relations.v 8.59 KB
Newer Older
Robbert Krebbers's avatar
Robbert Krebbers committed
1
(* Copyright (c) 2012-2015, Robbert Krebbers. *)
2 3 4 5 6
(* This file is distributed under the terms of the BSD license. *)
(** This file collects definitions and theorems on abstract rewriting systems.
These are particularly useful as we define the operational semantics as a
small step semantics. This file defines a hint database [ars] containing
some theorems on abstract rewriting systems. *)
7 8
From Coq Require Import Wf_nat.
From stdpp Require Export tactics base.
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

(** * Definitions *)
Section definitions.
  Context `(R : relation A).

  (** An element is reducible if a step is possible. *)
  Definition red (x : A) :=  y, R x y.

  (** An element is in normal form if no further steps are possible. *)
  Definition nf (x : A) := ¬red x.

  (** The reflexive transitive closure. *)
  Inductive rtc : relation A :=
    | rtc_refl x : rtc x x
    | rtc_l x y z : R x y  rtc y z  rtc x z.

Robbert Krebbers's avatar
Robbert Krebbers committed
25 26 27 28 29
  (** The reflexive transitive closure for setoids. *)
  Inductive rtcS `{Equiv A} : relation A :=
    | rtcS_refl x y : x  y  rtcS x y
    | rtcS_l x y z : R x y  rtcS y z  rtcS x z.

30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
  (** Reductions of exactly [n] steps. *)
  Inductive nsteps : nat  relation A :=
    | nsteps_O x : nsteps 0 x x
    | nsteps_l n x y z : R x y  nsteps n y z  nsteps (S n) x z.

  (** Reduction of at most [n] steps. *)
  Inductive bsteps : nat  relation A :=
    | bsteps_refl n x : bsteps n x x
    | bsteps_l n x y z : R x y  bsteps n y z  bsteps (S n) x z.

  (** The transitive closure. *)
  Inductive tc : relation A :=
    | tc_once x y : R x y  tc x y
    | tc_l x y z : R x y  tc y z  tc x z.

Robbert Krebbers's avatar
Robbert Krebbers committed
45 46 47 48 49 50 51 52 53
  (** An element [x] is universally looping if all paths starting at [x]
  are infinite. *)
  CoInductive all_loop : A  Prop :=
    | all_loop_do_step x : red x  ( y, R x y  all_loop y)  all_loop x.

  (** An element [x] is existentally looping if some path starting at [x]
  is infinite. *)
  CoInductive ex_loop : A  Prop :=
    | ex_loop_do_step x y : R x y  ex_loop y  ex_loop x.
54 55
End definitions.

56 57
Hint Unfold nf red.

58 59 60 61
(** * General theorems *)
Section rtc.
  Context `{R : relation A}.

Robbert Krebbers's avatar
Robbert Krebbers committed
62 63
  Hint Constructors rtc nsteps bsteps tc.

64
  Global Instance rtc_reflexive: Reflexive (rtc R).
Robbert Krebbers's avatar
Robbert Krebbers committed
65 66 67 68 69
  Proof. exact (@rtc_refl A R). Qed.
  Lemma rtc_transitive x y z : rtc R x y  rtc R y z  rtc R x z.
  Proof. induction 1; eauto. Qed.
  Global Instance: Transitive (rtc R).
  Proof. exact rtc_transitive. Qed.
70
  Lemma rtc_once x y : R x y  rtc R x y.
Robbert Krebbers's avatar
Robbert Krebbers committed
71
  Proof. eauto. Qed.
72
  Lemma rtc_r x y z : rtc R x y  R y z  rtc R x z.
Robbert Krebbers's avatar
Robbert Krebbers committed
73
  Proof. intros. etransitivity; eauto. Qed.
74 75
  Lemma rtc_inv x z : rtc R x z  x = z   y, R x y  rtc R y z.
  Proof. inversion_clear 1; eauto. Qed.
76 77 78 79
  Lemma rtc_ind_l (P : A  Prop) (z : A)
    (Prefl : P z) (Pstep :  x y, R x y  rtc R y z  P y  P x) :
     x, rtc R x z  P x.
  Proof. induction 1; eauto. Qed.
80 81
  Lemma rtc_ind_r_weak (P : A  A  Prop)
    (Prefl :  x, P x x) (Pstep :  x y z, rtc R x y  R y z  P x y  P x z) :
82
     x z, rtc R x z  P x z.
83 84 85 86 87
  Proof.
    cut ( y z, rtc R y z   x, rtc R x y  P x y  P x z).
    { eauto using rtc_refl. }
    induction 1; eauto using rtc_r.
  Qed.
88 89 90 91 92 93
  Lemma rtc_ind_r (P : A  Prop) (x : A)
    (Prefl : P x) (Pstep :  y z, rtc R x y  R y z  P y  P z) :
     z, rtc R x z  P z.
  Proof.
    intros z p. revert x z p Prefl Pstep. refine (rtc_ind_r_weak _ _ _); eauto.
  Qed.
94
  Lemma rtc_inv_r x z : rtc R x z  x = z   y, rtc R x y  R y z.
95
  Proof. revert z. apply rtc_ind_r; eauto. Qed.
96 97

  Lemma nsteps_once x y : R x y  nsteps R 1 x y.
Robbert Krebbers's avatar
Robbert Krebbers committed
98
  Proof. eauto. Qed.
99 100
  Lemma nsteps_trans n m x y z :
    nsteps R n x y  nsteps R m y z  nsteps R (n + m) x z.
Robbert Krebbers's avatar
Robbert Krebbers committed
101
  Proof. induction 1; simpl; eauto. Qed.
102
  Lemma nsteps_r n x y z : nsteps R n x y  R y z  nsteps R (S n) x z.
Robbert Krebbers's avatar
Robbert Krebbers committed
103
  Proof. induction 1; eauto. Qed.
104
  Lemma nsteps_rtc n x y : nsteps R n x y  rtc R x y.
Robbert Krebbers's avatar
Robbert Krebbers committed
105
  Proof. induction 1; eauto. Qed.
106
  Lemma rtc_nsteps x y : rtc R x y   n, nsteps R n x y.
Robbert Krebbers's avatar
Robbert Krebbers committed
107
  Proof. induction 1; firstorder eauto. Qed.
108 109

  Lemma bsteps_once n x y : R x y  bsteps R (S n) x y.
Robbert Krebbers's avatar
Robbert Krebbers committed
110
  Proof. eauto. Qed.
111 112
  Lemma bsteps_plus_r n m x y :
    bsteps R n x y  bsteps R (n + m) x y.
Robbert Krebbers's avatar
Robbert Krebbers committed
113
  Proof. induction 1; simpl; eauto. Qed.
114 115 116 117 118 119 120 121 122
  Lemma bsteps_weaken n m x y :
    n  m  bsteps R n x y  bsteps R m x y.
  Proof.
    intros. rewrite (Minus.le_plus_minus n m); auto using bsteps_plus_r.
  Qed.
  Lemma bsteps_plus_l n m x y :
    bsteps R n x y  bsteps R (m + n) x y.
  Proof. apply bsteps_weaken. auto with arith. Qed.
  Lemma bsteps_S n x y :  bsteps R n x y  bsteps R (S n) x y.
123
  Proof. apply bsteps_weaken. lia. Qed.
124 125
  Lemma bsteps_trans n m x y z :
    bsteps R n x y  bsteps R m y z  bsteps R (n + m) x z.
Robbert Krebbers's avatar
Robbert Krebbers committed
126
  Proof. induction 1; simpl; eauto using bsteps_plus_l. Qed.
127
  Lemma bsteps_r n x y z : bsteps R n x y  R y z  bsteps R (S n) x z.
Robbert Krebbers's avatar
Robbert Krebbers committed
128
  Proof. induction 1; eauto. Qed.
129
  Lemma bsteps_rtc n x y : bsteps R n x y  rtc R x y.
Robbert Krebbers's avatar
Robbert Krebbers committed
130
  Proof. induction 1; eauto. Qed.
131
  Lemma rtc_bsteps x y : rtc R x y   n, bsteps R n x y.
Robbert Krebbers's avatar
Robbert Krebbers committed
132
  Proof. induction 1; [exists 0; constructor|]. naive_solver eauto. Qed.
133 134 135 136 137 138
  Lemma bsteps_ind_r (P : nat  A  Prop) (x : A)
    (Prefl :  n, P n x)
    (Pstep :  n y z, bsteps R n x y  R y z  P n y  P (S n) z) :
     n z, bsteps R n x z  P n z.
  Proof.
    cut ( m y z, bsteps R m y z   n,
Robbert Krebbers's avatar
Robbert Krebbers committed
139 140
      bsteps R n x y  ( m', n  m'  m'  n + m  P m' y)  P (n + m) z).
    { intros help ?. change n with (0 + n). eauto. }
141 142 143
    induction 1 as [|m x' y z p2 p3 IH]; [by eauto with arith|].
    intros n p1 H. rewrite <-plus_n_Sm.
    apply (IH (S n)); [by eauto using bsteps_r |].
Robbert Krebbers's avatar
Robbert Krebbers committed
144
    intros [|m'] [??]; [lia |]. apply Pstep with x'.
145 146 147 148
    * apply bsteps_weaken with n; intuition lia.
    * done.
    * apply H; intuition lia.
  Qed.
149

Robbert Krebbers's avatar
Robbert Krebbers committed
150 151 152 153
  Lemma tc_transitive x y z : tc R x y  tc R y z  tc R x z.
  Proof. induction 1; eauto. Qed.
  Global Instance: Transitive (tc R).
  Proof. exact tc_transitive. Qed.
154
  Lemma tc_r x y z : tc R x y  R y z  tc R x z.
Robbert Krebbers's avatar
Robbert Krebbers committed
155 156 157 158 159
  Proof. intros. etransitivity; eauto. Qed.
  Lemma tc_rtc_l x y z : rtc R x y  tc R y z  tc R x z.
  Proof. induction 1; eauto. Qed.
  Lemma tc_rtc_r x y z : tc R x y  rtc R y z  tc R x z.
  Proof. intros Hxy Hyz. revert x Hxy. induction Hyz; eauto using tc_r. Qed.
160
  Lemma tc_rtc x y : tc R x y  rtc R x y.
Robbert Krebbers's avatar
Robbert Krebbers committed
161
  Proof. induction 1; eauto. Qed.
162

Robbert Krebbers's avatar
Robbert Krebbers committed
163
  Lemma all_loop_red x : all_loop R x  red R x.
164
  Proof. destruct 1; auto. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
165
  Lemma all_loop_step x y : all_loop R x  R x y  all_loop R y.
166
  Proof. destruct 1; auto. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
167 168 169 170
  Lemma all_loop_rtc x y : all_loop R x  rtc R x y  all_loop R y.
  Proof. induction 2; eauto using all_loop_step. Qed.
  Lemma all_loop_alt x :
    all_loop R x   y, rtc R x y  red R y.
171
  Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
172 173 174
    split; [eauto using all_loop_red, all_loop_rtc|].
    intros H. cut ( z, rtc R x z  all_loop R z); [eauto|].
    cofix FIX. constructor; eauto using rtc_r.
175 176 177
  Qed.
End rtc.

Robbert Krebbers's avatar
Robbert Krebbers committed
178 179 180
Hint Constructors rtc nsteps bsteps tc : ars.
Hint Resolve rtc_once rtc_r tc_r rtc_transitive tc_rtc_l tc_rtc_r
  tc_rtc bsteps_once bsteps_r bsteps_refl bsteps_trans : ars.
181 182 183

(** * Theorems on sub relations *)
Section subrel.
184 185 186 187 188 189
  Context {A} (R1 R2 : relation A).
  Notation subrel := ( x y, R1 x y  R2 x y).
  Lemma red_subrel x : subrel  red R1 x  red R2 x.
  Proof. intros ? [y ?]; eauto. Qed.
  Lemma nf_subrel x : subrel  nf R2 x  nf R1 x.
  Proof. intros ? H1 H2; destruct H1; by apply red_subrel. Qed.
190
End subrel.
191

192
(** * Theorems on well founded relations *)
193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
Notation wf := well_founded.

Section wf.
  Context `{R : relation A}.

  (** A trick by Thomas Braibant to compute with well-founded recursions:
  it lazily adds [2^n] [Acc_intro] constructors in front of a well foundedness
  proof, so that the actual proof is never reached in practise. *)
  Fixpoint wf_guard (n : nat) (wfR : wf R) : wf R :=
    match n with
    | 0 => wfR
    | S n => λ x, Acc_intro x (λ y _, wf_guard n (wf_guard n wfR) y)
    end.

  Lemma wf_projected `(R2 : relation B) (f : A  B) :
    ( x y, R x y  R2 (f x) (f y)) 
    wf R2  wf R.
  Proof.
    intros Hf Hwf.
    cut ( y, Acc R2 y   x, y = f x  Acc R x).
    { intros aux x. apply (aux (f x)); auto. }
    induction 1 as [y _ IH]. intros x ?. subst.
    constructor. intros. apply (IH (f y)); auto.
  Qed.
End wf.

(* Generally we do not want [wf_guard] to be expanded (neither by tactics,
nor by conversion tests in the kernel), but in some cases we do need it for
computation (that is, we cannot make it opaque). We use the [Strategy]
command to make its expanding behavior less eager. *)
Strategy 100 [wf_guard].