mapset.v 5.3 KB
Newer Older
1
(* Copyright (c) 2012-2017, Coq-std++ developers. *)
2 3 4 5
(* This file is distributed under the terms of the BSD license. *)
(** This files gives an implementation of finite sets using finite maps with
elements of the unit type. Since maps enjoy extensional equality, the
constructed finite sets do so as well. *)
6
From stdpp Require Export fin_map_dom.
7
(* FIXME: This file needs a 'Proof Using' hint. *)
8

Robbert Krebbers's avatar
Robbert Krebbers committed
9 10
Record mapset (M : Type  Type) : Type :=
  Mapset { mapset_car: M (unit : Type) }.
11 12
Arguments Mapset {_} _ : assert.
Arguments mapset_car {_} _ : assert.
13 14 15 16

Section mapset.
Context `{FinMap K M}.

17
Global Instance mapset_elem_of: ElemOf K (mapset M) := λ x X,
18
  mapset_car X !! x = Some ().
19 20
Global Instance mapset_empty: Empty (mapset M) := Mapset .
Global Instance mapset_singleton: Singleton K (mapset M) := λ x,
21
  Mapset {[ x := () ]}.
22
Global Instance mapset_union: Union (mapset M) := λ X1 X2,
23
  let (m1) := X1 in let (m2) := X2 in Mapset (m1  m2).
24
Global Instance mapset_intersection: Intersection (mapset M) := λ X1 X2,
25
  let (m1) := X1 in let (m2) := X2 in Mapset (m1  m2).
26
Global Instance mapset_difference: Difference (mapset M) := λ X1 X2,
27
  let (m1) := X1 in let (m2) := X2 in Mapset (m1  m2).
28
Global Instance mapset_elements: Elements K (mapset M) := λ X,
29
  let (m) := X in (map_to_list m).*1.
30

Robbert Krebbers's avatar
Robbert Krebbers committed
31
Lemma mapset_eq (X1 X2 : mapset M) : X1 = X2   x, x  X1  x  X2.
32
Proof.
33
  split; [by intros ->|].
34 35
  destruct X1 as [m1], X2 as [m2]. simpl. intros E.
  f_equal. apply map_eq. intros i. apply option_eq. intros []. by apply E.
36 37
Qed.

38
Instance mapset_collection: Collection K (mapset M).
39 40
Proof.
  split; [split | | ].
41
  - unfold empty, elem_of, mapset_empty, mapset_elem_of.
42
    simpl. intros. by simpl_map.
43
  - unfold singleton, elem_of, mapset_singleton, mapset_elem_of.
44
    simpl. by split; intros; simplify_map_eq.
45
  - unfold union, elem_of, mapset_union, mapset_elem_of.
46 47
    intros [m1] [m2] ?. simpl. rewrite lookup_union_Some_raw.
    destruct (m1 !! x) as [[]|]; tauto.
48
  - unfold intersection, elem_of, mapset_intersection, mapset_elem_of.
49
    intros [m1] [m2] ?. simpl. rewrite lookup_intersection_Some.
50 51 52
    assert (is_Some (m2 !! x)  m2 !! x = Some ()).
    { split; eauto. by intros [[] ?]. }
    naive_solver.
53
  - unfold difference, elem_of, mapset_difference, mapset_elem_of.
54 55 56
    intros [m1] [m2] ?. simpl. rewrite lookup_difference_Some.
    destruct (m2 !! x) as [[]|]; intuition congruence.
Qed.
57
Global Instance mapset_leibniz : LeibnizEquiv (mapset M).
58
Proof. intros ??. apply mapset_eq. Qed.
59
Global Instance mapset_fin_collection : FinCollection K (mapset M).
60 61
Proof.
  split.
62
  - apply _.
63
  - unfold elements, elem_of at 2, mapset_elements, mapset_elem_of.
64 65
    intros [m] x. simpl. rewrite elem_of_list_fmap. split.
    + intros ([y []] &?& Hy). subst. by rewrite <-elem_of_map_to_list.
66
    + intros. exists (x, ()). by rewrite elem_of_map_to_list.
67
  - unfold elements, mapset_elements. intros [m]. simpl.
68
    apply NoDup_fst_map_to_list.
69 70
Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
71
Section deciders.
72 73
  Context `{EqDecision (M unit)}.
  Global Instance mapset_eq_dec : EqDecision (mapset M) | 1.
Robbert Krebbers's avatar
Robbert Krebbers committed
74
  Proof.
75 76
   refine (λ X1 X2,
    match X1, X2 with Mapset m1, Mapset m2 => cast_if (decide (m1 = m2)) end);
Robbert Krebbers's avatar
Robbert Krebbers committed
77 78
    abstract congruence.
  Defined.
79 80 81 82 83
  Global Instance mapset_equiv_dec : RelDecision (@equiv (mapset M)_) | 1.
  Proof. refine (λ X1 X2, cast_if (decide (X1 = X2))); abstract (by fold_leibniz). Defined.
  Global Instance mapset_elem_of_dec : RelDecision (@elem_of _ (mapset M) _) | 1.
  Proof. refine (λ x X, cast_if (decide (mapset_car X !! x = Some ()))); done. Defined.
  Global Instance mapset_disjoint_dec : RelDecision (@disjoint (mapset M) _).
Robbert Krebbers's avatar
Robbert Krebbers committed
84
  Proof.
85
   refine (λ X1 X2, cast_if (decide (X1  X2 = )));
Robbert Krebbers's avatar
Robbert Krebbers committed
86 87
    abstract (by rewrite disjoint_intersection_L).
  Defined.
88
  Global Instance mapset_subseteq_dec : RelDecision (@subseteq (mapset M) _).
Robbert Krebbers's avatar
Robbert Krebbers committed
89
  Proof.
90
   refine (λ X1 X2, cast_if (decide (X1  X2 = X2)));
Robbert Krebbers's avatar
Robbert Krebbers committed
91 92 93 94
    abstract (by rewrite subseteq_union_L).
  Defined.
End deciders.

95
Definition mapset_map_with {A B} (f : bool  A  option B)
Robbert Krebbers's avatar
Robbert Krebbers committed
96
    (X : mapset M) : M A  M B :=
97
  let (mX) := X in merge (λ x y,
98
    match x, y with
99 100
    | Some _, Some a => f true a | None, Some a => f false a | _, None => None
    end) mX.
Robbert Krebbers's avatar
Robbert Krebbers committed
101
Definition mapset_dom_with {A} (f : A  bool) (m : M A) : mapset M :=
102 103
  Mapset $ merge (λ x _,
    match x with
104
    | Some a => if f a then Some () else None | None => None
105 106
    end) m (@empty (M A) _).

107 108
Lemma lookup_mapset_map_with {A B} (f : bool  A  option B) X m i :
  mapset_map_with f X m !! i = m !! i = f (bool_decide (i  X)).
109 110 111 112 113
Proof.
  destruct X as [mX]. unfold mapset_map_with, elem_of, mapset_elem_of.
  rewrite lookup_merge by done. simpl.
  by case_bool_decide; destruct (mX !! i) as [[]|], (m !! i).
Qed.
114
Lemma elem_of_mapset_dom_with {A} (f : A  bool) m i :
115 116 117
  i  mapset_dom_with f m   x, m !! i = Some x  f x.
Proof.
  unfold mapset_dom_with, elem_of, mapset_elem_of.
118
  simpl. rewrite lookup_merge by done. destruct (m !! i) as [a|].
119 120
  - destruct (Is_true_reflect (f a)); naive_solver.
  - naive_solver.
121
Qed.
122
Instance mapset_dom {A} : Dom (M A) (mapset M) := mapset_dom_with (λ _, true).
Robbert Krebbers's avatar
Robbert Krebbers committed
123
Instance mapset_dom_spec: FinMapDom K M (mapset M).
124
Proof.
125 126
  split; try apply _. intros. unfold dom, mapset_dom, is_Some.
  rewrite elem_of_mapset_dom_with; naive_solver.
127 128 129
Qed.
End mapset.

130
Arguments mapset_eq_dec : simpl never.