fin_maps.v 60.2 KB
Newer Older
Robbert Krebbers's avatar
Robbert Krebbers committed
1
(* Copyright (c) 2012-2014, Robbert Krebbers. *)
2
3
4
(* This file is distributed under the terms of the BSD license. *)
(** Finite maps associate data to keys. This file defines an interface for
finite maps and collects some theory on it. Most importantly, it proves useful
5
6
induction principles for finite maps and implements the tactic
[simplify_map_equality] to simplify goals involving finite maps. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
7
Require Import Permutation.
8
9
Require Export ars vector orders.

10
11
(** * Axiomatization of finite maps *)
(** We require Leibniz equality to be extensional on finite maps. This of
12
13
14
15
16
course limits the space of finite map implementations, but since we are mainly
interested in finite maps with numbers as indexes, we do not consider this to
be a serious limitation. The main application of finite maps is to implement
the memory, where extensionality of Leibniz equality is very important for a
convenient use in the assertions of our axiomatic semantics. *)
17

Robbert Krebbers's avatar
Robbert Krebbers committed
18
19
(** Finiteness is axiomatized by requiring that each map can be translated
to an association list. The translation to association lists is used to
20
prove well founded recursion on finite maps. *)
21

22
23
24
(** Finite map implementations are required to implement the [merge] function
which enables us to give a generic implementation of [union_with],
[intersection_with], and [difference_with]. *)
25

26
Class FinMapToList K A M := map_to_list: M  list (K * A).
Robbert Krebbers's avatar
Robbert Krebbers committed
27

28
29
30
Class FinMap K M `{FMap M,  A, Lookup K A (M A),  A, Empty (M A),  A,
    PartialAlter K A (M A), OMap M, Merge M,  A, FinMapToList K A (M A),
     i j : K, Decision (i = j)} := {
31
32
  map_eq {A} (m1 m2 : M A) : ( i, m1 !! i = m2 !! i)  m1 = m2;
  lookup_empty {A} i : ( : M A) !! i = None;
33
34
35
36
  lookup_partial_alter {A} f (m : M A) i :
    partial_alter f i m !! i = f (m !! i);
  lookup_partial_alter_ne {A} f (m : M A) i j :
    i  j  partial_alter f i m !! j = m !! j;
37
  lookup_fmap {A B} (f : A  B) (m : M A) i : (f <$> m) !! i = f <$> m !! i;
38
  NoDup_map_to_list {A} (m : M A) : NoDup (map_to_list m);
39
40
  elem_of_map_to_list {A} (m : M A) i x :
    (i,x)  map_to_list m  m !! i = Some x;
41
  lookup_omap {A B} (f : A  option B) m i : omap f m !! i = m !! i = f;
42
43
44
  lookup_merge {A B C} (f : option A  option B  option C)
      `{!PropHolds (f None None = None)} m1 m2 i :
    merge f m1 m2 !! i = f (m1 !! i) (m2 !! i)
Robbert Krebbers's avatar
Robbert Krebbers committed
45
46
}.

47
48
49
(** * Derived operations *)
(** All of the following functions are defined in a generic way for arbitrary
finite map implementations. These generic implementations do not cause a
50
51
significant performance loss to make including them in the finite map interface
worthwhile. *)
52
53
54
55
56
Instance map_insert `{PartialAlter K A M} : Insert K A M :=
  λ i x, partial_alter (λ _, Some x) i.
Instance map_alter `{PartialAlter K A M} : Alter K A M :=
  λ f, partial_alter (fmap f).
Instance map_delete `{PartialAlter K A M} : Delete K M :=
57
  partial_alter (λ _, None).
58
59
Instance map_singleton `{PartialAlter K A M, Empty M} :
  Singleton (K * A) M := λ p, <[p.1:=p.2]> .
Robbert Krebbers's avatar
Robbert Krebbers committed
60

61
62
Definition map_of_list `{Insert K A M} `{Empty M} : list (K * A)  M :=
  fold_right (λ p, <[p.1:=p.2]>) .
Robbert Krebbers's avatar
Robbert Krebbers committed
63

64
65
66
67
68
69
Instance map_union_with `{Merge M} {A} : UnionWith A (M A) :=
  λ f, merge (union_with f).
Instance map_intersection_with `{Merge M} {A} : IntersectionWith A (M A) :=
  λ f, merge (intersection_with f).
Instance map_difference_with `{Merge M} {A} : DifferenceWith A (M A) :=
  λ f, merge (difference_with f).
Robbert Krebbers's avatar
Robbert Krebbers committed
70

71
72
(** The relation [intersection_forall R] on finite maps describes that the
relation [R] holds for each pair in the intersection. *)
73
Definition map_Forall `{Lookup K A M} (P : K  A  Prop) : M  Prop :=
Robbert Krebbers's avatar
Robbert Krebbers committed
74
  λ m,  i x, m !! i = Some x  P i x.
75
76
77
78
79
80
81
82
83
Definition map_Forall2 `{ A, Lookup K A (M A)} {A B}
    (R : A  B  Prop) (P : A  Prop) (Q : B  Prop)
    (m1 : M A) (m2 : M B) : Prop :=  i,
  match m1 !! i, m2 !! i with
  | Some x, Some y => R x y
  | Some x, None => P x
  | None, Some y => Q y
  | None, None => True
  end.
84

85
86
87
88
Instance map_disjoint `{ A, Lookup K A (M A)} {A} : Disjoint (M A) :=
  map_Forall2 (λ _ _, False) (λ _, True) (λ _, True).
Instance map_subseteq `{ A, Lookup K A (M A)} {A} : SubsetEq (M A) :=
  map_Forall2 (=) (λ _, False) (λ _, True).
Robbert Krebbers's avatar
Robbert Krebbers committed
89
90
91
92
93

(** The union of two finite maps only has a meaningful definition for maps
that are disjoint. However, as working with partial functions is inconvenient
in Coq, we define the union as a total function. In case both finite maps
have a value at the same index, we take the value of the first map. *)
94
Instance map_union `{Merge M} {A} : Union (M A) := union_with (λ x _, Some x).
95
96
97
Instance map_intersection `{Merge M} {A} : Intersection (M A) :=
  intersection_with (λ x _, Some x).

98
99
(** The difference operation removes all values from the first map whose
index contains a value in the second map as well. *)
100
Instance map_difference `{Merge M} {A} : Difference (M A) :=
101
  difference_with (λ _ _, None).
Robbert Krebbers's avatar
Robbert Krebbers committed
102

103
104
105
106
(** * Theorems *)
Section theorems.
Context `{FinMap K M}.

107
108
109
110
111
112
113
114
Lemma map_eq_iff {A} (m1 m2 : M A) : m1 = m2   i, m1 !! i = m2 !! i.
Proof. split. by intros ->. apply map_eq. Qed.
Lemma map_subseteq_spec {A} (m1 m2 : M A) :
  m1  m2   i x, m1 !! i = Some x  m2 !! i = Some x.
Proof.
  unfold subseteq, map_subseteq, map_Forall2. split; intros Hm i;
    specialize (Hm i); destruct (m1 !! i), (m2 !! i); naive_solver.
Qed.
115
Global Instance: BoundedPreOrder (M A).
116
117
118
119
120
121
Proof.
  repeat split.
  * intros m. by rewrite map_subseteq_spec.
  * intros m1 m2 m3. rewrite !map_subseteq_spec. naive_solver.
  * intros m. rewrite !map_subseteq_spec. intros i x. by rewrite lookup_empty.
Qed.
122
Global Instance : PartialOrder (@subseteq (M A) _).
123
Proof.
124
125
  split; [apply _ |]. intros ??. rewrite !map_subseteq_spec.
  intros ??. apply map_eq; intros i. apply option_eq. naive_solver.
126
127
128
Qed.
Lemma lookup_weaken {A} (m1 m2 : M A) i x :
  m1 !! i = Some x  m1  m2  m2 !! i = Some x.
129
Proof. rewrite !map_subseteq_spec. auto. Qed.
130
131
132
133
134
135
Lemma lookup_weaken_is_Some {A} (m1 m2 : M A) i :
  is_Some (m1 !! i)  m1  m2  is_Some (m2 !! i).
Proof. inversion 1. eauto using lookup_weaken. Qed.
Lemma lookup_weaken_None {A} (m1 m2 : M A) i :
  m2 !! i = None  m1  m2  m1 !! i = None.
Proof.
136
137
  rewrite map_subseteq_spec, !eq_None_not_Some.
  intros Hm2 Hm [??]; destruct Hm2; eauto.
138
139
Qed.
Lemma lookup_weaken_inv {A} (m1 m2 : M A) i x y :
140
141
  m1 !! i = Some x  m1  m2  m2 !! i = Some y  x = y.
Proof. intros Hm1 ? Hm2. eapply lookup_weaken in Hm1; eauto. congruence. Qed.
142
143
144
145
146
147
148
149
150
Lemma lookup_ne {A} (m : M A) i j : m !! i  m !! j  i  j.
Proof. congruence. Qed.
Lemma map_empty {A} (m : M A) : ( i, m !! i = None)  m = .
Proof. intros Hm. apply map_eq. intros. by rewrite Hm, lookup_empty. Qed.
Lemma lookup_empty_is_Some {A} i : ¬is_Some (( : M A) !! i).
Proof. rewrite lookup_empty. by inversion 1. Qed.
Lemma lookup_empty_Some {A} i (x : A) : ¬ !! i = Some x.
Proof. by rewrite lookup_empty. Qed.
Lemma map_subset_empty {A} (m : M A) : m  .
151
152
153
Proof.
  intros [_ []]. rewrite map_subseteq_spec. intros ??. by rewrite lookup_empty.
Qed.
154
155

(** ** Properties of the [partial_alter] operation *)
156
157
158
Lemma partial_alter_ext {A} (f g : option A  option A) (m : M A) i :
  ( x, m !! i = x  f x = g x)  partial_alter f i m = partial_alter g i m.
Proof.
159
160
  intros. apply map_eq; intros j. by destruct (decide (i = j)) as [->|?];
    rewrite ?lookup_partial_alter, ?lookup_partial_alter_ne; auto.
161
162
Qed.
Lemma partial_alter_compose {A} f g (m : M A) i:
163
164
  partial_alter (f  g) i m = partial_alter f i (partial_alter g i m).
Proof.
165
166
  intros. apply map_eq. intros ii. by destruct (decide (i = ii)) as [->|?];
    rewrite ?lookup_partial_alter, ?lookup_partial_alter_ne.
167
Qed.
168
Lemma partial_alter_commute {A} f g (m : M A) i j :
169
  i  j  partial_alter f i (partial_alter g j m) =
170
171
    partial_alter g j (partial_alter f i m).
Proof.
172
173
174
175
176
177
178
  intros. apply map_eq; intros jj. destruct (decide (jj = j)) as [->|?].
  { by rewrite lookup_partial_alter_ne,
      !lookup_partial_alter, lookup_partial_alter_ne. }
  destruct (decide (jj = i)) as [->|?].
  * by rewrite lookup_partial_alter,
     !lookup_partial_alter_ne, lookup_partial_alter by congruence.
  * by rewrite !lookup_partial_alter_ne by congruence.
179
180
181
182
Qed.
Lemma partial_alter_self_alt {A} (m : M A) i x :
  x = m !! i  partial_alter (λ _, x) i m = m.
Proof.
183
184
  intros. apply map_eq. intros ii. by destruct (decide (i = ii)) as [->|];
    rewrite ?lookup_partial_alter, ?lookup_partial_alter_ne.
185
Qed.
186
Lemma partial_alter_self {A} (m : M A) i : partial_alter (λ _, m !! i) i m = m.
187
Proof. by apply partial_alter_self_alt. Qed.
188
Lemma partial_alter_subseteq {A} f (m : M A) i :
189
  m !! i = None  m  partial_alter f i m.
190
191
192
193
Proof.
  rewrite map_subseteq_spec. intros Hi j x Hj.
  rewrite lookup_partial_alter_ne; congruence.
Qed.
194
Lemma partial_alter_subset {A} f (m : M A) i :
195
  m !! i = None  is_Some (f (m !! i))  m  partial_alter f i m.
196
Proof.
197
198
199
200
  intros Hi Hfi. split; [by apply partial_alter_subseteq|].
  rewrite !map_subseteq_spec. inversion Hfi as [x Hx]. intros Hm.
  apply (Some_ne_None x). rewrite <-(Hm i x); [done|].
  by rewrite lookup_partial_alter.
201
202
203
Qed.

(** ** Properties of the [alter] operation *)
204
205
Lemma alter_ext {A} (f g : A  A) (m : M A) i :
  ( x, m !! i = Some x  f x = g x)  alter f i m = alter g i m.
206
Proof. intro. apply partial_alter_ext. intros [x|] ?; f_equal'; auto. Qed.
207
Lemma lookup_alter {A} (f : A  A) m i : alter f i m !! i = f <$> m !! i.
208
Proof. unfold alter. apply lookup_partial_alter. Qed.
209
Lemma lookup_alter_ne {A} (f : A  A) m i j : i  j  alter f i m !! j = m !! j.
210
Proof. unfold alter. apply lookup_partial_alter_ne. Qed.
211
212
213
214
215
216
217
218
219
Lemma alter_compose {A} (f g : A  A) (m : M A) i:
  alter (f  g) i m = alter f i (alter g i m).
Proof.
  unfold alter, map_alter. rewrite <-partial_alter_compose.
  apply partial_alter_ext. by intros [?|].
Qed.
Lemma alter_commute {A} (f g : A  A) (m : M A) i j :
  i  j  alter f i (alter g j m) = alter g j (alter f i m).
Proof. apply partial_alter_commute. Qed.
220
221
222
223
Lemma lookup_alter_Some {A} (f : A  A) m i j y :
  alter f i m !! j = Some y 
    (i = j   x, m !! j = Some x  y = f x)  (i  j  m !! j = Some y).
Proof.
224
  destruct (decide (i = j)) as [->|?].
225
226
227
228
229
230
  * rewrite lookup_alter. naive_solver (simplify_option_equality; eauto).
  * rewrite lookup_alter_ne by done. naive_solver.
Qed.
Lemma lookup_alter_None {A} (f : A  A) m i j :
  alter f i m !! j = None  m !! j = None.
Proof.
231
232
  by destruct (decide (i = j)) as [->|?];
    rewrite ?lookup_alter, ?fmap_None, ?lookup_alter_ne.
233
Qed.
234
Lemma alter_None {A} (f : A  A) m i : m !! i = None  alter f i m = m.
235
Proof.
236
237
  intros Hi. apply map_eq. intros j. by destruct (decide (i = j)) as [->|?];
    rewrite ?lookup_alter, ?Hi, ?lookup_alter_ne.
238
239
240
241
242
243
244
245
246
247
248
Qed.

(** ** Properties of the [delete] operation *)
Lemma lookup_delete {A} (m : M A) i : delete i m !! i = None.
Proof. apply lookup_partial_alter. Qed.
Lemma lookup_delete_ne {A} (m : M A) i j : i  j  delete i m !! j = m !! j.
Proof. apply lookup_partial_alter_ne. Qed.
Lemma lookup_delete_Some {A} (m : M A) i j y :
  delete i m !! j = Some y  i  j  m !! j = Some y.
Proof.
  split.
249
  * destruct (decide (i = j)) as [->|?];
250
251
252
253
254
255
      rewrite ?lookup_delete, ?lookup_delete_ne; intuition congruence.
  * intros [??]. by rewrite lookup_delete_ne.
Qed.
Lemma lookup_delete_None {A} (m : M A) i j :
  delete i m !! j = None  i = j  m !! j = None.
Proof.
256
257
  destruct (decide (i = j)) as [->|?];
    rewrite ?lookup_delete, ?lookup_delete_ne; tauto.
258
259
260
Qed.
Lemma delete_empty {A} i : delete i ( : M A) = .
Proof. rewrite <-(partial_alter_self ) at 2. by rewrite lookup_empty. Qed.
261
Lemma delete_singleton {A} i (x : A) : delete i {[i, x]} = .
262
263
264
265
266
267
268
Proof. setoid_rewrite <-partial_alter_compose. apply delete_empty. Qed.
Lemma delete_commute {A} (m : M A) i j :
  delete i (delete j m) = delete j (delete i m).
Proof. destruct (decide (i = j)). by subst. by apply partial_alter_commute. Qed.
Lemma delete_insert_ne {A} (m : M A) i j x :
  i  j  delete i (<[j:=x]>m) = <[j:=x]>(delete i m).
Proof. intro. by apply partial_alter_commute. Qed.
269
Lemma delete_notin {A} (m : M A) i : m !! i = None  delete i m = m.
270
Proof.
271
272
  intros. apply map_eq. intros j. by destruct (decide (i = j)) as [->|?];
    rewrite ?lookup_delete, ?lookup_delete_ne.
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
Qed.
Lemma delete_partial_alter {A} (m : M A) i f :
  m !! i = None  delete i (partial_alter f i m) = m.
Proof.
  intros. unfold delete, map_delete. rewrite <-partial_alter_compose.
  unfold compose. by apply partial_alter_self_alt.
Qed.
Lemma delete_insert {A} (m : M A) i x :
  m !! i = None  delete i (<[i:=x]>m) = m.
Proof. apply delete_partial_alter. Qed.
Lemma insert_delete {A} (m : M A) i x :
  m !! i = Some x  <[i:=x]>(delete i m) = m.
Proof.
  intros Hmi. unfold delete, map_delete, insert, map_insert.
  rewrite <-partial_alter_compose. unfold compose. rewrite <-Hmi.
  by apply partial_alter_self_alt.
Qed.
290
Lemma delete_subseteq {A} (m : M A) i : delete i m  m.
291
292
293
Proof.
  rewrite !map_subseteq_spec. intros j x. rewrite lookup_delete_Some. tauto.
Qed.
294
Lemma delete_subseteq_compat {A} (m1 m2 : M A) i :
295
  m1  m2  delete i m1  delete i m2.
296
297
298
299
Proof.
  rewrite !map_subseteq_spec. intros ? j x.
  rewrite !lookup_delete_Some. intuition eauto.
Qed.
300
Lemma delete_subset_alt {A} (m : M A) i x : m !! i = Some x  delete i m  m.
301
Proof.
302
303
304
  split; [apply delete_subseteq|].
  rewrite !map_subseteq_spec. intros Hi. apply (None_ne_Some x).
  by rewrite <-(lookup_delete m i), (Hi i x).
305
Qed.
306
Lemma delete_subset {A} (m : M A) i : is_Some (m !! i)  delete i m  m.
307
308
309
310
311
Proof. inversion 1. eauto using delete_subset_alt. Qed.

(** ** Properties of the [insert] operation *)
Lemma lookup_insert {A} (m : M A) i x : <[i:=x]>m !! i = Some x.
Proof. unfold insert. apply lookup_partial_alter. Qed.
312
Lemma lookup_insert_rev {A}  (m : M A) i x y : <[i:=x]>m !! i = Some y  x = y.
313
Proof. rewrite lookup_insert. congruence. Qed.
314
Lemma lookup_insert_ne {A} (m : M A) i j x : i  j  <[i:=x]>m !! j = m !! j.
315
316
317
318
319
320
321
322
Proof. unfold insert. apply lookup_partial_alter_ne. Qed.
Lemma insert_commute {A} (m : M A) i j x y :
  i  j  <[i:=x]>(<[j:=y]>m) = <[j:=y]>(<[i:=x]>m).
Proof. apply partial_alter_commute. Qed.
Lemma lookup_insert_Some {A} (m : M A) i j x y :
  <[i:=x]>m !! j = Some y  (i = j  x = y)  (i  j  m !! j = Some y).
Proof.
  split.
323
  * destruct (decide (i = j)) as [->|?];
324
      rewrite ?lookup_insert, ?lookup_insert_ne; intuition congruence.
325
  * intros [[-> ->]|[??]]; [apply lookup_insert|]. by rewrite lookup_insert_ne.
326
327
328
329
Qed.
Lemma lookup_insert_None {A} (m : M A) i j x :
  <[i:=x]>m !! j = None  m !! j = None  i  j.
Proof.
330
331
332
  split; [|by intros [??]; rewrite lookup_insert_ne].
  destruct (decide (i = j)) as [->|];
    rewrite ?lookup_insert, ?lookup_insert_ne; intuition congruence.
333
Qed.
334
Lemma insert_subseteq {A} (m : M A) i x : m !! i = None  m  <[i:=x]>m.
335
Proof. apply partial_alter_subseteq. Qed.
336
Lemma insert_subset {A} (m : M A) i x : m !! i = None  m  <[i:=x]>m.
337
338
Proof. intro. apply partial_alter_subset; eauto. Qed.
Lemma insert_subseteq_r {A} (m1 m2 : M A) i x :
339
  m1 !! i = None  m1  m2  m1  <[i:=x]>m2.
340
Proof.
341
342
343
  rewrite !map_subseteq_spec. intros ?? j ?.
  destruct (decide (j = i)) as [->|?]; [congruence|].
  rewrite lookup_insert_ne; auto.
344
345
Qed.
Lemma insert_delete_subseteq {A} (m1 m2 : M A) i x :
346
  m1 !! i = None  <[i:=x]> m1  m2  m1  delete i m2.
347
Proof.
348
349
350
351
  rewrite !map_subseteq_spec. intros Hi Hix j y Hj.
  destruct (decide (i = j)) as [->|]; [congruence|].
  rewrite lookup_delete_ne by done.
  apply Hix; by rewrite lookup_insert_ne by done.
352
353
Qed.
Lemma delete_insert_subseteq {A} (m1 m2 : M A) i x :
354
  m1 !! i = Some x  delete i m1  m2  m1  <[i:=x]> m2.
355
Proof.
356
357
  rewrite !map_subseteq_spec.
  intros Hix Hi j y Hj. destruct (decide (i = j)) as [->|?].
358
  * rewrite lookup_insert. congruence.
359
  * rewrite lookup_insert_ne by done. apply Hi. by rewrite lookup_delete_ne.
360
361
Qed.
Lemma insert_delete_subset {A} (m1 m2 : M A) i x :
362
  m1 !! i = None  <[i:=x]> m1  m2  m1  delete i m2.
363
Proof.
364
365
366
  intros ? [Hm12 Hm21]; split; [eauto using insert_delete_subseteq|].
  contradict Hm21. apply delete_insert_subseteq; auto.
  eapply lookup_weaken, Hm12. by rewrite lookup_insert.
367
368
Qed.
Lemma insert_subset_inv {A} (m1 m2 : M A) i x :
369
  m1 !! i = None  <[i:=x]> m1  m2 
370
371
372
   m2', m2 = <[i:=x]>m2'  m1  m2'  m2' !! i = None.
Proof.
  intros Hi Hm1m2. exists (delete i m2). split_ands.
373
  * rewrite insert_delete. done. eapply lookup_weaken, strict_include; eauto.
374
375
376
377
    by rewrite lookup_insert.
  * eauto using insert_delete_subset.
  * by rewrite lookup_delete.
Qed.
378
379
380
381
382
383
384
Lemma fmap_insert {A B} (f : A  B) (m : M A) i x :
  f <$> <[i:=x]>m = <[i:=f x]>(f <$> m).
Proof.
  apply map_eq; intros i'; destruct (decide (i' = i)) as [->|].
  * by rewrite lookup_fmap, !lookup_insert.
  * by rewrite lookup_fmap, !lookup_insert_ne, lookup_fmap by done.
Qed.
385
386
387

(** ** Properties of the singleton maps *)
Lemma lookup_singleton_Some {A} i j (x y : A) :
388
  {[i, x]} !! j = Some y  i = j  x = y.
389
390
Proof.
  unfold singleton, map_singleton.
391
  rewrite lookup_insert_Some, lookup_empty. simpl. intuition congruence.
392
Qed.
393
Lemma lookup_singleton_None {A} i j (x : A) : {[i, x]} !! j = None  i  j.
394
395
396
397
Proof.
  unfold singleton, map_singleton.
  rewrite lookup_insert_None, lookup_empty. simpl. tauto.
Qed.
398
Lemma lookup_singleton {A} i (x : A) : {[i, x]} !! i = Some x.
399
Proof. by rewrite lookup_singleton_Some. Qed.
400
Lemma lookup_singleton_ne {A} i j (x : A) : i  j  {[i, x]} !! j = None.
401
Proof. by rewrite lookup_singleton_None. Qed.
402
Lemma map_non_empty_singleton {A} i (x : A) : {[i,x]}  .
403
404
405
406
Proof.
  intros Hix. apply (f_equal (!! i)) in Hix.
  by rewrite lookup_empty, lookup_singleton in Hix.
Qed.
407
Lemma insert_singleton {A} i (x y : A) : <[i:=y]>{[i, x]} = {[i, y]}.
408
409
410
411
Proof.
  unfold singleton, map_singleton, insert, map_insert.
  by rewrite <-partial_alter_compose.
Qed.
412
Lemma alter_singleton {A} (f : A  A) i x : alter f i {[i,x]} = {[i, f x]}.
413
Proof.
414
  intros. apply map_eq. intros i'. destruct (decide (i = i')) as [->|?].
415
416
417
418
  * by rewrite lookup_alter, !lookup_singleton.
  * by rewrite lookup_alter_ne, !lookup_singleton_ne.
Qed.
Lemma alter_singleton_ne {A} (f : A  A) i j x :
419
  i  j  alter f i {[j,x]} = {[j,x]}.
420
Proof.
421
422
  intros. apply map_eq; intros i'. by destruct (decide (i = i')) as [->|?];
    rewrite ?lookup_alter, ?lookup_singleton_ne, ?lookup_alter_ne by done.
423
424
Qed.

425
426
427
428
429
430
(** ** Properties of the map operations *)
Lemma fmap_empty {A B} (f : A  B) : f <$>  = .
Proof. apply map_empty; intros i. by rewrite lookup_fmap, lookup_empty. Qed.
Lemma omap_empty {A B} (f : A  option B) : omap f  = .
Proof. apply map_empty; intros i. by rewrite lookup_omap, lookup_empty. Qed.

431
432
(** ** Properties of conversion to lists *)
Lemma map_to_list_unique {A} (m : M A) i x y :
433
  (i,x)  map_to_list m  (i,y)  map_to_list m  x = y.
434
Proof. rewrite !elem_of_map_to_list. congruence. Qed.
435
436
Lemma NoDup_fst_map_to_list {A} (m : M A) : NoDup (fst <$> map_to_list m).
Proof. eauto using NoDup_fmap_fst, map_to_list_unique, NoDup_map_to_list. Qed.
437
Lemma elem_of_map_of_list_1 {A} (l : list (K * A)) i x :
438
  NoDup (fst <$> l)  (i,x)  l  map_of_list l !! i = Some x.
439
Proof.
440
  induction l as [|[j y] l IH]; csimpl; [by rewrite elem_of_nil|].
441
  rewrite NoDup_cons, elem_of_cons, elem_of_list_fmap.
442
443
444
  intros [Hl ?] [?|?]; simplify_equality; [by rewrite lookup_insert|].
  destruct (decide (i = j)) as [->|]; [|rewrite lookup_insert_ne; auto].
  destruct Hl. by exists (j,x).
445
446
Qed.
Lemma elem_of_map_of_list_2 {A} (l : list (K * A)) i x :
447
  map_of_list l !! i = Some x  (i,x)  l.
448
Proof.
449
450
451
  induction l as [|[j y] l IH]; simpl; [by rewrite lookup_empty|].
  rewrite elem_of_cons. destruct (decide (i = j)) as [->|];
    rewrite ?lookup_insert, ?lookup_insert_ne; intuition congruence.
452
453
Qed.
Lemma elem_of_map_of_list {A} (l : list (K * A)) i x :
454
455
  NoDup (fst <$> l)  (i,x)  l  map_of_list l !! i = Some x.
Proof. split; auto using elem_of_map_of_list_1, elem_of_map_of_list_2. Qed.
456
Lemma not_elem_of_map_of_list_1 {A} (l : list (K * A)) i :
457
  i  fst <$> l  map_of_list l !! i = None.
458
Proof.
459
460
  rewrite elem_of_list_fmap, eq_None_not_Some. intros Hi [x ?]; destruct Hi.
  exists (i,x); simpl; auto using elem_of_map_of_list_2.
461
462
Qed.
Lemma not_elem_of_map_of_list_2 {A} (l : list (K * A)) i :
463
  map_of_list l !! i = None  i  fst <$> l.
464
Proof.
465
  induction l as [|[j y] l IH]; csimpl; [rewrite elem_of_nil; tauto|].
466
467
468
469
470
471
  rewrite elem_of_cons. destruct (decide (i = j)); simplify_equality.
  * by rewrite lookup_insert.
  * by rewrite lookup_insert_ne; intuition.
Qed.
Lemma not_elem_of_map_of_list {A} (l : list (K * A)) i :
  i  fst <$> l  map_of_list l !! i = None.
472
Proof. red; auto using not_elem_of_map_of_list_1,not_elem_of_map_of_list_2. Qed.
473
Lemma map_of_list_proper {A} (l1 l2 : list (K * A)) :
474
  NoDup (fst <$> l1)  l1  l2  map_of_list l1 = map_of_list l2.
475
476
477
478
479
Proof.
  intros ? Hperm. apply map_eq. intros i. apply option_eq. intros x.
  by rewrite <-!elem_of_map_of_list; rewrite <-?Hperm.
Qed.
Lemma map_of_list_inj {A} (l1 l2 : list (K * A)) :
480
481
  NoDup (fst <$> l1)  NoDup (fst <$> l2) 
  map_of_list l1 = map_of_list l2  l1  l2.
482
Proof.
483
  intros ?? Hl1l2. apply NoDup_Permutation; auto using (NoDup_fmap_1 fst).
484
485
  intros [i x]. by rewrite !elem_of_map_of_list, Hl1l2.
Qed.
486
Lemma map_of_to_list {A} (m : M A) : map_of_list (map_to_list m) = m.
487
488
489
Proof.
  apply map_eq. intros i. apply option_eq. intros x.
  by rewrite <-elem_of_map_of_list, elem_of_map_to_list
490
    by auto using NoDup_fst_map_to_list.
491
492
Qed.
Lemma map_to_of_list {A} (l : list (K * A)) :
493
  NoDup (fst <$> l)  map_to_list (map_of_list l)  l.
494
Proof. auto using map_of_list_inj, NoDup_fst_map_to_list, map_of_to_list. Qed.
495
Lemma map_to_list_inj {A} (m1 m2 : M A) :
496
  map_to_list m1  map_to_list m2  m1 = m2.
497
Proof.
498
  intros. rewrite <-(map_of_to_list m1), <-(map_of_to_list m2).
499
  auto using map_of_list_proper, NoDup_fst_map_to_list.
500
Qed.
501
Lemma map_to_list_empty {A} : map_to_list  = @nil (K * A).
502
503
504
505
506
Proof.
  apply elem_of_nil_inv. intros [i x].
  rewrite elem_of_map_to_list. apply lookup_empty_Some.
Qed.
Lemma map_to_list_insert {A} (m : M A) i x :
507
  m !! i = None  map_to_list (<[i:=x]>m)  (i,x) :: map_to_list m.
508
Proof.
509
  intros. apply map_of_list_inj; csimpl.
510
511
  * apply NoDup_fst_map_to_list.
  * constructor; auto using NoDup_fst_map_to_list.
512
    rewrite elem_of_list_fmap. intros [[??] [? Hlookup]]; subst; simpl in *.
513
514
515
    rewrite elem_of_map_to_list in Hlookup. congruence.
  * by rewrite !map_of_to_list.
Qed.
516
Lemma map_of_list_nil {A} : map_of_list (@nil (K * A)) = .
517
518
519
520
Proof. done. Qed.
Lemma map_of_list_cons {A} (l : list (K * A)) i x :
  map_of_list ((i, x) :: l) = <[i:=x]>(map_of_list l).
Proof. done. Qed.
521
Lemma map_to_list_empty_inv_alt {A}  (m : M A) : map_to_list m  []  m = .
522
Proof. rewrite <-map_to_list_empty. apply map_to_list_inj. Qed.
523
Lemma map_to_list_empty_inv {A} (m : M A) : map_to_list m = []  m = .
524
525
Proof. intros Hm. apply map_to_list_empty_inv_alt. by rewrite Hm. Qed.
Lemma map_to_list_insert_inv {A} (m : M A) l i x :
526
  map_to_list m  (i,x) :: l  m = <[i:=x]>(map_of_list l).
527
528
529
Proof.
  intros Hperm. apply map_to_list_inj.
  assert (NoDup (fst <$> (i, x) :: l)) as Hnodup.
530
  { rewrite <-Hperm. auto using NoDup_fst_map_to_list. }
531
  csimpl in *. rewrite NoDup_cons in Hnodup. destruct Hnodup.
532
533
534
  rewrite Hperm, map_to_list_insert, map_to_of_list;
    auto using not_elem_of_map_of_list_1.
Qed.
535
536
537
538
539
540
Lemma map_choose {A} (m : M A) : m     i x, m !! i = Some x.
Proof.
  intros Hemp. destruct (map_to_list m) as [|[i x] l] eqn:Hm.
  { destruct Hemp; eauto using map_to_list_empty_inv. }
  exists i x. rewrite <-elem_of_map_to_list, Hm. by left.
Qed.
541
542
543

(** * Induction principles *)
Lemma map_ind {A} (P : M A  Prop) :
544
  P   ( i x m, m !! i = None  P m  P (<[i:=x]>m))   m, P m.
545
Proof.
546
  intros ? Hins. cut ( l, NoDup (fst <$> l)   m, map_to_list m  l  P m).
547
  { intros help m.
548
    apply (help (map_to_list m)); auto using NoDup_fst_map_to_list. }
549
550
551
  induction l as [|[i x] l IH]; intros Hnodup m Hml.
  { apply map_to_list_empty_inv_alt in Hml. by subst. }
  inversion_clear Hnodup.
552
  apply map_to_list_insert_inv in Hml; subst m. apply Hins.
553
554
555
556
  * by apply not_elem_of_map_of_list_1.
  * apply IH; auto using map_to_of_list.
Qed.
Lemma map_to_list_length {A} (m1 m2 : M A) :
557
  m1  m2  length (map_to_list m1) < length (map_to_list m2).
558
559
560
561
Proof.
  revert m2. induction m1 as [|i x m ? IH] using map_ind.
  { intros m2 Hm2. rewrite map_to_list_empty. simpl.
    apply neq_0_lt. intros Hlen. symmetry in Hlen.
562
    apply nil_length_inv, map_to_list_empty_inv in Hlen.
563
564
565
566
567
    rewrite Hlen in Hm2. destruct (irreflexivity ()  Hm2). }
  intros m2 Hm2.
  destruct (insert_subset_inv m m2 i x) as (m2'&?&?&?); auto; subst.
  rewrite !map_to_list_insert; simpl; auto with arith.
Qed.
568
Lemma map_wf {A} : wf (strict (@subseteq (M A) _)).
569
570
571
572
573
574
575
Proof.
  apply (wf_projected (<) (length  map_to_list)).
  * by apply map_to_list_length.
  * by apply lt_wf.
Qed.

(** ** Properties of the [map_forall] predicate *)
576
Section map_Forall.
577
578
Context {A} (P : K  A  Prop).

579
Lemma map_Forall_to_list m : map_Forall P m  Forall (curry P) (map_to_list m).
580
581
Proof.
  rewrite Forall_forall. split.
582
583
  * intros Hforall [i x]. rewrite elem_of_map_to_list. by apply (Hforall i x).
  * intros Hforall i x. rewrite <-elem_of_map_to_list. by apply (Hforall (i,x)).
584
585
586
Qed.

Context `{ i x, Decision (P i x)}.
587
Global Instance map_Forall_dec m : Decision (map_Forall P m).
588
589
Proof.
  refine (cast_if (decide (Forall (curry P) (map_to_list m))));
590
    by rewrite map_Forall_to_list.
591
Defined.
592
593
Lemma map_not_Forall (m : M A) :
  ¬map_Forall P m   i x, m !! i = Some x  ¬P i x.
594
595
Proof.
  split.
596
  * rewrite map_Forall_to_list. intros Hm.
597
598
599
600
    apply (not_Forall_Exists _), Exists_exists in Hm.
    destruct Hm as ([i x]&?&?). exists i x. by rewrite <-elem_of_map_to_list.
  * intros (i&x&?&?) Hm. specialize (Hm i x). tauto.
Qed.
601
End map_Forall.
602
603
604
605
606
607

(** ** Properties of the [merge] operation *)
Lemma merge_Some {A B C} (f : option A  option B  option C)
    `{!PropHolds (f None None = None)} m1 m2 m :
  ( i, m !! i = f (m1 !! i) (m2 !! i))  merge f m1 m2 = m.
Proof.
608
609
  split; [|intros <-; apply (lookup_merge _) ].
  intros Hlookup. apply map_eq; intros. rewrite Hlookup. apply (lookup_merge _).
610
611
612
613
614
615
616
617
Qed.

Section merge.
Context {A} (f : option A  option A  option A).

Global Instance: LeftId (=) None f  LeftId (=)  (merge f).
Proof.
  intros ??. apply map_eq. intros.
618
  by rewrite !(lookup_merge f), lookup_empty, (left_id_L None f).
619
620
621
622
Qed.
Global Instance: RightId (=) None f  RightId (=)  (merge f).
Proof.
  intros ??. apply map_eq. intros.
623
  by rewrite !(lookup_merge f), lookup_empty, (right_id_L None f).
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
Qed.

Context `{!PropHolds (f None None = None)}.

Lemma merge_commutative m1 m2 :
  ( i, f (m1 !! i) (m2 !! i) = f (m2 !! i) (m1 !! i)) 
  merge f m1 m2 = merge f m2 m1.
Proof. intros. apply map_eq. intros. by rewrite !(lookup_merge f). Qed.
Global Instance: Commutative (=) f  Commutative (=) (merge f).
Proof.
  intros ???. apply merge_commutative. intros. by apply (commutative f).
Qed.
Lemma merge_associative m1 m2 m3 :
  ( i, f (m1 !! i) (f (m2 !! i) (m3 !! i)) =
        f (f (m1 !! i) (m2 !! i)) (m3 !! i)) 
  merge f m1 (merge f m2 m3) = merge f (merge f m1 m2) m3.
Proof. intros. apply map_eq. intros. by rewrite !(lookup_merge f). Qed.
Global Instance: Associative (=) f  Associative (=) (merge f).
Proof.
643
  intros ????. apply merge_associative. intros. by apply (associative_L f).
644
645
Qed.
Lemma merge_idempotent m1 :
646
  ( i, f (m1 !! i) (m1 !! i) = m1 !! i)  merge f m1 m1 = m1.
647
648
Proof. intros. apply map_eq. intros. by rewrite !(lookup_merge f). Qed.
Global Instance: Idempotent (=) f  Idempotent (=) (merge f).
649
Proof. intros ??. apply merge_idempotent. intros. by apply (idempotent f). Qed.
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692

Lemma partial_alter_merge (g g1 g2 : option A  option A) m1 m2 i :
  g (f (m1 !! i) (m2 !! i)) = f (g1 (m1 !! i)) (g2 (m2 !! i)) 
  partial_alter g i (merge f m1 m2) =
    merge f (partial_alter g1 i m1) (partial_alter g2 i m2).
Proof.
  intro. apply map_eq. intros j. destruct (decide (i = j)); subst.
  * by rewrite (lookup_merge _), !lookup_partial_alter, !(lookup_merge _).
  * by rewrite (lookup_merge _), !lookup_partial_alter_ne, (lookup_merge _).
Qed.
Lemma partial_alter_merge_l (g g1 : option A  option A) m1 m2 i :
  g (f (m1 !! i) (m2 !! i)) = f (g1 (m1 !! i)) (m2 !! i) 
  partial_alter g i (merge f m1 m2) = merge f (partial_alter g1 i m1) m2.
Proof.
  intro. apply map_eq. intros j. destruct (decide (i = j)); subst.
  * by rewrite (lookup_merge _), !lookup_partial_alter, !(lookup_merge _).
  * by rewrite (lookup_merge _), !lookup_partial_alter_ne, (lookup_merge _).
Qed.
Lemma partial_alter_merge_r (g g2 : option A  option A) m1 m2 i :
  g (f (m1 !! i) (m2 !! i)) = f (m1 !! i) (g2 (m2 !! i)) 
  partial_alter g i (merge f m1 m2) = merge f m1 (partial_alter g2 i m2).
Proof.
  intro. apply map_eq. intros j. destruct (decide (i = j)); subst.
  * by rewrite (lookup_merge _), !lookup_partial_alter, !(lookup_merge _).
  * by rewrite (lookup_merge _), !lookup_partial_alter_ne, (lookup_merge _).
Qed.

Lemma insert_merge_l m1 m2 i x :
  f (Some x) (m2 !! i) = Some x 
  <[i:=x]>(merge f m1 m2) = merge f (<[i:=x]>m1) m2.
Proof.
  intros. unfold insert, map_insert, alter, map_alter.
  by apply partial_alter_merge_l.
Qed.
Lemma insert_merge_r m1 m2 i x :
  f (m1 !! i) (Some x) = Some x 
  <[i:=x]>(merge f m1 m2) = merge f m1 (<[i:=x]>m2).
Proof.
  intros. unfold insert, map_insert, alter, map_alter.
  by apply partial_alter_merge_r.
Qed.
End merge.

693
694
695
696
697
698
699
700
701
702
703
704
705
706
(** ** Properties on the [map_Forall2] relation *)
Section Forall2.
Context {A B} (R : A  B  Prop) (P : A  Prop) (Q : B  Prop).
Context `{ x y, Decision (R x y),  x, Decision (P x),  y, Decision (Q y)}.

Let f (mx : option A) (my : option B) : option bool :=
  match mx, my with
  | Some x, Some y => Some (bool_decide (R x y))
  | Some x, None => Some (bool_decide (P x))
  | None, Some y => Some (bool_decide (Q y))
  | None, None => None
  end.
Lemma map_Forall2_alt (m1 : M A) (m2 : M B) :
  map_Forall2 R P Q m1 m2  map_Forall (λ _ P, Is_true P) (merge f m1 m2).
707
708
Proof.
  split.
709
710
711
712
713
714
715
716
717
718
719
720
721
  * intros Hm i P'; rewrite lookup_merge by done; intros.
    specialize (Hm i). destruct (m1 !! i), (m2 !! i);
      simplify_equality; auto using bool_decide_pack.
  * intros Hm i. specialize (Hm i). rewrite lookup_merge in Hm by done.
    destruct (m1 !! i), (m2 !! i); simplify_equality'; auto;
      by eapply bool_decide_unpack, Hm.
Qed.
Global Instance map_Forall2_dec `{ x y, Decision (R x y),  x, Decision (P x),
   y, Decision (Q y)} m1 m2 : Decision (map_Forall2 R P Q m1 m2).
Proof.
  refine (cast_if (decide (map_Forall (λ _ P, Is_true P) (merge f m1 m2))));
    abstract by rewrite map_Forall2_alt.
Defined.
722
723
(** Due to the finiteness of finite maps, we can extract a witness if the
relation does not hold. *)
724
725
726
727
728
Lemma map_not_Forall2 (m1 : M A) (m2 : M B) :
  ¬map_Forall2 R P Q m1 m2   i,
    ( x y, m1 !! i = Some x  m2 !! i = Some y  ¬R x y)
     ( x, m1 !! i = Some x  m2 !! i = None  ¬P x)
     ( y, m1 !! i = None  m2 !! i = Some y  ¬Q y).
729
730
Proof.
  split.
731
732
733
734
735
  * rewrite map_Forall2_alt, (map_not_Forall _). intros (i&?&Hm&?); exists i.
    rewrite lookup_merge in Hm by done.
    destruct (m1 !! i), (m2 !! i); naive_solver auto 2 using bool_decide_pack.
  * by intros [i[(x&y&?&?&?)|[(x&?&?&?)|(y&?&?&?)]]] Hm;
      specialize (Hm i); simplify_option_equality.
736
Qed.
737
End Forall2.
738
739

(** ** Properties on the disjoint maps *)
740
741
742
743
744
745
Lemma map_disjoint_spec {A} (m1 m2 : M A) :
  m1  m2   i x y, m1 !! i = Some x  m2 !! i = Some y  False.
Proof.
  split; intros Hm i; specialize (Hm i);
    destruct (m1 !! i), (m2 !! i); naive_solver.
Qed.
746
747
748
749
750
751
752
753
754
Lemma map_disjoint_alt {A} (m1 m2 : M A) :
  m1  m2   i, m1 !! i = None  m2 !! i = None.
Proof.
  split; intros Hm1m2 i; specialize (Hm1m2 i);
    destruct (m1 !! i), (m2 !! i); naive_solver.
Qed.
Lemma map_not_disjoint {A} (m1 m2 : M A) :
  ¬m1  m2   i x1 x2, m1 !! i = Some x1  m2 !! i = Some x2.
Proof.
755
756
  unfold disjoint, map_disjoint. rewrite map_not_Forall2 by solve_decision.
  split; [|naive_solver].
757
  intros [i[(x&y&?&?&?)|[(x&?&?&[])|(y&?&?&[])]]]; naive_solver.
758
759
Qed.
Global Instance: Symmetric (@disjoint (M A) _).
760
Proof. intros A m1 m2. rewrite !map_disjoint_spec. naive_solver. Qed.
761
Lemma map_disjoint_empty_l {A} (m : M A) :   m.
762
Proof. rewrite !map_disjoint_spec. intros i x y. by rewrite lookup_empty. Qed.
763
Lemma map_disjoint_empty_r {A} (m : M A) : m  .
764
Proof. rewrite !map_disjoint_spec. intros i x y. by rewrite lookup_empty. Qed.
765
Lemma map_disjoint_weaken {A} (m1 m1' m2 m2' : M A) :
766
  m1'  m2'  m1  m1'  m2  m2'  m1  m2.
767
Proof. rewrite !map_subseteq_spec, !map_disjoint_spec. eauto. Qed.
768
769
770
771
772
773
774
Lemma map_disjoint_weaken_l {A} (m1 m1' m2  : M A) :
  m1'  m2  m1  m1'  m1  m2.
Proof. eauto using map_disjoint_weaken. Qed.
Lemma map_disjoint_weaken_r {A} (m1 m2 m2' : M A) :
  m1  m2'  m2  m2'  m1  m2.
Proof. eauto using map_disjoint_weaken. Qed.
Lemma map_disjoint_Some_l {A} (m1 m2 : M A) i x:
775
  m1  m2  m1 !! i = Some x  m2 !! i = None.
776
Proof. rewrite map_disjoint_spec, eq_None_not_Some. intros ?? [??]; eauto. Qed.
777
Lemma map_disjoint_Some_r {A} (m1 m2 : M A) i x:
778
  m1  m2  m2 !! i = Some x  m1 !! i = None.
779
Proof. rewrite (symmetry_iff ()). apply map_disjoint_Some_l. Qed.
780
Lemma map_disjoint_singleton_l {A}