
121
122
123
(* Folds a function [f] over a map. The order in which the function is called
is unspecified. *)
Definition map_fold `{FinMapToList K A M} {B}
  (f : K  A  B  B) (b : B) : M  B := foldr (curry f) b  map_to_list.

124
125
126
127
(** * Theorems *)
Section theorems.
Context `{FinMap K M}.

Robbert Krebbers's avatar
Robbert Krebbers committed
128
129
(** ** Setoids *)
Section setoid.
130
  Context `{Equiv A}.
131

132
133
134
135
  Lemma map_equiv_lookup_l (m1 m2 : M A) i x :
    m1  m2  m1 !! i = Some x   y, m2 !! i = Some y  x  y.
  Proof. generalize (equiv_Some_inv_l (m1 !! i) (m2 !! i) x); naive_solver. Qed.

136
137
  Global Instance map_equivalence :
    Equivalence (() : relation A)  Equivalence (() : relation (M A)).
Robbert Krebbers's avatar
Robbert Krebbers committed
138
139
  Proof.
    split.
140
141
    - by intros m i.
    - by intros m1 m2 ? i.
142
    - by intros m1 m2 m3 ?? i; trans (m2 !! i).
Robbert Krebbers's avatar
Robbert Krebbers committed
143
  Qed.
144
145
  Global Instance lookup_proper (i : K) :
    Proper (() ==> ()) (lookup (M:=M A) i).
Robbert Krebbers's avatar
Robbert Krebbers committed
146
147
  Proof. by intros m1 m2 Hm. Qed.
  Global Instance partial_alter_proper :
148
    Proper ((() ==> ()) ==> (=) ==> () ==> ()) (partial_alter (M:=M A)).
Robbert Krebbers's avatar
Robbert Krebbers committed
149
150
151
152
153
154
  Proof.
    by intros f1 f2 Hf i ? <- m1 m2 Hm j; destruct (decide (i = j)) as [->|];
      rewrite ?lookup_partial_alter, ?lookup_partial_alter_ne by done;
      try apply Hf; apply lookup_proper.
  Qed.
  Global Instance insert_proper (i : K) :
155
    Proper (() ==> () ==> ()) (insert (M:=M A) i).
Robbert Krebbers's avatar
Robbert Krebbers committed
156
  Proof. by intros ???; apply partial_alter_proper; [constructor|]. Qed.
157
158
  Global Instance singleton_proper k :
    Proper (() ==> ()) (singletonM k : A  M A).
159
160
161
162
  Proof.
    intros ???; apply insert_proper; [done|].
    intros ?. rewrite lookup_empty; constructor.
  Qed.
163
164
  Global Instance delete_proper (i : K) :
    Proper (() ==> ()) (delete (M:=M A) i).
Robbert Krebbers's avatar
Robbert Krebbers committed
165
166
  Proof. by apply partial_alter_proper; [constructor|]. Qed.
  Global Instance alter_proper :
167
    Proper ((() ==> ()) ==> (=) ==> () ==> ()) (alter (A:=A) (M:=M A)).
Robbert Krebbers's avatar
Robbert Krebbers committed
168
169
170
171
  Proof.
    intros ?? Hf; apply partial_alter_proper.
    by destruct 1; constructor; apply Hf.
  Qed.
172
  Lemma merge_ext f g `{!DiagNone f, !DiagNone g} :
Robbert Krebbers's avatar
Robbert Krebbers committed
173
    (() ==> () ==> ())%signature f g 
174
    (() ==> () ==> ())%signature (merge (M:=M) f) (merge g).
Robbert Krebbers's avatar
Robbert Krebbers committed
175
176
177
178
  Proof.
    by intros Hf ?? Hm1 ?? Hm2 i; rewrite !lookup_merge by done; apply Hf.
  Qed.
  Global Instance union_with_proper :
179
    Proper ((() ==> () ==> ()) ==> () ==> () ==>()) (union_with (M:=M A)).
Robbert Krebbers's avatar
Robbert Krebbers committed
180
181
182
  Proof.
    intros ?? Hf ?? Hm1 ?? Hm2 i; apply (merge_ext _ _); auto.
    by do 2 destruct 1; first [apply Hf | constructor].
183
  Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
184
  Global Instance map_leibniz `{!LeibnizEquiv A} : LeibnizEquiv (M A).
185
  Proof. intros m1 m2 Hm; apply map_eq; intros i. apply leibniz_equiv, Hm. Qed.
186
187
  Lemma map_equiv_empty (m : M A) : m    m = .
  Proof.
188
189
190
    split; [intros Hm; apply map_eq; intros i|intros ->].
    - generalize (Hm i). by rewrite lookup_empty, equiv_None.
    - intros ?. rewrite lookup_empty; constructor.
191
  Qed.
192
193
194
195
196
  Global Instance map_fmap_proper `{Equiv B} (f : A  B) :
    Proper (() ==> ()) f  Proper (() ==> ()) (fmap (M:=M) f).
  Proof.
    intros ? m m' ? k; rewrite !lookup_fmap. by apply option_fmap_proper.
  Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
197
198
199
End setoid.

(** ** General properties *)
200
201
202
203
204
Lemma map_eq_iff {A} (m1 m2 : M A) : m1 = m2   i, m1 !! i = m2 !! i.
Proof. split. by intros ->. apply map_eq. Qed.
Lemma map_subseteq_spec {A} (m1 m2 : M A) :
  m1  m2   i x, m1 !! i = Some x  m2 !! i = Some x.
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
205
  unfold subseteq, map_subseteq, map_relation. split; intros Hm i;
206
207
    specialize (Hm i); destruct (m1 !! i), (m2 !! i); naive_solver.
Qed.
208
209
Global Instance:  {A} (R : relation A), PreOrder R  PreOrder (map_included R).
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
210
  split; [intros m i; by destruct (m !! i); simpl|].
211
  intros m1 m2 m3 Hm12 Hm23 i; specialize (Hm12 i); specialize (Hm23 i).
212
  destruct (m1 !! i), (m2 !! i), (m3 !! i); simplify_eq/=;
213
    done || etrans; eauto.
214
Qed.
215
Global Instance: PartialOrder (() : relation (M A)).
216
Proof.
217
218
219
  split; [apply _|].
  intros m1 m2; rewrite !map_subseteq_spec.
  intros; apply map_eq; intros i; apply option_eq; naive_solver.
220
221
222
Qed.
Lemma lookup_weaken {A} (m1 m2 : M A) i x :
  m1 !! i = Some x  m1  m2  m2 !! i = Some x.
223
Proof. rewrite !map_subseteq_spec. auto. Qed.
224
225
226
227
228
229
Lemma lookup_weaken_is_Some {A} (m1 m2 : M A) i :
  is_Some (m1 !! i)  m1  m2  is_Some (m2 !! i).
Proof. inversion 1. eauto using lookup_weaken. Qed.
Lemma lookup_weaken_None {A} (m1 m2 : M A) i :
  m2 !! i = None  m1  m2  m1 !! i = None.
Proof.
230
231
  rewrite map_subseteq_spec, !eq_None_not_Some.
  intros Hm2 Hm [??]; destruct Hm2; eauto.
232
233
Qed.
Lemma lookup_weaken_inv {A} (m1 m2 : M A) i x y :
234
235
  m1 !! i = Some x  m1  m2  m2 !! i = Some y  x = y.
Proof. intros Hm1 ? Hm2. eapply lookup_weaken in Hm1; eauto. congruence. Qed.
236
237
238
239
240
241
242
243
244
Lemma lookup_ne {A} (m : M A) i j : m !! i  m !! j  i  j.
Proof. congruence. Qed.
Lemma map_empty {A} (m : M A) : ( i, m !! i = None)  m = .
Proof. intros Hm. apply map_eq. intros. by rewrite Hm, lookup_empty. Qed.
Lemma lookup_empty_is_Some {A} i : ¬is_Some (( : M A) !! i).
Proof. rewrite lookup_empty. by inversion 1. Qed.
Lemma lookup_empty_Some {A} i (x : A) : ¬ !! i = Some x.
Proof. by rewrite lookup_empty. Qed.
Lemma map_subset_empty {A} (m : M A) : m  .
245
246
247
Proof.
  intros [_ []]. rewrite map_subseteq_spec. intros ??. by rewrite lookup_empty.
Qed.
248
249
Lemma map_fmap_empty {A B} (f : A  B) : f <$> ( : M A) = .
Proof. by apply map_eq; intros i; rewrite lookup_fmap, !lookup_empty. Qed.
250
251

(** ** Properties of the [partial_alter] operation *)
252
253
254
Lemma partial_alter_ext {A} (f g : option A  option A) (m : M A) i :
  ( x, m !! i = x  f x = g x)  partial_alter f i m = partial_alter g i m.
Proof.
255
256
  intros. apply map_eq; intros j. by destruct (decide (i = j)) as [->|?];
    rewrite ?lookup_partial_alter, ?lookup_partial_alter_ne; auto.
257
258
Qed.
Lemma partial_alter_compose {A} f g (m : M A) i:
259
260
  partial_alter (f  g) i m = partial_alter f i (partial_alter g i m).
Proof.
261
262
  intros. apply map_eq. intros ii. by destruct (decide (i = ii)) as [->|?];
    rewrite ?lookup_partial_alter, ?lookup_partial_alter_ne.
263
Qed.
264
Lemma partial_alter_commute {A} f g (m : M A) i j :
265
  i  j  partial_alter f i (partial_alter g j m) =
266
267
    partial_alter g j (partial_alter f i m).
Proof.
268
269
270
271
  intros. apply map_eq; intros jj. destruct (decide (jj = j)) as [->|?].
  { by rewrite lookup_partial_alter_ne,
      !lookup_partial_alter, lookup_partial_alter_ne. }
  destruct (decide (jj = i)) as [->|?].
272
  - by rewrite lookup_partial_alter,
273
     !lookup_partial_alter_ne, lookup_partial_alter by congruence.
274
  - by rewrite !lookup_partial_alter_ne by congruence.
275
276
277
278
Qed.
Lemma partial_alter_self_alt {A} (m : M A) i x :
  x = m !! i  partial_alter (λ _, x) i m = m.
Proof.
279
280
  intros. apply map_eq. intros ii. by destruct (decide (i = ii)) as [->|];
    rewrite ?lookup_partial_alter, ?lookup_partial_alter_ne.
281
Qed.
282
Lemma partial_alter_self {A} (m : M A) i : partial_alter (λ _, m !! i) i m = m.
283
Proof. by apply partial_alter_self_alt. Qed.
284
Lemma partial_alter_subseteq {A} f (m : M A) i :
285
  m !! i = None  m  partial_alter f i m.
286
287
288
289
Proof.
  rewrite map_subseteq_spec. intros Hi j x Hj.
  rewrite lookup_partial_alter_ne; congruence.
Qed.
290
Lemma partial_alter_subset {A} f (m : M A) i :
291
  m !! i = None  is_Some (f (m !! i))  m  partial_alter f i m.
292
Proof.
293
294
295
296
  intros Hi Hfi. split; [by apply partial_alter_subseteq|].
  rewrite !map_subseteq_spec. inversion Hfi as [x Hx]. intros Hm.
  apply (Some_ne_None x). rewrite <-(Hm i x); [done|].
  by rewrite lookup_partial_alter.
297
298
299
Qed.

(** ** Properties of the [alter] operation *)
300
301
Lemma alter_ext {A} (f g : A  A) (m : M A) i :
  ( x, m !! i = Some x  f x = g x)  alter f i m = alter g i m.
302
Proof. intro. apply partial_alter_ext. intros [x|] ?; f_equal/=; auto. Qed.
303
Lemma lookup_alter {A} (f : A  A) m i : alter f i m !! i = f <$> m !! i.
304
Proof. unfold alter. apply lookup_partial_alter. Qed.
305
Lemma lookup_alter_ne {A} (f : A  A) m i j : i  j  alter f i m !! j = m !! j.
306
Proof. unfold alter. apply lookup_partial_alter_ne. Qed.
307
308
309
310
311
312
313
314
315
Lemma alter_compose {A} (f g : A  A) (m : M A) i:
  alter (f  g) i m = alter f i (alter g i m).
Proof.
  unfold alter, map_alter. rewrite <-partial_alter_compose.
  apply partial_alter_ext. by intros [?|].
Qed.
Lemma alter_commute {A} (f g : A  A) (m : M A) i j :
  i  j  alter f i (alter g j m) = alter g j (alter f i m).
Proof. apply partial_alter_commute. Qed.
316
317
318
319
Lemma lookup_alter_Some {A} (f : A  A) m i j y :
  alter f i m !! j = Some y 
    (i = j   x, m !! j = Some x  y = f x)  (i  j  m !! j = Some y).
Proof.
320
  destruct (decide (i = j)) as [->|?].
321
  - rewrite lookup_alter. naive_solver (simplify_option_eq; eauto).
322
  - rewrite lookup_alter_ne by done. naive_solver.
323
324
325
326
Qed.
Lemma lookup_alter_None {A} (f : A  A) m i j :
  alter f i m !! j = None  m !! j = None.
Proof.
327
328
  by destruct (decide (i = j)) as [->|?];
    rewrite ?lookup_alter, ?fmap_None, ?lookup_alter_ne.
329
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
330
331
Lemma alter_id {A} (f : A  A) m i :
  ( x, m !! i = Some x  f x = x)  alter f i m = m.
332
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
333
  intros Hi; apply map_eq; intros j; destruct (decide (i = j)) as [->|?].
334
  { rewrite lookup_alter; destruct (m !! j); f_equal/=; auto. }
Robbert Krebbers's avatar
Robbert Krebbers committed
335
  by rewrite lookup_alter_ne by done.
336
337
338
339
340
341
342
343
344
345
346
Qed.

(** ** Properties of the [delete] operation *)
Lemma lookup_delete {A} (m : M A) i : delete i m !! i = None.
Proof. apply lookup_partial_alter. Qed.
Lemma lookup_delete_ne {A} (m : M A) i j : i  j  delete i m !! j = m !! j.
Proof. apply lookup_partial_alter_ne. Qed.
Lemma lookup_delete_Some {A} (m : M A) i j y :
  delete i m !! j = Some y  i  j  m !! j = Some y.
Proof.
  split.
347
  - destruct (decide (i = j)) as [->|?];
348
      rewrite ?lookup_delete, ?lookup_delete_ne; intuition congruence.
349
  - intros [??]. by rewrite lookup_delete_ne.
350
Qed.
351
352
353
Lemma lookup_delete_is_Some {A} (m : M A) i j :
  is_Some (delete i m !! j)  i  j  is_Some (m !! j).
Proof. unfold is_Some; setoid_rewrite lookup_delete_Some; naive_solver. Qed.
354
355
356
Lemma lookup_delete_None {A} (m : M A) i j :
  delete i m !! j = None  i = j  m !! j = None.
Proof.
357
358
  destruct (decide (i = j)) as [->|?];
    rewrite ?lookup_delete, ?lookup_delete_ne; tauto.
359
360
361
Qed.
Lemma delete_empty {A} i : delete i ( : M A) = .
Proof. rewrite <-(partial_alter_self ) at 2. by rewrite lookup_empty. Qed.
362
Lemma delete_singleton {A} i (x : A) : delete i {[i := x]} = .
363
364
365
366
367
368
369
Proof. setoid_rewrite <-partial_alter_compose. apply delete_empty. Qed.
Lemma delete_commute {A} (m : M A) i j :
  delete i (delete j m) = delete j (delete i m).
Proof. destruct (decide (i = j)). by subst. by apply partial_alter_commute. Qed.
Lemma delete_insert_ne {A} (m : M A) i j x :
  i  j  delete i (<[j:=x]>m) = <[j:=x]>(delete i m).
Proof. intro. by apply partial_alter_commute. Qed.
370
Lemma delete_notin {A} (m : M A) i : m !! i = None  delete i m = m.
371
Proof.
372
373
  intros. apply map_eq. intros j. by destruct (decide (i = j)) as [->|?];
    rewrite ?lookup_delete, ?lookup_delete_ne.
374
375
376
377
378
379
380
381
382
383
Qed.
Lemma delete_partial_alter {A} (m : M A) i f :
  m !! i = None  delete i (partial_alter f i m) = m.
Proof.
  intros. unfold delete, map_delete. rewrite <-partial_alter_compose.
  unfold compose. by apply partial_alter_self_alt.
Qed.
Lemma delete_insert {A} (m : M A) i x :
  m !! i = None  delete i (<[i:=x]>m) = m.
Proof. apply delete_partial_alter. Qed.
384
385
Lemma insert_delete {A} (m : M A) i x : <[i:=x]>(delete i m) = <[i:=x]> m.
Proof. symmetry; apply (partial_alter_compose (λ _, Some x)). Qed.
386
Lemma delete_subseteq {A} (m : M A) i : delete i m  m.
387
388
389
Proof.
  rewrite !map_subseteq_spec. intros j x. rewrite lookup_delete_Some. tauto.
Qed.
390
Lemma delete_subseteq_compat {A} (m1 m2 : M A) i :
391
  m1  m2  delete i m1  delete i m2.
392
393
394
395
Proof.
  rewrite !map_subseteq_spec. intros ? j x.
  rewrite !lookup_delete_Some. intuition eauto.
Qed.
396
Lemma delete_subset_alt {A} (m : M A) i x : m !! i = Some x  delete i m  m.
397
Proof.
398
399
400
  split; [apply delete_subseteq|].
  rewrite !map_subseteq_spec. intros Hi. apply (None_ne_Some x).
  by rewrite <-(lookup_delete m i), (Hi i x).
401
Qed.
402
Lemma delete_subset {A} (m : M A) i : is_Some (m !! i)  delete i m  m.
403
404
405
406
407
Proof. inversion 1. eauto using delete_subset_alt. Qed.

(** ** Properties of the [insert] operation *)
Lemma lookup_insert {A} (m : M A) i x : <[i:=x]>m !! i = Some x.
Proof. unfold insert. apply lookup_partial_alter. Qed.
408
Lemma lookup_insert_rev {A}  (m : M A) i x y : <[i:=x]>m !! i = Some y  x = y.
409
Proof. rewrite lookup_insert. congruence. Qed.
410
Lemma lookup_insert_ne {A} (m : M A) i j x : i  j  <[i:=x]>m !! j = m !! j.
411
Proof. unfold insert. apply lookup_partial_alter_ne. Qed.
412
413
Lemma insert_insert {A} (m : M A) i x y : <[i:=x]>(<[i:=y]>m) = <[i:=x]>m.
Proof. unfold insert, map_insert. by rewrite <-partial_alter_compose. Qed.
414
415
416
417
418
419
420
Lemma insert_commute {A} (m : M A) i j x y :
  i  j  <[i:=x]>(<[j:=y]>m) = <[j:=y]>(<[i:=x]>m).
Proof. apply partial_alter_commute. Qed.
Lemma lookup_insert_Some {A} (m : M A) i j x y :
  <[i:=x]>m !! j = Some y  (i = j  x = y)  (i  j  m !! j = Some y).
Proof.
  split.
421
  - destruct (decide (i = j)) as [->|?];
422
      rewrite ?lookup_insert, ?lookup_insert_ne; intuition congruence.
423
  - intros [[-> ->]|[??]]; [apply lookup_insert|]. by rewrite lookup_insert_ne.
424
Qed.
425
426
427
Lemma lookup_insert_is_Some {A} (m : M A) i j x :
  is_Some (<[i:=x]>m !! j)  i = j  i  j  is_Some (m !! j).
Proof. unfold is_Some; setoid_rewrite lookup_insert_Some; naive_solver. Qed.
428
429
430
Lemma lookup_insert_None {A} (m : M A) i j x :
  <[i:=x]>m !! j = None  m !! j = None  i  j.
Proof.
431
432
433
  split; [|by intros [??]; rewrite lookup_insert_ne].
  destruct (decide (i = j)) as [->|];
    rewrite ?lookup_insert, ?lookup_insert_ne; intuition congruence.
434
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
435
Lemma insert_id {A} (m : M A) i x : m !! i = Some x  <[i:=x]>m = m.
436
437
438
439
440
441
442
443
Proof.
  intros; apply map_eq; intros j; destruct (decide (i = j)) as [->|];
    by rewrite ?lookup_insert, ?lookup_insert_ne by done.
Qed.
Lemma insert_included {A} R `{!Reflexive R} (m : M A) i x :
  ( y, m !! i = Some y  R y x)  map_included R m (<[i:=x]>m).
Proof.
  intros ? j; destruct (decide (i = j)) as [->|].
444
445
  - rewrite lookup_insert. destruct (m !! j); simpl; eauto.
  - rewrite lookup_insert_ne by done. by destruct (m !! j); simpl.
446
Qed.
447
Lemma insert_subseteq {A} (m : M A) i x : m !! i = None  m  <[i:=x]>m.
448
Proof. apply partial_alter_subseteq. Qed.
449
Lemma insert_subset {A} (m : M A) i x : m !! i = None  m  <[i:=x]>m.
450
451
Proof. intro. apply partial_alter_subset; eauto. Qed.
Lemma insert_subseteq_r {A} (m1 m2 : M A) i x :
452
  m1 !! i = None  m1  m2  m1  <[i:=x]>m2.
453
Proof.
454
455
456
  rewrite !map_subseteq_spec. intros ?? j ?.
  destruct (decide (j = i)) as [->|?]; [congruence|].
  rewrite lookup_insert_ne; auto.
457
458
Qed.
Lemma insert_delete_subseteq {A} (m1 m2 : M A) i x :
459
  m1 !! i = None  <[i:=x]> m1  m2  m1  delete i m2.
460
Proof.
461
462
463
464
  rewrite !map_subseteq_spec. intros Hi Hix j y Hj.
  destruct (decide (i = j)) as [->|]; [congruence|].
  rewrite lookup_delete_ne by done.
  apply Hix; by rewrite lookup_insert_ne by done.
465
466
Qed.
Lemma delete_insert_subseteq {A} (m1 m2 : M A) i x :
467
  m1 !! i = Some x  delete i m1  m2  m1  <[i:=x]> m2.
468
Proof.
469
470
  rewrite !map_subseteq_spec.
  intros Hix Hi j y Hj. destruct (decide (i = j)) as [->|?].
471
472
  - rewrite lookup_insert. congruence.
  - rewrite lookup_insert_ne by done. apply Hi. by rewrite lookup_delete_ne.
473
474
Qed.
Lemma insert_delete_subset {A} (m1 m2 : M A) i x :
475
  m1 !! i = None  <[i:=x]> m1  m2  m1  delete i m2.
476
Proof.
477
478
479
  intros ? [Hm12 Hm21]; split; [eauto using insert_delete_subseteq|].
  contradict Hm21. apply delete_insert_subseteq; auto.
  eapply lookup_weaken, Hm12. by rewrite lookup_insert.
480
481
Qed.
Lemma insert_subset_inv {A} (m1 m2 : M A) i x :
482
  m1 !! i = None  <[i:=x]> m1  m2 
483
484
   m2', m2 = <[i:=x]>m2'  m1  m2'  m2' !! i = None.
Proof.
485
  intros Hi Hm1m2. exists (delete i m2). split_and?.
486
487
  - rewrite insert_delete, insert_id. done.
    eapply lookup_weaken, strict_include; eauto. by rewrite lookup_insert.
488
489
  - eauto using insert_delete_subset.
  - by rewrite lookup_delete.
490
Qed.
491
Lemma insert_empty {A} i (x : A) : <[i:=x]> = {[i := x]}.
492
Proof. done. Qed.
493
494
495
496
Lemma insert_non_empty {A} (m : M A) i x : <[i:=x]>m  .
Proof.
  intros Hi%(f_equal (!! i)). by rewrite lookup_insert, lookup_empty in Hi.
Qed.
497
498
499

(** ** Properties of the singleton maps *)
Lemma lookup_singleton_Some {A} i j (x y : A) :
500
  {[i := x]} !! j = Some y  i = j  x = y.
501
Proof.
502
  rewrite <-insert_empty,lookup_insert_Some, lookup_empty; intuition congruence.
503
Qed.
504
Lemma lookup_singleton_None {A} i j (x : A) : {[i := x]} !! j = None  i  j.
505
Proof. rewrite <-insert_empty,lookup_insert_None, lookup_empty; tauto. Qed.
506
Lemma lookup_singleton {A} i (x : A) : {[i := x]} !! i = Some x.
507
Proof. by rewrite lookup_singleton_Some. Qed.
508
Lemma lookup_singleton_ne {A} i j (x : A) : i  j  {[i := x]} !! j = None.
509
Proof. by rewrite lookup_singleton_None. Qed.
510
Lemma map_non_empty_singleton {A} i (x : A) : {[i := x]}  .
511
512
513
514
Proof.
  intros Hix. apply (f_equal (!! i)) in Hix.
  by rewrite lookup_empty, lookup_singleton in Hix.
Qed.
515
Lemma insert_singleton {A} i (x y : A) : <[i:=y]>{[i := x]} = {[i := y]}.
516
Proof.
517
  unfold singletonM, map_singleton, insert, map_insert.
518
519
  by rewrite <-partial_alter_compose.
Qed.
520
Lemma alter_singleton {A} (f : A  A) i x : alter f i {[i := x]} = {[i := f x]}.
521
Proof.
522
  intros. apply map_eq. intros i'. destruct (decide (i = i')) as [->|?].
523
524
  - by rewrite lookup_alter, !lookup_singleton.
  - by rewrite lookup_alter_ne, !lookup_singleton_ne.
525
526
Qed.
Lemma alter_singleton_ne {A} (f : A  A) i j x :
527
  i  j  alter f i {[j := x]} = {[j := x]}.
528
Proof.
529
530
  intros. apply map_eq; intros i'. by destruct (decide (i = i')) as [->|?];
    rewrite ?lookup_alter, ?lookup_singleton_ne, ?lookup_alter_ne by done.
531
Qed.
532
533
Lemma singleton_non_empty {A} i (x : A) : {[i:=x]}  .
Proof. apply insert_non_empty. Qed.
534

535
536
537
538
539
(** ** Properties of the map operations *)
Lemma fmap_empty {A B} (f : A  B) : f <$>  = .
Proof. apply map_empty; intros i. by rewrite lookup_fmap, lookup_empty. Qed.
Lemma omap_empty {A B} (f : A  option B) : omap f  = .
Proof. apply map_empty; intros i. by rewrite lookup_omap, lookup_empty. Qed.
540
541
542
Lemma fmap_insert {A B} (f: A  B) m i x: f <$> <[i:=x]>m = <[i:=f x]>(f <$> m).
Proof.
  apply map_eq; intros i'; destruct (decide (i' = i)) as [->|].
543
544
  - by rewrite lookup_fmap, !lookup_insert.
  - by rewrite lookup_fmap, !lookup_insert_ne, lookup_fmap by done.
545
Qed.
546
547
548
549
550
551
Lemma fmap_delete {A B} (f: A  B) m i: f <$> delete i m = delete i (f <$> m).
Proof.
  apply map_eq; intros i'; destruct (decide (i' = i)) as [->|].
  - by rewrite lookup_fmap, !lookup_delete.
  - by rewrite lookup_fmap, !lookup_delete_ne, lookup_fmap by done.
Qed.
552
553
554
555
Lemma omap_insert {A B} (f : A  option B) m i x y :
  f x = Some y  omap f (<[i:=x]>m) = <[i:=y]>(omap f m).
Proof.
  intros; apply map_eq; intros i'; destruct (decide (i' = i)) as [->|].
556
557
  - by rewrite lookup_omap, !lookup_insert.
  - by rewrite lookup_omap, !lookup_insert_ne, lookup_omap by done.
558
Qed.
559
Lemma map_fmap_singleton {A B} (f : A  B) i x : f <$> {[i := x]} = {[i := f x]}.
560
561
562
Proof.
  by unfold singletonM, map_singleton; rewrite fmap_insert, map_fmap_empty.
Qed.
563
Lemma omap_singleton {A B} (f : A  option B) i x y :
564
  f x = Some y  omap f {[ i := x ]} = {[ i := y ]}.
565
Proof.
566
567
  intros. unfold singletonM, map_singleton.
  by erewrite omap_insert, omap_empty by eauto.
568
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
569
570
571
572
573
Lemma map_fmap_id {A} (m : M A) : id <$> m = m.
Proof. apply map_eq; intros i; by rewrite lookup_fmap, option_fmap_id. Qed.
Lemma map_fmap_compose {A B C} (f : A  B) (g : B  C) (m : M A) :
  g  f <$> m = g <$> f <$> m.
Proof. apply map_eq; intros i; by rewrite !lookup_fmap,option_fmap_compose. Qed.
574
Lemma map_fmap_equiv_ext `{Equiv A, Equiv B} (f1 f2 : A  B) m :
575
576
577
578
579
  ( i x, m !! i = Some x  f1 x  f2 x)  f1 <$> m  f2 <$> m.
Proof.
  intros Hi i; rewrite !lookup_fmap.
  destruct (m !! i) eqn:?; constructor; eauto.
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
580
581
582
583
584
585
Lemma map_fmap_ext {A B} (f1 f2 : A  B) m :
  ( i x, m !! i = Some x  f1 x = f2 x)  f1 <$> m = f2 <$> m.
Proof.
  intros Hi; apply map_eq; intros i; rewrite !lookup_fmap.
  by destruct (m !! i) eqn:?; simpl; erewrite ?Hi by eauto.
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
586
587
588
589
590
591
Lemma omap_ext {A B} (f1 f2 : A  option B) m :
  ( i x, m !! i = Some x  f1 x = f2 x)  omap f1 m = omap f2 m.
Proof.
  intros Hi; apply map_eq; intros i; rewrite !lookup_omap.
  by destruct (m !! i) eqn:?; simpl; erewrite ?Hi by eauto.
Qed.
592

593
(** ** Properties of conversion to lists *)
594
595
596
Lemma elem_of_map_to_list' {A} (m : M A) ix :
  ix  map_to_list m  m !! ix.1 = Some (ix.2).
Proof. destruct ix as [i x]. apply elem_of_map_to_list. Qed.
597
Lemma map_to_list_unique {A} (m : M A) i x y :
598
  (i,x)  map_to_list m  (i,y)  map_to_list m  x = y.
599
Proof. rewrite !elem_of_map_to_list. congruence. Qed.
600
Lemma NoDup_fst_map_to_list {A} (m : M A) : NoDup ((map_to_list m).*1).
601
Proof. eauto using NoDup_fmap_fst, map_to_list_unique, NoDup_map_to_list. Qed.
602
603
Lemma elem_of_map_of_list_1' {A} (l : list (K * A)) i x :
  ( y, (i,y)  l  x = y)  (i,x)  l  map_of_list l !! i = Some x.
604
605
606
Proof.
  induction l as [|[j y] l IH]; csimpl; [by rewrite elem_of_nil|].
  setoid_rewrite elem_of_cons.
607
  intros Hdup [?|?]; simplify_eq; [by rewrite lookup_insert|].
608
  destruct (decide (i = j)) as [->|].
609
  - rewrite lookup_insert; f_equal; eauto using eq_sym.
610
  - rewrite lookup_insert_ne by done; eauto.
611
Qed.
612
Lemma elem_of_map_of_list_1 {A} (l : list (K * A)) i x :
613
  NoDup (l.*1)  (i,x)  l  map_of_list l !! i = Some x.
614
Proof.
615
  intros ? Hx; apply elem_of_map_of_list_1'; eauto using NoDup_fmap_fst.
616
  intros y; revert Hx. rewrite !elem_of_list_lookup; intros [i' Hi'] [j' Hj'].
617
  cut (i' = j'); [naive_solver|]. apply NoDup_lookup with (l.*1) i;
618
    by rewrite ?list_lookup_fmap, ?Hi', ?Hj'.
619
620
Qed.
Lemma elem_of_map_of_list_2 {A} (l : list (K * A)) i x :
621
  map_of_list l !! i = Some x  (i,x)  l.
622
Proof.
623
624
625
  induction l as [|[j y] l IH]; simpl; [by rewrite lookup_empty|].
  rewrite elem_of_cons. destruct (decide (i = j)) as [->|];
    rewrite ?lookup_insert, ?lookup_insert_ne; intuition congruence.
626
Qed.
627
628
629
630
Lemma elem_of_map_of_list' {A} (l : list (K * A)) i x :
  ( x', (i,x)  l  (i,x')  l  x = x') 
  (i,x)  l  map_of_list l !! i = Some x.
Proof. split; auto using elem_of_map_of_list_1', elem_of_map_of_list_2. Qed.
631
Lemma elem_of_map_of_list {A} (l : list (K * A)) i x :
632
  NoDup (l.*1)  (i,x)  l  map_of_list l !! i = Some x.
633
Proof. split; auto using elem_of_map_of_list_1, elem_of_map_of_list_2. Qed.
634

635
Lemma not_elem_of_map_of_list_1 {A} (l : list (K * A)) i :
636
  i  l.*1  map_of_list l !! i = None.
637
Proof.
638
639
  rewrite elem_of_list_fmap, eq_None_not_Some. intros Hi [x ?]; destruct Hi.
  exists (i,x); simpl; auto using elem_of_map_of_list_2.
640
641
Qed.
Lemma not_elem_of_map_of_list_2 {A} (l : list (K * A)) i :
642
  map_of_list l !! i = None  i  l.*1.
643
Proof.
644
  induction l as [|[j y] l IH]; csimpl; [rewrite elem_of_nil; tauto|].
645
  rewrite elem_of_cons. destruct (decide (i = j)); simplify_eq.
646
647
  - by rewrite lookup_insert.
  - by rewrite lookup_insert_ne; intuition.
648
649
Qed.
Lemma not_elem_of_map_of_list {A} (l : list (K * A)) i :
650
  i  l.*1  map_of_list l !! i = None.
651
Proof. red; auto using not_elem_of_map_of_list_1,not_elem_of_map_of_list_2. Qed.
652
Lemma map_of_list_proper {A} (l1 l2 : list (K * A)) :
653
  NoDup (l1.*1)  l1  l2  map_of_list l1 = map_of_list l2.
654
655
656
657
658
Proof.
  intros ? Hperm. apply map_eq. intros i. apply option_eq. intros x.
  by rewrite <-!elem_of_map_of_list; rewrite <-?Hperm.
Qed.
Lemma map_of_list_inj {A} (l1 l2 : list (K * A)) :
659
  NoDup (l1.*1)  NoDup (l2.*1)  map_of_list l1 = map_of_list l2  l1  l2.
660
Proof.
661
  intros ?? Hl1l2. apply NoDup_Permutation; auto using (NoDup_fmap_1 fst).
662
663
  intros [i x]. by rewrite !elem_of_map_of_list, Hl1l2.
Qed.
664
Lemma map_of_to_list {A} (m : M A) : map_of_list (map_to_list m) = m.
665
666
667
Proof.
  apply map_eq. intros i. apply option_eq. intros x.
  by rewrite <-elem_of_map_of_list, elem_of_map_to_list
668
    by auto using NoDup_fst_map_to_list.
669
670
Qed.
Lemma map_to_of_list {A} (l : list (K * A)) :